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What is model fitting ?

Linear Regression

Linear Regression with £ norm
Heavy Tail




Virus Infection Data

We would like to capture the growth of
infected hosts

Explanatory model: y; = f; (ﬁ)
» y;: collection of measured data
» i:index of measurement
» f;:array of functions
» f;: parameter we would like to obtain

An exponential model seems
appropriate

How can we fit the model, in
particular, what is the value of a ?
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Y(t) = ae*t
B = (a,a),fi(B) = fila,a) = ae™ti

t;: time of ith measurement




Least Square Fit of Virus Infection Data
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a=0.5173
Mean doubling time In2 /a: 1.34 hours

Prediction at +6 hours: 100 000 hosts

Least square fit
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Least Square Fit of Virus Infection Data In Log Scale

104: : :

a=0.39

oL Mean doubling time In2/a: 1.77 hours o
Prediction at +6 hours: 39 000 hosts 'f /

e

10k - _

Least square fit
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Compare the Two
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Which Fitting Method should | use ?

B Which optimization criterion should I use?

B The answer is in a statistical model.
» Model not only the interesting part, but also the noise

B For example

Y; — aeati + €; with €; lid ~ f\r@‘lgz
The parameteris 0 = (a, a, o).

We will see in Section 3.1.2 that the maximum likelihood estimator for this model is the one that
minimizes the mean square distance. Thus, with this model, we obtain for « the value in Exam-

ple 3.1. a = 0.5137
data in normal scale



A second statistical model could be:
n(Y;) = In (ae™) + ¢; with €; iid ~ N,

Now, we would be assuming that the noise terms in log-scale have the same variance, in other
words, the noise is proportional to the measured value. Here too, the maximum likelihood es-
timator is obtained by minimizing the least square distance, thus we obtain for o the value in
a = 0.39

Example 3.2.
data in log scale

B How can I tell which is correct?



We can validate either model by plotting the residuals:

Look at Residuals

100 0.4
50+ 0.3t
o+ 0.2t

-50} 0.1} *
-100+ or
+

-150} -0.1¢t
-200} -0.2f
-250+ -0.3t
-300+ -0.4¢

.

-350 -05 :

10

15

20

10

15

20

We see clearly that the residual for the former model do not appear to be normally distributed,
and the converse is true for the former model, which is the one we should adopt. Therefore, an
acceptable fitting is obtained by minimizing least squares in log-scale.




FITTING A MODEL TO DATA

l.

Define a statistical model that contains both the deterministic part (the one we are interested
in) and a model of the noise.

. Estimate the parameters of the statistical model using maximum likelihood. If the number

of data points 1s small, use a brute force approach (e.g use fminsearch). If the number of
data points 1s large, you may need to look in the literature for efficient, possibly heuristic,
optimization methods.

. Validate the model fit by screening the residuals, either visually, or using tests (Chapter 4).

In practice, you will seldom obtain a perfect fit; however, large deviations indicate that the
model might not be appropriate.



Least Square Fit

B General model (homoscedasticity: unknown same finite variance)

Yi=fi(f) +efori=1,....] withe; iid ~ Ny (3.5)

This must be satisfied

THEOREM 3.1.1 (Least Squares). For the model in Eq.(3.5),

1. the maximum likelihood estimator of the parameter (g ,0) is given by:
) | L\ 2
(a) 0 = arg min z > (yi — fi (6))
A\ 2
(b) 6> =31, (yi - f@:(b’))
B The theorem says:

C e equivalent _
minimize least squares = > compute MLE for this model

B Thisis how we computed the estimates for the virus example.



Maximum Likelihood Estimator

B What is MLE? Denote by f(x) the pdf (probability density function) of the
random variable in the model. The MLE of the model is

The value of & = 6 which maximizes f (x4, ..., x,,|0)
(1) O: the parameters to be estimated
(2) X = (x4, ..., X;,): the available data

B Thatis because we have the following asymptotic convergence for MLE.

as the number of samples n goes to infinity

THEOREM B.2.1. Under the conditions in Definition B.2.1, the MLE exists, converges almost
1 A~

surely to the true value. Further I (6)2 (6 — 6) converges in distribution towards a standard normal

distribution, as n goes to infinity. It follows that, asymptotically:
Fisher information /(8) « observed information

1. the distribution of 6 — 6 can be approximated by N (0, I(é)_l) or N (0, J((jj)_l)

2. the distribution of 2 (l(é) — 5(9)) can be approximated by \3i (where k is the dimension of
O).
[(0) 1s the log-likelihood, defined by

[(0) =Inlik(d) =In f(xy,...,2,|0)
10



Maximum Likelihood Estimator

B MLE is dramatically simplified for one special case!

The value of & = 6 which maximizes f (x4, ..., x,,|0)
(1) O: the parameters to be estimated
(2) X = (x4, ..., X;,): the available data

Maximum joint density at X
over condition space 0:

B For the Gaussian iid noise case, we have: Under which 0, X is most likely?
2 (61, ey €3) ‘ f(eq, Enl(ﬁ 0)) = 1_[ ZGz(yl fi(8)”
= (B,0) i=1V2

N2
Vo, the above expression is maximized over f# when Z{=1(yi — fi (ﬁ)) is minimized.

This completes the proof of Theorem 3.1.1.

Maximum Likelihood Estimator = Least Square Fit (or Mean Square Error)

11



Least Square as Projection

_’ -
y Data point

7= f(B)

Predicted response

M anifold

Where the data point would lie
if there would be no noise

Q)

Estimated parameter

Least square projection (i.e., finding closest point) is robust to Gaussian noise.

12



Confidence Intervals

2. Let K be the square matrix of second derivatives (assumed to exist), defined by

o L N0t Of
M o2 £ 05; Opk

Fa

If K is invertible and if the number I of data points is large, [3— [3 is approximately gaussian
with 0 mean and covariance matrix K.

Alternatively, for large 1, an approximate confidence set at level +y for the jth component [3;
of B is implicitly defined by

—21 In (5’) + 21 In (5’(31 '"?Bj—lr 6jrféj+1---ép)) 2 61
5 Implicit formula for B;
where 6*(3) = %Zz (yz- — fi(ﬁ)) and &, is the v quantile of the \* distribution with 1
degree of freedom (for example, for v = 0.95, & = 3.92).

13



£ Norm Minimization Corresponds to Laplace Noise

The ¢! norm of a sequence z = (21, ..., z,) IS [|2]|; = D |2

Y: = f:(5) + €; with €;iid ~ Laplace(\) (3.7)

The Laplace distribution with 0 mean and rate A is_the two sided exponential distribution, or, in
other words, X ~ Laplace(\) if and only if | X| ~ Exp(A). It can be used to model error terms
that have a heavier tail than the normal distribution. Its PDF 1s defined for € R by

f(z) = ge""'m' (3.6)

THEOREM 3.1.2 (Least Deviation). For the model in Eq.(3.7), the maximum likelihood estimator
of the parameter (3. A) is given by:

i — Fi(3)

1 j

arg min z

()

1
= A

£1 norm minimization brushes away Laplace noise (dust).

14
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Figure 3.1: Fitting an exponential growth model to the data in Example 3.1, showing the fits obtained

with least square (plain) and with [ norm Mminimization_(dashed) . First panel: original data; both fits are
the same; Second panel: data corrupted by one outlier; the fit with /1 norm minimization is not affected,

whereas the least square fit is.

Least Square

/1 norm minimization

rate prediction rate prediction
no outlier | 0.3914 30300 0.3938 32300
with one outlier | 0.3325 14500 0.3868 30500

15



A Simple Example

Least Square
B Model: y; = m + noise

B Whatism?

» Some true central value

B Confidence interval ?

L1 Norm Minimization
B Model: y; = m + noise

B Whatism?

» Some true central value

B Confidence interval ?

16



Mean vs. Median

EXAMPLE 3.5: MEAN VERSUS MEDIAN. Assume we want to fit a data sety,;, i = 1..... ] against a
constant ..

With least square fitting, we are looking for i that minimizes Z;; (i — ;u.)z. The solution is easily
found to be i1 = } Z§:1 Yi, 1.e. p is the sample mean. w.r.t. unknown parameter u

With ¢! norm minimization, we are looking for ;. that minimizes Zle |y; — pt|. The solution is the
median of ;.

To see why, consider the mapping f : 1 — Zle ly; — j1|. Consider to simplify the case where all
values y; are distinct and written in increasing order (y; < y;+1). The derivative f’ of f is defined
everywhere except at points y;, and for y; < p < yiv1, f'(p)=i— (I —i)=2—1. If ['isodd, f
decreases on (—o0,y (s 4 1)/2] @nd increases on [y 4 1y2, +00), thus is minimum for y = y ¢ 4 1y/2,
which is the sample median. If I is even, f is minimum at all values in the interval [y /2,y /241]

o . i’ -
thus reaches the minimum at the sample median “221/2HL

Hold on.
Why can’t we use sample mean for Laplace case?

17



Sample Mean vs. MLE of Mean

Cl for mean, asymptotic case

M If central limit theorem holds

(in practice: n is large and distribution is not “wild”) SR

finite mean

THEOREM 2.2.2. Let X;..... X, be n iid random variables, the common distribution of which is
assumed to have well defined mean i and a variance o*. Let ji,, and s> by

n

. 1 2
t,‘z = — 2 G T
“n n f-\! ." n) {2.20)

The distribution of \/n % converges to the normal distribution Ny when n — +00. An approx-
imate confidence interval for the mean at level  is

~ N]

fin £ *JT;T (2.21)
where 1 is the ]i_,f- quantile of the normal distribution Ny, i.e Ny (1) = 1—-*;- For example,
n = 1.96 for v = 0.95 and n = 2.58 for v = 0.99.

+ a normal distribution is symmetric.

B Recall:

» Sample mean is a universal estimator
for all not “wild” distributions

» Sample mean and MLE for mean
coincide in case of normal data

B Which is superior between sample mean and MLE for mean?

» If you know distribution type, MLE is superior because it's a bespoke method.

» Roughly speaking, MLE tends to provide a more sophisticated estimate.

» You can usually better estimate mean of measured data by MLE.

If the data follows a Laplace distribution, MLE for mean is the median of the data.

18



2. Linear Regression

This 1s a special case of least square fitting, where the explanatory model depends linearly on 1ts
parameter 5. This 1s called the /inear regression model.

B Also called « ANOVA » (ANalysis Of VAriance)

B =leastsquare + linear dependence on parameter

DEFINITION 3.2.1 (Linear Regression Model).

—

Y= (Xp);+efori=1,..., [ with €; iid ~ N, (3.8)

where the unknown parameter 5 is in RP and X is a 1 X p matrix. The matrix X supposed to be
known exactly in advance. We also assume that

H X has rank p

A necessary condition for which is I = p, i.e., the number of measurements > the number of unknown parameter

B A special case where computations are easy

19



Achieved Throughput (tps)

10

Cn oo

What is the parameter ?

[s it a linear model?

How many degrees of freedom?
What do we assume on €;?
What is the matrix X?

40 50 60 70 &80 90 100
Offered Load (tps)

V= (a + bwi)lxigg + (C + dmi)l{xi>§} + €;
a+ b =c—+ d§

ﬁ = (a, b, d) and ¢ |zai] is taken to be 70.

20



Achieved Throughput (tps)

10

o

40 50 &0

Offered Load (tps)

70 &0 90 100

X's elements are called explanatory
variable
» Assumed fixed and known

Y’s elements are called response
variables
» They are « the data »

» Assumed to be one sample output of
the model

» For they are corrupted, their true
values are unknown.

V= (CL + b.’l?@')lwigg + (C + dﬂfi)l{xi>§} + €;

a+ b =c—+ d§

21



—

p = (a,b,d) (we can derivec = a+ (b —d)¢ froma + b = c + d¢§

Assume that we sort the ;s in increasing order and let :* be the largest index ¢ such that z; < €.

Y, = a+br;+efori=1...7"
Y, = a+bé+da; —&)+e fori=i"+1...1
thus the matrix X is given by:
( 1 €I 0 \
1 Io 0
1 €Ij* 0
1 § g1 —¢§

L1 mc )

The model is linear because “response variables” Y is linear w.r.t. ﬁ = (a,b,d).

22



Does this model have full rank ?
[ .

1 x4

1 i, 0

cee e e A necessary condition: I = 3
1z 0

1 § Tirqy1— &

& ar—¢ )

B

It is simple to see that a sufficient condition for H is that there are at least two distinct values of
xr; < & and at least one value > ¢.

| —

QUESTION 3.2.1. Show this. >

2We need to show, if the condition is true, that the matrix X has rank p = 3. This is equivalent to saying that the
equation
a
X| b | =0
d

has only the solution a = b = d = 0. Consider first a and b. If there are two distinct values of z;, ¢ < ¥, say a;
and xo then a + bxy = a + bxy = 0 thus @ = b = 0. Since there 1s a value z; > &, 1t follows that :* + 1 < [ and
d(xy — &) = 0thus d = 0.

23



Q)

Least Square and Projection

_’ [
y Data point

X

.
X(B)/ / precicted respons

Planar
M anifold

Where the data point would lie
if there would be no noise

Estimated parameter

24



Solution of the Linear Regression Model

THEOREM 3.2.1 (Linear Regression). Consider the model in Definition 3.2.1; let i be the I x 1
column vector of the data.

1. The p x pmatrix (X1 X) is invertible

e

2. (Estimation) The maximum likelihood estimator of 3 is 3 = K with K = (XTX)-1xT

3. (Standardized Residuals) Define the ith residual as e¢; = (37 — X 9) . The residuals are

(2
zero-mean gaussian but are correlated, with covariance matrix o*(Id; — H), where H =

X(XTX)_lXT.

Let s* = ﬁ lel|* = ﬁ > e? (rescaled sum of squared residuals). _s*_is_an unbiased

estimator of o2,

The standardized residuals defined by r; := —=== have unif variance and r; ~ t7_,_1.
o 1

1,1

This can be used to test the model by checking that r; are approximately normal with unit

variance.
4. (Confidence Intervals) Let v = Zle u;f3; be a (non-random) linear combination of the
= I = . . —1
parameter [3; v = Y i ujf3; is our estimator of . Let G = (XTX ) and g =
2 .
D ik Uy Gipui = >, (Zj -u.jhjj;c) (g is called the variance bias). Then ﬁ ~ T,

This can be used to obtain a confidence interval for .
25



Least Square and Projection

B The theorem gives H = X(XTX)_lXT and K = (XTX)_lXT

g data

= L
esiduals g — H . g

K / / /et spons
/

M anifold
X Where the data point would lie
if there would be no noise

Estimated parameter y =Xp = XKy = Hy

What we estimate (predict) is 3, and its estimate 8 in turn re-adjusts y to 5 = X - f3.

26



The Theorem Gives  with Confidence Interval

4. (Confidence Intervals) Let v = 2?21 u;[3; be a (non-random) linear combination of the

parameter [3; = DU, dj is our estimator of 7. Let G = (XTX )_1 and g =
2 .
> ik 'ujGj,zc-uk =Y, (Z ; -quj:k) (g is called the variance bias). Then L=t ~ t;_,

This can be used to obtain a confidence interval for .

10

9 -

sl o = -

Achieved Throughput (tps)

a 0.978 £0.609
b 0.0915 £0.0137
C 15.8 & 2.99

d —0.121 +0.037 0 10 20 30 20 50 80 70 20 %0 100

Offered Load (tps)

(]
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SSR

B Confidence Intervals use the quantity s
3. (Standardized Residuals) Define the ith residual as e; = (g — X 6’) . The residuals are

zero-mean gaussian but are correlated, with covariance matrix o*(Id; — H), where H =

X(XTX)LXT.

Let s* = - le||*> = ﬁ 2 (rescaled sum of squared residuals). s* is an unbiased

estimator of o>

The standardized residuals defined by r; := — have unit variance and r; ~ tr_,_;.
S

This can be used to test the model by checking that r; are approximately normal with unit
variance.

B s°is called « (Rescaled) Sum of Squared Residuals »

—
y data
residuals ®

2
2, =

SSR =

7
/ Predicted response

28



Residuals

B Residuals are given by the theorem
3. (Standardized Residuals) Define the ith residual as e; = (y_’ — X 6’) The residuals are

_zero-mean_gaussian but are correlated, with covariance matrix o*(Id; — H) where H =
X(XTX)"1xT.

Let s? = ﬁ ||€||2 = ﬁ €2 (rescaled sum of squared residuals). s* is an unbiased

estimator of o>.

The standardized residuals defined by r; := 16" have unit variance and r; ~ tr_,_;.
S

2,2

This can be used to test the model by checking that r; are approximately normal with unit

/ / Predicted response

B Even standardized residuals are not (exactly) normal iid.

variance.
TP ——m

—> violation of homoscedasticity can be checked
29



Which of these two models could be a linear
regression model ?

B A:both

B Linear regression does not mean that y; is a linear function of x;

B Caution: There is a hidden assumption
» Noise is iid Gaussian -> homoscedasticity

30



EXAMPLE 3.8: JOE’S SHOP - BEYOND THE LINEAR CASE - ESTIMATION OF £&.  In Example 3.6
we assumed that the value ¢ after which there is congestion collapse is known in advance. Now
we relax this assumption. Our model is now the same as EQ.(3.9), except that £ is also now a
parameter to be estimated.

To do this, we apply maximum likelihood estimation. _We have to maximize the log-likelihood
lz(a,b.d. £ o), Where y, the data, is fixed. For a fixed &£, we know the value of (a,b,d, o) that

achieves the maximum, as we have a linear regression model. We plof the value of this maximum
versus & (Figure 3.2) and numerically find the maximum. It is for £ = 77.

_19[] ! ! ! ! ! I /\I
~200 \ .
For each £, “Linear Regression Technique” yields/the maximum likelihood estimator.
|

210+ T
220 II". .

II'I

\

Y
-230 -
-240} -
— | | | | | 1 |

10 20 30 Al 50 G0 70 80 a0

Figure 3.2: Log likelihood for Joes’ shop as a function of €. 31



3. Linear Regression with £ norm minimization

B /! norm minimization + linear dependency on parameter
B More robust
B Less traditional

DEFINITION 3.3.1 (Linear Regression Model with Laplace Noise).

—

Yi=(Xp);+efori=1,..., [ with €; iid ~ Laplace (\) (3.12)

where the unknown parameter ; is in R?” and X is a I x p matrix. The matrix X supposed to be
known exactly in advance. As in Section 3.2, we assume that X has rank p, otherwise the model is

non identifiable.

32



This is convex programming

THEOREM 3.3.1. Consider the model in Definition 3.2.1; let i be the 1 x 1 column vector of the
data. The maximum likelihood estimator of I,é’ is obtained by solving the linear program:

I
minimize E
3

over

U; >
subject to the constraints w; >y — ( Xg) | ,
;

The maximum likelihood estimator of the noise parameter \ is (% Z;T:l

)

Maximum likelihood estimator must be obtained by solving this convex optimization.

33
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Confidence Intervals

B No closed form

» Compare to median !

B Bootstrap method!

Achieved Throughput (bps)

0 20 40 60 20 100
Offered Loas (tps)

1.32 £ 0.675
0.0791 + 0.0149
11.7 = 3.24
—0.0685 £ 0.0395

0 oo
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4. Heavy Tails

B Probably helpful when reading papers on measurement studies

We use the following definition (which is the simplest). We say that the distribution on [a, c0),
with CDF F, is heavy tailed with index 0 < p < 2 if there is some constant 4 such that, for large
i

1 — F(z) ~ x (3.26)

Here f(x) ~ g(x) means that f(x) = g(x)(1 + €(x)), with lim,_,, e(x) = 0.

A heavy tailed distribution has an infinite variance, and for p < 1 an infinite mean.

e The Pareto distribution with exponent P 1s heavy tailed with index p 1f 0 < p < 2.
e The log-normal distribution is not heavy tailed (its variance is always finite).
e The Cauchy distribution (density m) 1s heavy tailed with index 1.

36



Heavy Tail means Central Limit does not hold

B Central limit theorem:

a sum of n independent random variables with finite second moment tends
to have a normal distribution, when n is large

explains why we can often use normal assumption

B Butit does not always hold. It does not hold if random variables have
infinite second moment.

37



2000

Central Limit Theorem for Heavy Tails

0 500 1000

" .
[
&00 1000
logippointe ikl )
- -4 -2
/I

o zaoag

normal gqgplot histogram complementary cdf
log-log

One Sample of 10000 points
Pareto p = 1
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Convergence for heavy tailed distributions

Perhaps the most striking feature of heavy tailed distributions 1s that the central limit theorem does
not hold, 1.e_aggregating many heavy tailed quantities does nof produce a gaussian distribution.

Indeed, if X; are idd with finite variance o and with mean s, then —l%— > (X — p) tends in

- . . - . - T * s n - . .
distribution to the normal distribution N ,2. In contrast, 1if X; are 11d, heavy tailed with index p,
then there exist constants d,, such that

| distrib
> Xi+d, = 5
ne =1 n — 00

a.k.a. Levy a-stable distribution
where S, has a stable distribution with index p. Stable distributions are defined for 0 < p < 2,
for p = 2 they are the normal distributions. For p < 2, they are either constant or heavy tailed with
index p. Furthermore, they have a property of closure under aggregation: 1f X; are 11d and stable
with index p, then = (X + ... + X,) has the same distribution as the Xs, shifted by some number

npP
dn -

The shape of a stable distribution with p < 2 is defined by one skewness parameter 5 € [—1, 1] (but
the skewness index 1n the sense of Section 3.4.2 does not exist). The standard stable distribution
1s defined by 1ts index p, and when p < 2, by 3.

Generalized Central Limit Theorem (No closed-form expression for S,,)
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Importance of Second Moment

EXAMPLE 3.13: QUEUING SYSTEM. Consider a server that receives requests for downloading
files. Assume the requests arrival times form a Poisson process, and the requested file sizes are
iid ~ F" where F' is some distribution. This is a simplified model, but it will be sufficient to make the
point.

We assume that the server has a unit capacity, and\ that the time to serve a request is equal to
the requested file size. This again is a simplifying assumption, WhIEh is valid if the bottleneck is
a single, FIFO I/O device. From Chapter 8, the 5t is given by the
Pollaczek-Khintchine formula mean number of customers for M/GI/1

2
P*(1+ %)

2(1—p)

where: 1 is the mean and o2 the variance, of F' (assuming both are finite); p is the utilization factor
(= request arrival rate x ). Thus the response time depends not only on the utilization and the
mean size of requests, but also on the coefficient of variation C' := o /. As C' grows, the response
times goes to infinity.

If the real data supports the hypothesis that F' is heavy taile verage response time is
likely to be high and the estimators of it are unstable.

R=p+
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Distribution Fitting Example : Censored Data

B We want to fit alog normal distrib, M Idea: use the model
but we have only data samples 1
with values less than some max. fx(z) = Fola)

fﬁ(x)]-{:lz‘:_’la}

N Lognorrpal is fat-tall.ed SO we and estimate
cannot ignore the tail _
_ . L 1. Normazlied CDF Fy(a)
» Not heavy-tailed but “heavier _

((#,a)= Zlog fo(z:|0) — nlog Fy(ald) (3.16)

i=1
We obtain an estimate of # and @ by maximizing Eq.(3.16). Note that we must have a > max; r;
and for any ¢, the likelihood 1s nonincreasing with a. Thus the optimal 1s for @ = max; x;.
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Here, Fy is the log-normal distribution with parameters ;. and o. Instead of brute force optimization,
we can have more insight as follows. We have to maximize ((;., o) over € R, o > 0, with

T

l(p.o) = —nln(o) — — Z(ln r; —p)? —nlnNoy (1 +olna)

(3.17)

We can ignore the last two terms, which do not depend on (;,0). We can also do a change of
variables by taking as parameters o, » instead of o, 1, with

Ina — p

(3.18)

Z_

a
For a fixed z, the optimization problem has a closed form solution (obtained by computing the

derivative with respect to o), the maximum likelihood is obtained for o = (=) with
—fz 4+ \/4s? + 52(4 + 22)
2

6(z) = (3.19)

T

e IS o 1 2
with 3 = Ina—uyy, y = ;z;ln;z..i, s? = 2(111;1,.3-_@,1)
1= 1=

n 4—
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Figure 3.7: Fitting Censored Data in Example 3.10. The data set is an iid sample of a truncated log-normal
distribution. Thick lines: data set; plain lines: fit obtained with a technique for censored data; dashed lines:
fit obtained when ignoring the censored data.
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Conclusion

The value of @ = 8 which maximizes f (x4, ..., x,,|0)
(1) @: the parameters to be estimated
(2) X = (x4, ..., X,,): the available data
Maximum joint density at X

over condition space 0:
Under which @, X is most likely?

“Maximum Likelihood Estimator”

Simplistic yet very versatile model fitting technique.

Another example of MLE on distribution fitting in Chapter 3.4

Combinations of Distribution
e.g., Sometimes it is impossible to find a distribution that fits both the tail and body of the data.
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