
Model Fitting

1. What	is	model	fitting	?
2. Linear	Regression
3. Linear	Regression	with	 ଵ norm
4. Heavy	Tail



Virus Infection Data
We	would	like	to	capture	the	growth	of	
infected	hosts

Explanatory	model:	࢏࢟ ൌ ࢏ࢌ ࢼ
data	measured	of	collection	:࢏࢟
measurement	of	index	:࢏
functions	of	array	:࢏ࢌ
obtain	to	like	would	we	parameter	:࢏ࢼ

An	exponential	model	seems	
appropriate

How	can	we	fit	the	model,	in	
particular,	what	is	the	value	of	ߙ ?
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࢚ࢻ

Ԧߚ ൌ ܽ, ߙ , ௜݂ Ԧߚ ൌ ௜݂ ܽ, ߙ ൌ ܽ݁ఈ௧೔
௜: time of ݅thݐ measurement



Least Square Fit of Virus Infection Data
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Least square fit

ߙ = 0.5173

Mean doubling time ln2/1.34 :ߙ hours

Prediction at +6 hours: 100 000 hosts



Least Square Fit of Virus Infection Data In Log Scale
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Least square fit

 = 0.39

Mean doubling time ln2/1.77 :ߙ hours

Prediction at +6 hours: 39 000 hosts



Compare the Two
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LS fit in natural scale

LS fit in log scale



Which Fitting Method should I use ?

Which	optimization	criterion	should	I	use?

The	answer	is	in	a	statistical	model.
Model	not	only	the	interesting	part,	but	also	the	noise

For	example
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ߙ ൌ 0.5137
data in normal scale



How	can	I	tell	which	is	correct	?
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ߙ ൌ 0.39
data in log scale



Look at Residuals
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Least Square Fit

General	model	(homoscedasticity:	unknown	same finite	variance)

The	theorem	says:	

minimize	least	squares			equivalent compute	MLE for	this	model

This	is	how	we	computed	the	estimates	for	the	virus	example.
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This must be satisfied



Maximum Likelihood Estimator

What	is	MLE?	Denote	by	ࢌሺ࢞ሻ the	pdf (probability	density	function) of	the	
random	variable in	the	model.	The	MLE	of	the	model	is

That	is	because	we	have	the	following	asymptotic	convergence	for	MLE.
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as the number of samples ࢔ goes to infinity

The value of ࣂ ൌ ෡ࣂ which maximizes ࢌሺ࢞૚, … , ሻࣂ|࢔࢞
the parameters to be estimated :ࣂ (1)
࢞ (2) ൌ ሺ࢞૚, … , ሻ: the available data࢔࢞

Fisher information ܫ ߠ ∝ observed information



Maximum Likelihood Estimator

MLE is	dramatically simplified	for	one	special	case!

For	the	Gaussian	iid noise	case,	we	have:
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࢔ ൌ ࡵ
࢞ ൌ ሺࣕ૚, … , ሻ࢔ࣕ
ࣂ ൌ ሺࢼ, ሻ࣌

ࢌ ࣕ૚, … , ࢔ࣕ ሺࢼ, ሻ࣌ ൌෑ
૚
૛࣌࣊

ିࢋ
૚
૛࣌૛ ࢏ࢌି࢏࢟ ࢼ

૛ࡵ

ୀ૚࢏

Maximum Likelihood Estimator  Least Square Fit (or Mean Square Error) 

ࢼ the above expression is maximized over ,࣌∀ when ∑ ࢏࢟ െ ࢏ࢌ ࢼ
૛ࡵ

ୀ૚࢏ is minimized.
This completes the proof of Theorem 3.1.1.

The value of ࣂ ൌ ෡ࣂ which maximizes ࢌሺ࢞૚, … , ሻࣂ|࢔࢞
the parameters to be estimated :ࣂ (1)
࢞ (2) ൌ ሺ࢞૚, … , ሻ: the available data࢔࢞

Maximum joint density at ࢞
over condition space ࣂ:

Under which ࢞ ,ࣂ is most likely?



Least Square as Projection
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Least square projection (i.e., finding closest point) is robust to Gaussian noise.



Confidence Intervals
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Implicit formula for ࢐ࢼ



ଵ Norm Minimization Corresponds to Laplace Noise
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ℓ૚ norm minimization brushes away Laplace noise (dust).



Robustness to « Outliers »
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with 
outlier



A Simple Example

Least	Square
Model:	 ௜ noise

What	is	m ?
Some	true	central	value

Confidence	interval	?

L1	Norm	Minimization
Model	:	 ௜ noise

What	is	m ?
Some	true	central	value

Confidence	interval	?
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Mean vs. Median
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w.r.t. unknown parameter ࣆ

ሺܫ ൅ 1ሻ/2 ሺܫ ൅ 1ሻ/2 ሺܫ ൅ 1ሻ/2

Hold on. 
Why can’t we use sample mean for Laplace case?



Sample Mean vs. MLE of Mean

Which	is	superior	between	sample	mean	and	MLE	for	mean?
If	you	know	distribution	type,	MLE	is	superior	because	it’s	a	bespokemethod.
Roughly	speaking,	MLE	tends	to	provide	a	more	sophisticated estimate.
You	can	usually	better	estimate	mean	of	measured	data	by	MLE.
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Recall:
Sample	mean	is	a	universal	estimator
for	all	not	“wild”	distributions
Sample	mean	and	MLE	for	mean	
coincide in	case	of	normal	data

If the data follows a Laplace distribution, MLE for mean is the median of the data.



2. Linear Regression

Also	called	« ANOVA »	(ANalysis Of	VAriance)

=	least	square	+	linear	dependence	on	parameter	

A	special	case	where	computations	are	easy
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A necessary condition for which is ࡵ ൒ i.e., the number of measurements ൒ ,࢖ the number of unknown parameter



Example 3.6‐7

What	is	the	parameter	ߚ?
Is	it	a	linearmodel?
How	many	degrees	of	freedom?
What	do	we	assume	on	߳௜?
What	is	the	matrix	ܺ?
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ࢼ ൌ ,ࢇ ,࢈ ࢊ and ࣈ [zai] is taken to be 70.



Some Terminology

ܺ’s	elements	are	called	explanatory
variable

Assumed	fixed	and	known

ܻ’s	elements	are	called	response
variables

They	are	« the	data »
Assumed	to	be	one	sample	output	of	
the	model
For	they	are	corrupted,	their	true	
values	are	unknown.
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ࢼ ൌ ,ࢇ ,࢈ ࢊ (we can derive ࢉ ൌ ࢇ ൅ ࢈ െ ࢊ ࣈ from ࢇ ൅ ࣈ࢈ ൌ ࢉ ൅ ࣈࢊ

The model is linear because “response variables” ࢅ is linear w.r.t. ࢼ ൌ ,ࢇ ,࢈ ࢊ .



Does this model have full rank ?
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A necessary condition: ࡵ ൒ ૜



Least Square and Projection
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Planar

Linear



Solution of the Linear Regression Model
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Least Square and Projection
The	theorem	gives	ࡴ ൌ ࢄ ࢄࢀࢄ ି૚ࢀࢄ and	ࡷ ൌ ࢄࢀࢄ ି૚ࢀࢄ
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What we estimate (predict) is ࢼ, and its estimate ࢼ෡ in turn re-adjusts ࢟ to  ࢟ෝ ൌ ࢄ ⋅ .෡ࢼ

ෝ࢟ ൌ ෡ࢼࢄ ൌ ࢟ࡷࢄ ൌ ࢟ࡴ



The Theorem Gives  with Confidence Interval
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SSR

Confidence	Intervals	use	the	quantity	ݏ

ଶݏ is	called	« (Rescaled)	Sum	of	Squared	Residuals »
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Residuals

Residuals	are	given	by	the	theorem

Even	standardized residuals	are	not	(exactly)	normal	iid.	
 violation	of	homoscedasticity	can	be	checked
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Which of these two models could be a linear 
regression model ?

A:	both

Linear	regression	does	notmean	that	ݕ௜ is	a	linear	function	of	ݔ௜
Caution:	There	is a	hidden	assumption

Noise	is	iid Gaussian	‐>	homoscedasticity
30
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For each ࣈ, “Linear Regression Technique” yields the maximum likelihood estimator.



3. Linear Regression with  ଵ norm minimization

ℓ૚ norm	minimization	+	linear	dependency	on	parameter
More	robust
Less	traditional
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This is convex programming
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Maximum likelihood estimator must be obtained by solving this convex optimization.

௜ݑ ൒ ௜ݕ െ Ԧߚܺ ௜
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Better fit with Laplace distribution

Score: ℓଵ norm of the error 



Confidence Intervals

No	closed	form
Compare	to	median	!

Bootstrap	method!
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4. Heavy Tails

Probably	helpful	when	reading	papers	on	measurement	studies
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Heavy Tail means Central Limit does not hold

Central	limit	theorem:

a	sum	of	݊ independent	random	variables	with	finite	second	moment	tends	
to	have	a	normal	distribution,	when	n	 is	large

explains	why	we	can	often	use	normal	assumption

But	it	does	not	always	hold.	It	does	not	hold	if	random	variables	have	
infinite	second	moment.
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Central Limit Theorem for Heavy Tails
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One Sample of 10000 points
Pareto ݌ = 1

normal qqplot histogram complementary cdf
log-log 



39

1 sample, 10000 points average of  1000 samples

݌ ൌ 1

݌ ൌ 1.5

݌ ൌ 2

݌ ൌ 2.5

݌ ൌ 3

Linear

Linear



Convergence for heavy tailed distributions
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a.k.a. Levy ࢻ-stable distribution

Generalized Central Limit Theorem (No closed-form expression for ܵ௣)



Importance of Second Moment
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mean number of customers for M/GI/1



Distribution Fitting Example : Censored Data
We	want	to	fit	a	log	normal	distrib,	
but	we	have	only	data	samples	
with	values	less	than	some	max.
Lognormal	is	fat‐tailed	so	we	
cannot	ignore	the	tail

Not	heavy‐tailed	but	“heavier”	
than	exponential	&	normal

Idea:	use	the	model

and	estimate	
1. Normazlied	CDF	ܨ଴ሺܽሻ
2. truncation	threshold	ܽ
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Ignoring the 
truncation effect



Conclusion
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“Maximum Likelihood Estimator” 

Simplistic yet very versatile model fitting technique.

Another  example of MLE on distribution fitting in Chapter 3.4

Combinations of Distribution 
e.g., Sometimes it is impossible to find a distribution that fits both the tail and body of the data.


