The interval between bus arrivals is

 $\sim U(10\text{mn}, 20\text{mn}).$

- 1. There are 2 buses in average per hour
- 2. There are 4 buses in average per hour
- 3. None of the above
- 4. I don't know

The validity of the formula obtained in the previous question requires that ...

- 1. The interarrivals are iid
- 2. The bus arrival process is Poisson
- 3. The bus arrival process is stationary
- 4. None of the above
- 5. I don't know

For the random waypoint model, the location of the next waypoint is...

- 1. Uniformly distributed
- 2. Not uniformly distributed
- 3. It depends on the viewpoint
- 4. I don't know

BorduRail claims that only 5% of train arrivals are late

BorduKonsum claims that 20% of train users suffer from late train arrivals

- 1. At least one of them lies
- 2. Late trains have $\approx 1.15 \times$ more passengers than the average train
- 3. Late trains have $\approx 4 \times$ more passengers than the average train
- 4. I don't know

A sensors senses events; the time between events (sensing interval) is $\sim N(\mu, \sigma^2)$.

A technician comes and checks the current sensing interval. In average, he will find...

1.
$$\mu$$

2.
$$\mu + \sigma^2$$

3.
$$\mu (1 + \sigma^2)$$

4.
$$\mu \left(1 + \frac{\sigma^2}{\mu^2}\right)$$

$$5. \ \frac{1}{\mu} \left(1 + \frac{\sigma^2}{\mu^2} \right)$$

$$6. \ \frac{1}{\mu} \left(1 + \frac{\sigma^2}{\mu} \right)$$

- 7. None of the above
- 8. I don't know

A mobile moves as follows

- pick a random direction uniformly in $[0, 2\pi]$
- pick a random trip duration $T \sim Pareto(p)$
- go in this direction for duration *T* and if needed reflect at the boundary.

Does this model have a stationary regime?

- 1. Yes
- 2. No
- 3. Only if p > 1
- 4. Only if p > 2
- 5. I don't know

Consider the random waypoint model, where the distribution of the speed drawn at a random waypoint has a density f(v) over the interval [0, vmax].

Is it possible to find f() such that

- (1) the model has a stationary regime and
- (2) the time stationary distribution of speed is uniform over [0, vmax]?

- 1. Yes, and f() is uniform
- 2. Yes, and f() is piecewise linear
- 3. Yes, and f () is piecewise quadratic
- 4. Yes, but f() is none of the above
- 5. No
- 6. I don't know

A wireless channel has a fluctuating rate r(t) and operates in rounds. The average duration of a round is \overline{T} . The average amount of data transferred in one round is \overline{B} .

We sample the channel using the instants of a Poisson process. The average rate sampled is ...

- 1. $\frac{\overline{B}}{\overline{T}}$
- 2. $\frac{\bar{T}}{\bar{B}}$
- 3. None of the above, it depends on the higher moments of the average round duration
- 4. I don't know

Exercise:

We measure the distribution of flows transferred from a web server. We find that the distribution of the size in packets of an arbitrary flow is Pareto with p > 1. What is the probability that, for an arbitrary packet, it belongs to a flow of length x?

PDF of Parcho
$$f(x) = \frac{P}{x^{p+1}} 1 x 7 1$$

Exercise:

We measure the distribution of flows transferred from a web server. We find that the distribution of the size in packets of an arbitrary flow is Pareto. What is the probability that, for an arbitrary packet, it belongs to a flow of length x?

The distribution is ...

- 1. Pareto
- 2. Normal
- 3. Exponential
- 4. None of the above
- 5. I don't know

The distribution of flow sizes seen by packets is heavy tailed. Therefore the distribution of flow sizes is ...

- 1. Also heavy tailed
- 2. Never heavy tailed
- 3. It depends
- 4. I don't know

This point process satisfies the assumptions of the PASTA theorem

- 1. No
- 2. Yes
- 3. It depends on the parameters of the queueing system
- 4. I don't know

This point process satisfies the assumptions of the PASTA theorem

- 1. No
- 2. Yes
- 3. It depends on the parameters of the queueing system
- 4. I don't know

The distribution of state just before a departure is the stationary distribution.

- 1. No
- 2. Yes
- 3. It depends on the parameters of the queueing system
- 4. I don't know

The distribution of state just after a departure is the stationary distribution.

- 1. No
- 2. Yes
- 3. It depends on the parameters of the queueing system
- 4. I don't know

This point process is a Poisson Process

- 1. No
- 2. Yes
- 3. It depends on the parameters of the queueing system
- 4. I don't know

In the M/M/1/K queue, the probability that an arriving packet is discarded is ...

M/M/1/K QUEUE

$$\begin{cases} \mathbb{P}(N=k) = \eta(1-\rho)\rho^k \mathbf{1}_{\{0 \le k \le K\}} \\ \eta^{=} \frac{1}{1-\rho^{K+1}} \end{cases}$$

- 1. P(N = K)
- 2. Is not equal to P(N = K)
- 3. It depends on the parameters
- 4. I don't know