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This is a branch of probability that is not well known (why?),
though it is quite important for any measurement study.

Speak the most useful mathematical language!
Espouse correct mathematical viewpoint!



Saving Private Ryan

B What is the general framework of Palm in practical terms?
B Peeling off all formalities, it is analogous to the following examples.

Trajectory of one user

M/M/1 Queueing System 900
Arnving 800 Mn+1
customers . .,
X Departing 700 -
A Queue Single Server customers 600 -
_ 500 -
o0 ‘L{ —> =
300 |
200 +
. . Mn
B (Glancing at a queuing network 100} |
for each arrival event %o o aw a0 w0 &0 7o

*

M Glimpse into a random way point
mobility model at waypoints

Data processed T.
in each interval ’—| ‘

] |

Event Clock TO Tl T2 T3 T4 TS T6
Fig. 1. The channel view of a node

B Peepinginto I[EEE 802.11 backoff procedure at the beginning of time-slots



1. Event versus Time Averages

B Consider a simulation, state of which is §; (Jumping Process)
B Assume simulation has a stationary regime

B FEvent clock: times T,, at which some specific changes of state occur
» Ex:arrival of job

» Ex. queue becomes empty Two interpretations:
o N i) @Q(-) just before T,,
B Event average statistic _ 1 9 lim O
0._ Q(T_) ii) bl Q()
n n
N+1 ZO
e.g., average queue length
B Time average statistic o 1 In O(s)d
= S)as
I —1o Jp,
cadlag function
“‘continue & droite, limite & gauche” in French, jumping function cadlag function
"right continuous with left limits” in English = stat. point process = stat. process
Property: left limit Q(t™) = li%l Q(s) exists, ‘ ._\/\
S
o . . + — . . . o
right limit Q (¢t ™) lgrtl Q(s) exists and equals to Q(t). 5
Skorokhod space: a collection of cadlag functions —_—0 t
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Example: Gatekeeper; Average execution time

job arrival

0 90 100 190 200 290 300

; | | | Real time t (ms)

l l, 1, Execution time

5000 5000 5000 for a job that
V1000 V1000 V1000  arrives at t (ms)
_— — -
Viewpoint 1: System Designer Viewpoint 2: Customer

Two processes, with execution times N Inspector arrives at a random time
5000 and 1000 red processor 1s used with probability 22
5000 + 1000 90 10 100

Ws = W. = — x 5000 + —— X 1000
2 ¢~ 100 100
It looks like an improper method for this example! = 460

This is a bit artificially forged example but provides some basic insights.



Sampling Bias
B W, and W, are different.
B A metric definition should mention the sampling method (viewpoint).

B Different sampling methods may provide different values:
» This is the sampling bias.

B Palm Calculus is a set of formulae for relating different viewpoints

B The relation can often be obtained by means of the Large Time Heuristic



e

job arrival [ Times when the
gatekeeper wakes up

0 l 90 100 190 200 290 300

Large Time
Heuristic Explained
on an Example l 1 l oo

arrives at t (ms)

Real time t (ms)

J- | | L
L I ] |

execution
>< time for a job
B We want to relate W, and W, f\ processedat
We apply the large time heuristic time T,

1. How do we evaluate these metrics in a simulation? _ . ,
N7 (t): the index of the next

event clock tick after t.

System Designer Ws = N /
Customer W, = X N+ dt

where N*(t) = index of next green or red arrow after t (as well as at t)
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job arrival [ Times when the

La rge Ti m e | gatekeeper wakes up

0 90 100 190 200 290 300
| | 1
-

Heuristic Explained -
on an Example l 1 l ol

arrives at t (ms)

Real time t (ms)

| | | |
I ] T

>< execution
_ _ _ , time for a job
2. Break one integral into pieces that match the T;;’s: (| processedat
1 _ time T,
VVS — N Xn =X
n=1..N
1 T
W, = _j X+ dt N7 (t): the index of the next
T ), (t) event clock tick after t.

1 T, T Tn
@: T(f XN+(t)dt+ f XN+(t)dt+ + j XN+(t)dt)
0 T T

1 N-1

1 T, T, Tn
0 T,

Tn-1

1
= ?(Tle + (T,—=Ty) Xy + -+ (Ty — Ty—1)Xn)

GT(Sle +S,Xy + o+ SND




o job arrival - Times when the
La rge TI m e [ g gatekeeper wakes up

0 90 100 190 200 290 300

Heuristic Explained - T T l fttmer
Execution time
on an Exa m ple i l1000 PR Looo H l1000 af:v‘;;’f;;’;ﬁ)
>< execution
time f job
3. Compare (and try to assimilate it to W) 1 ;ieceiiif Zt
1 time T,
VVC — ?(Sle + SzXz + -4 SNXN)

N 1
= X m (S1X1 + 8,X5 + -+ SyXy) N*(t): the index of the next

_ 1 _ event clock tick after t.
=AX (cov(S,X)+SX)=A%x|cov(S,X)+=X

A
@ = Acov(S,X) + VID

N
Note: A = — =
T

LIl =



This is Palm Calculus!

job arrival

l 90 100 190 200

X

—

_ i L
Dependency between inter-arrival
time and execution time

W, :ACOV(S,X)-FVVS\ VVC >

290 300
| — | | N
[ . I [ =
IZ b y
\ ,
5000 m 5000
Vv 1000 1000 V1000

Ws

Real time t (ms)

Execution time
for a job that
arrives att (ms)
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job arrival

0 l 90 100
| {1

190 200 290 300

> Real time t (ms)

5000 5000

1000

1000 1000

Viewpoint 1: System Designer

Execution time

5000 for a job that
arrives at t (ms)

—

Viewpoint 2: Customer

Two processes, with execution times
5000 and 1000

5000 + 1000 @
W, = ——

W S =90,10,90,10,90
W X =5000,1000,5000,1000,5000

B Correlationis >0
m w.>w,

Inspector arrives at a random time

red processor is used with probability%

wW. = 2y X 5000 + 5 x 1000
€100 100

= 460

B When do the two viewpoints coincide? When either S,, or X,, is identical.
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The Large Time Heuristic

. formulate each performance metric as a long run ratio, as you would do 1f you would be
evaluating the metric in a discrete event simulation;

. take the formula for the time average viewpoint and break it down into pieces, where gach
piece corresponds to a time interval between two selected events;

. compare the two formulations.

Large Time Heuristic:
Break a time average statistic into a sum of its event average equivalent and remaining termes.

B Formally correct if simulation is stationary

It is a corollary of Palm Inversion Formula for the case where X (t) changes only
att = T,,. It can be called a synchronized jump case.

B [tis arobust method, i.e. independent of assumptions on distributions (and
on independence)

12



Other «Clocks» (in Metaphoric Sense)

EXAMPLE 7.3: FLOW VERSUS PACKET CLOCK [96]. Packets arriving at a router are classified
in “flows”. We would like to plot the empirical distribution of flow sizes, counted in packets. We
measure all traffic at the router for some extended period of time. Our metric of interest is the
probability distribution of flow sizes. We can take a flow “clock”, or viewpoint, i.e. ask: pick an

arbitrary flow, what is its size ? Or we could take a packet viewpoint and ask: take an arbitrary

acket. what is jts size ? We have thus two possible metrics (Figure 7.3):
Our intuition tells us that

this must be correct

5 R i ; /
Distribution of flow sizes J

R (for an arbitrary flow]

for an arbitrary packet

rs"'""_'—-:-

Flow 2

Flow D @ )D
AT T e
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Proportion of flows with >= x packets

Load Sensitive Routing of Long-Lived IP Flows
Anees Shaikh, Jennifer Rexford and Kang G. Shin

1.00 5%
0.90 -
0.80 -
0.70 -
0.60 |-
0.50 -
0.40 -
0.30 -
0.20 -

0.10

ECDF, per‘\flowvieywpoint

\\

proportion of flows

®—® port-port flows
m—a host—-host flows
A—a subnet—subnet flows
¥—¥ net-net flows

0.00

1 .1IU
Flow length (packets)

100
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Distribution of flow sizes

B for an arbitrary flow
> for an arbitrary packet
7 S

Flow 2

(G

Per flow fr(s) = 1/Nx number of flows with length s, where N is the number of flows in the
dataset;
Per packet fp(s) = 1/Px number of packets that belong to a flow of length s, where P_|s the

number of packets in the dataset;

Mean flow size:
per flow Sk €< Correct estimate

per packet Sp

15



Large «Time» Heuristic

1. How do we evaluate these metrics in a simulation ?
per flow Sp = %ZnSn

1
per packet S, = ;Zp SFp)
where F(p) = n when packet p belongs to flow n
2. Put the packets side by side, sorted by flow

Flow n=3

QD DR

Size of Flow 3 is counted five times.

1
SP:F(51+51+52+52+S3+S3 +S3+83+ 83+ )

Flow n=1 Flow n=2

|

1 1
=F(51X51+52 XSZ +S3 XSS-I_.“):FESTZL

16



Large «Time» Heuristic

Flow n=1 Flow n=2 Flow n=3

3. Compare

2
Sp =—>< ZSZ zS,% =ix len + varg(S) | = . (SF +varF(S))
e \\W& S,

n

\ Sp SF+—varF(S) \
SF

}
Arbitrary sampling (packet average) leads to overestimation of the flow size.

17



Large «Time» Heuristic for PDFs of flow sizes

B Put the packets side by side, sorted by flow

Flow n=1 Flow n=2 Flow n=3

QD DR

1. How do we evaluate these metrics in a simulation ?

1 N

fr(s) = ﬁgl{sns} (7:8)
1 P

fp(s) = ﬁzl{sﬂms} (7.9)
p:

where S,, be the size in bytes of flow n, for n = 1,... N, and F'(p) is the index of the flow
that packet number p belongs to.

18



1.

For s spanning the set of observed flow sizes: Sn 1 size of flow n
1 —
fF(S) - N Z 1{5’.”:3} (7'8)
1 n;l
fr(s) = 5 X; LS py=s} (7.9)
p=

where S,, be the size in bytes of flow n, for n = 1,... N, and F'(p) is the index of the flow
that packet number p belongs to.

We can bregk the sum in Eq.(7.9) into pieces that correspond to ticks of the flow clock:

Move to simplify index condition

1 1 N &
fP(S) — ? - EZZI{FU) 11}1{5 —s}
ﬂ:lp;F(p n n=1 p=1
A bit hard to hlt/ N
upon this idea = Zl{gn S}Z 1(F(p)=n} = Zl{gn a8 = P Zl{g _q (7.10)
n=1 =1 n=1 n=1

T —
There are s packets in Flow n.

. Compare Egs.(7.8) and (7.10) and obtain that for all flow size s:

| 7p(s) = nsfFW (7.11)

where 7 is a normalizing constant (n = N/P). \

Packet clock based samples lead to a heavier tail.

19



Cyclist’s Paradox

B On around trip tour,
there is more uphills
than downhills

EXAMPLE 7.4: KILOMETER VERSUS TIME CLOCK: CYCLIST’S PARADOX. A cyclist rides swiss
mountains; his speed is 10 km/h uphill and 50 km/h downhill. A journey is made of 50% uphill
slopes and 50% downhill slopes. At the end of the journey, the cyclist is disappointed to read
on his speedometer an average speed of only 16.7 km/h, as he was expecting an average of

1050 = 30 km/h.

Or running on treadmills?

20



The km clock vs.
the standard clock

B v, = speed for the £ kilometer (the trip consists of equal-sized pieces, 1,...,L)
1
Skilometer = ZZ v, = mean of v,
£

L L

Stime = TTT1 " harmonic mean of v, < mean of v,
Lo,
Using the same method as in Example 7.3, one obtains
standard 1 kilometer
clock ft('U) — TJEJC&(U) clock (714)

where f;(v) [resp. fi(v)] is the PDF of the speed, sampled with the standard clock [resp. km
clock] and 7 is a normalizing constant; f; puts more mass on the small values of the speed v, this
is another explanation to the cyclist’'s paradox.

21



2. Palm Calculus : Framework

B A stationary process (simulation) with state S,
B Some quantity X; measured at time t. Assume that

(54X,) is stationary

i.e., S; is in a stationary regime and X; may depend on the
past, present and future state of the simulation S; in a way
that is (probabilistically) invariant by shift of time origin.

B Examples: S; can be any state of a simulation
» S; = current position of mobile, speed, and next waypoint
» X, jointly stationary with S;:

» X; = current speed at time t; X; = remaining time until next waypoint
» X; not jointly stationary with S;:
» X, = absolute time at which last waypoint occurred

22



Stationary Point Process

B Consider some selected transitions of the simulation, occurring at times T,,.

» Example: T,, = time when n' trip ends in random waypoint model

Formally, a stationary point process in our setting is associated with a subset F of the set of all

. .. . . . . . . . NS~
possible state transitions of the simulation. It 1s made of all time instants # at which the simulation
does a transition in Fy, 1.e. such that (S(¢7). S(tT)) € Fo.

state transition

B T, is a called a stationary point process associated to S;
» T, grows over time, so think of it as a set of “points” generated by T,
» Stationary because S; is stationary
» Jointly stationary with S;

We denote the time instant of the point process such that
W< T 2 <T_ 1 <Typ=0<T1<T,..

B Time O is an arbitrary point in time, rather than the beginning of a simulation.
** The simulation has run for so long a time at t = 0 that it is now stationary!

23



Palm Expectation

B Assume: X;, S; are jointly stationary, T,, is a stationary
point process associated with S;.

B Definition : the Palm Expectation is

Ef{(X;) = E(X; | a selected transition occurred at time t)

B By stationarity:

Et(X,) = E°(X,) forall t

B Example:
» T, =time when n'" trip ends, X; = instant speed at time ¢t
» E{(X;)=E°X,) =average speed observed at a waypoint

24



B E(X;)=E(X,) expresses the time average viewpoint.
B E{(X,)=E’X,) expresses the event average viewpoint.
B Example for random waypoint:

» T, =time when n' trip ends, X; = instant speed at time ¢t

» E{(X;)=E"X,) =average speed observed at trip ends
» E(X;) =E(X,) = average speed observed at an arbitrary point in time

Xn+1

Xn

A Palm expectation is always associated with a stationary point process T,,.



Formal Definition

B In discrete time, we have a definition based on an
elementary conditional probability.

E(YN() /EYN@®
E(N() \P(N(t) =

—_— | ~—

E'(Y) =E(Y|N{@)=1) =

B [n continuous time, the definition is appallingly -z
sophisticated o

» Radon-Nykodim derivative - see textbook for details.

» Also see [3, 4] for a formal treatment.

B Palm probability is defined similarly.

The Palm probability 1s defined similarly, namely
P°(X(0) € W) =P(X(0) € W] a point of the process 1}, occurs at time ()

for any measurable subset W of the set of values of X (#). In particular, we can write P°(7 =

0) — 1 . We denote the time instant of the point process such that

...<T_2<T_1<TOSO<T1<T2...

26



Ergodic Interpretation

B Assume simulation is stationary + ergodic, i.e., sample path averages
converge to expectations; then we can estimate time and event

averages by: T
E(6(X (1)) ~ 7 3 6(X (1)

B (6(X(0))) ~ v D_0/(X (T3))

n=1

Lack of ergodicity implies these formulae do not hold.

e.g., disconnected Markov chain

B In terms of probabilities:

# Stationary probability:
P(X; € W) ~ fraction of time that X; is in some set W/

# Palm probabillity:
P! (X; € W) ~ fraction of selected transitions at which
X;isin W

27



Intensity of a Stationary Point Process

B Intensity of selected transitions:
» A:=expected number of transitions per time unit

INTENSITY The intensity A of the point process 1s defined as the expected number of points per
time unit. We have assumed that there cannot be two points at the same nstant. In discrete or
continuous time, the intensity A is defined as the unique number such that the number N (#,t + 7)
of points during any interval [t, t + 7] satisfies [4]:

General definition E(N(t,1+ 7)) = A7 (7.16)
In discrete time, A 1s also simply equal to the probability that there 1s a point at an arbitrary time:
Discrete-time version \ = P(7; =0) =P(N(0) =1) =P(N(t) =1) (7.17)
where the latter 1s valid for any £, By stationarity.
One can think of A as the (average \rate of the event clock. amO::t}lili}’tfig(:lzgztii?Jn

Which is zero for
continuous-time case

28



Two Palm Calculus Formulae

We denote the time instant of the point process such that

B Intensity Formula: LTy STy <ToS0<Ty <T,..

X = 'LO(Tl — TU) = 'LO(Tl)

T0=0

where by convention Ty < 0 < T;

B (Palm) Inversion Formula (ak.a. Ryll-Nardzewski and Slivnyak’s formula)

v BB N
g st B(X3) = E(Xg) = AE’ Xds

2. Avg. Customer . 0
Time average of X,

( also denoted as X(t)) average of X; between two eve’nts, To=0and T,

B The proofs are simple in discrete time - see textbook

The only assumption is stationarity, dispensing with independence or Poisson assumptions.
Once again, do not forget that T,, is another point process, only jointly stationary with X,.

29




EXAMPLE 7.5: GATEKEEPER, CONTINUED. Assume we model the gatekeeper example as a
discrete event simulation, and consider as point process the waking ups of the gatekeeper. Let
X (t) be the execution time of a hypothetical job that would arrive at time ¢t. The average job
execution time, sampled with the standard clock (customer viewpoint) is

W. = E(X (1)) = E(X(0))

whereas the average execution time, sampled with the event clock (system designer viewpoint), is

W, =E{(X (t)) = E°(X(0)) job arrival
. . . 0 SO100 190200 290 300
The inversion formula gives I I H it (ms)
Ty ll ll ll
Time average of X, W, = \E’ ( / }ir(f}(ft) = \E° (X (0)T7) %1000 " Y1000 "% Y1000
[

- average of X, between T o=0and T,
(recall that Ty =0 under the Palm probability and X (0) is the execution time for a job that arrives
just after time 0). Let C' be the cross-covariance between sleep time and execution time:

C:=E°(T1X(0)) — E°(T1)E°(X (0))
then
W, = MC+E°X(0)E*(T))]

By the inversion formula A = @ﬁ thus

W, = W,+\C

which is the formula we had derived using the heuristic in Section 7.1. 30



3. Other Palm Calculus Formulae

THEOREM 7.3.1. Let X (t) = TT(t) — t (time until next point, also called residual time), Y (t) =
t — T (t) (time since last point), Z(t) = TT(t) — T~ (t) (duration of current interval). For any t,
the distributions of X (t) and Y (t) are equal, with PDF:

+00
Fx(s) = fr(s) = APy > s) = A f(u)du (7.28)

S

where j_“% is the Palm PDF of 1, — Iy (PDF of inter-arrival times). The PDF of Z(t) is

fz(s) = Asfp(s) (7.29)
In particular, it follows that Rather than —— (in line with our intuition)
A : . :
Recall E(X(t) =EY(@{)) = §1E0 (T)  in continuous time (7.30)
1 A
T =E°%(Ty) E(X(t) =E(Y({#)) = §1E0 (Ty(Ty + 1)) in discrete time (7.31)
E(Z(1)) — AEY(TY) (7.32)

Z (current interval) is heavier than T = T; — T (inter-arrival times)
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The larger the interval is,
the more you are likely to fall there

Fas) = Asf2(s)

Z(t) =T*(t) — T~ (t) : duration of current interval

B Density of Z, current interval, at Z = s is proportional to

s X Densityof T atT = s

B In other words, the probability that you fall within an interval of size s
is proportional to s times the probability density function of the
intervals of the point process.

B You are likely to fall in larger intervals.

32



Joe’s Waiting Time

E(X() =E(Y(1)= SE'(I?)

Residual Elapsed

\ time time

Recall

1 0
T =E (11)

B E(X(©) = JEO(TP) =2 (EO(T))? +2

o 1 2
mean waiting time = - E O(T)) + E var?(T;)

NG

0.5 X mean time between buses penalty due to variability
system’s viewpoint

33



Feller’'s Paradox

r
L — ——
| T
& ' N\
At bus stop in average A buses per hour. Inspector

measures time between all bus inter-departures.

Inspector estimates E (7} — 1) = +

Joe arrives at time + and measures X; = ( time until
next bus — time since last bus). Joe estimates

E(X{Z}) — E(Tl - T{j}) Time average of inter-arrival timeT; — T,
Inversion formula:

Ty :
: 1 :
E(Th — Ty) = AEY( / Xidt) = \EY(T%) = X+)\Va1'{'}(T1 — 1)
U penalty

Joe's estimate always larger than Inspector’s (Feller’s
Paradox)

34



We encountered Feller’s Paradox Already

Large «Time» Heuristic

Flow n=1 Flow n=2 Flow n=3

= e

e

3. Compare
1
n
1 1
_1 Z o

2
Sp = F NZSZ \ NZSZ (( ZSn) + varF(S)) = é X (SE + varp(S))

n

\Sp Sp+—varp(.5') \
Sr

—

Arbitrary sampling (packet average) leads to overestimation of the flow size.

The larger the interval is, ‘ The bigger the flow is,
the more you are likely to fall there the more packets you are likely to sample from the flow

35



For a Poisson process, what is the mean
length of an interval ?
—

EXAMPLE 7.7: POI1ssON PROCESs. Assume that T, is a Poisson process (see Section 7.6). We
have f2(t) = Ae™* and PU(T} > s) = PY(T} > s) = e 2% thus fx(s) = fy(s) = f2(s).

This is expected, by the memoriless property of the Poisson process: we can think that at every
time slot, of duration dt, the Poisson process flips a coin and, with probability Ad¢, decides that
there is an arrival, independent of the past. Thus, the time X (¢) until the next arrival is independent
of whether there is an arrival or not at time ¢, and the Palm distribution of X (¢) is the same as its
time average distribution. Note that this is special to the Poisson process; processes that do not
have the memoriless property do not have this feature.

The distribution of Z(¢) has density

duration of current interval f%( s) = A\2ge™ S

\
\

i
\b \/l ST:/\

@——

L

i.e., it is an Erlang-2 distribution®.
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Miyazawa’s Rate Conservation Law

/]
Y _
X(t T
AX;, \()1__ j T
/L P "H| e
—
Ve | y |
L - t
7 73 Ty

Consider a random, real valued stochastic process X (¢) with the following properties (Figure 7.6):

e X (7)1s continuous everywhere except perhaps at instants of a stationary point process 75,:
e X(t) is continuous to the right; Cadlag function Jump ups and downs by point process
e X (t) has a right-handside derivative X'(¢) for all values of ¢.

Define AX,; by AX,;=0 if ¢ is not a point of the point process 7;, and AX = X(T},) — X(T),
1.e. A X, 1s the amplitude of the discontinuity at time ¢. Note that it follows that

[
X(#) = X(0) + / X'(s)ds+ Y Arlg <q (7.34)
0 n
continuous E(Iﬁscontinuous
part jumps

37



W

THEOREM 7.3.2. (Rate Conservation Law [69]) Assume that the point process T',, and X (t) are
jointly stationary. If EY | Ag| < oo and E|X'(0))| < oo then
Taking differentiation &
expectation of the E (X ’(0)) + AE’ (Ag) =0

previous equation yields: Palm inversion formula
where \ is the intensity of the point process T,, and E" is the Palm expectation.

e £ (X'(0)) (also equal to E (X'(¢)) for all ¢) 1s the average rate of increase of the process
X (t), excluding jumps.

o £V (Ag) is the expected amplitude of one arbitrary jump. Thus AE" (A) is the expected rate
of increase due to jumps.

e The theorem says that, if the system 1s stationary, the sum of all jumps cancels out. 1n aver-
age.
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From Miyazawa to Palm

Tnta
axm) = [ Treds T x(t) [ ~—
0 ~ N
—

AX;, 7

Roughly speaking, Palm is a special case of Miyazawa:

Let us first define:
T, (¢t)

X(t) = j Y (s)ds
t
Then you have X'(t) = =Y (t) and Y,- = 0 since T*(0™) = T,. Hence:
T,
E[X'(0)] = —E[Y(0)] = —AE°[AX(0)] = —AE" U Y(S)dS]
0

K Palm Inversion F ormul%

Miyazawa: Event average of jumps is counteracted by its right-hand side derivative.
Palm: Time average is equivalent to its average over one interval.




- X(t I
AXr, \()x J —
.

r
|
~

T 7 z

EXAMPLE 7.11: POWER CONSUMPTION PER JOB. A system serves jobs and consumes in average
P watts. Assume we allocate the energy consumption to jobs, for example by measuring the
current when a job is active. Let E be the total energy consumed by a job, during its lifetime, in

average per job, measured in Joules. By Eq.(7.40):
Sy
where ) is the number of jobs per second /served by the system.

E (X'(0)) + AE? (Ag) = 0

Palm inversion formula

40



Campbell’s Formula

Derivation is quite intuitive:
Total load Define L = E(X'(t)) where X(t) is the integration of
remaining load over time and apply Miyazawa

cf. instantaneous ones so far

B Shot Noise Model: customer n adds an arbitrarily dispersed load
h(t — T,, Z,) where Z,, i§some random attribute and T, is arrival time

THEOREM 7.3.3 (Shot Noise). ﬁze‘ average load at an arbitrary point in time is

L=\xE’ ( / h(t, Zg)dt)
0

where equality holds also if either L or the work per customer is infinite.

B Trivial example: Throughputs of TCP flows, L = AV with
L = bits per second, V = total bits per flow and A= flows per sec

Little’s Law is merely an immediate consequence of Campbell’s Formula.

(7.39)
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Little’s Formula

Total load Try to conceive:
Response time of a customer in stationary
systems can be regarded as a dispersed load.

! Events:

T1 T2 T3 customer arrivals

We can apply Campbell’s formula by letting Z,, = 2, and h(t,z) = 14y<;cy, 1.e. the load
generated by one customer 1s 1 as long as it 1s present 1n the system; equivalently, we can apply the
rate conservation law with X (7) = residual time to be spent by customers present in in the system.

This gives the celebrated theorem:

Integral of which becomes ‘response time’

THEOREM 7.3.4 (Litfle’s Formula). The mean number of customers in the system at time t, N :=
E(N(t)), is independent of t and satisfies

N = AR
where \ is the arrival rate and R the average response time, experienced by an arbitrary customer:

Apply Campbell’s Formula to the time average N(t) = ., 11 <t 4R, }-
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High-level Recap

/ f (ext. for Cadlag) \

Campbell’s Formula
/ (lemma for dispersed arrival load) \1

‘Little’s Law-

(lemma for the case load is no. of customers)

All these theorems essentially
implies conservation:
Event average of jumps must be
counteracted by its time average derivative.

B Dispersed load in Campbell’s Formula

» Coined term for a generalized or reinterpreted version of “jump”

» On arrival of a customer, the entire load dispersed over her lifetime can be

expressed as a jump at her arrival.

» Mathematically feasible: only stationarity! (cf.,, Z,, = R,, in Little’s Formula)

B Contributions of Palm Calculus

» Extension of time average (or event average expression)

» An edifice of notations - mathematical condensation/compactification

» Concise rephrasing indeed helps clarify how you think and view a system
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4. PASTA

B There is an important case where Event average = Time average

B “Poisson Arrivals See Time Averages”
» More exactly, it should be:
Poisson Arrivals independent of simulation state See Time Averages

Consider a system that can be modeled by a stationary Markov chain S(#) in discrete or continuous
time (in practice any simulation that has a stationary regime and 1s run long enough). We are
mterested in a matrix of C' > 0 of selected transitions such that

Independence For any state i of S(t),[z ;Cij = /\]is independent of i.

THEOREM 7.5.2 (PASTA). Consider a point process of selected transitions as defined above. The
Palm probability just before a transition is thelstationary probability.

\ 4
A simplified version of which is
¢ Poisson process”
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EXAMPLE 7.19: A POISSON PROCESS THAT DOES NOT SATISFY PASTA. The PASTA theorem re-
quires the event process to be Poisson or Bernoulli and independence on the current state. Here
Is an example of Poisson process that does not satisfy this assumption, and does not enjoy the
PASTA property.

Construct a simulation as follows. Requests arrive as a Poisson process of rate )\, into a single
server queue. Let 7T, be the arrival time of the nth request. The service time of the nth request
is assumed to be %(THH — T1},). The service times are thus exponential with mean % but not
independent of the arrival process. Assuming the system is initially empty, there is exactly 1
customer during half of the time, and 0 customer otherwise. Thus the time average dis&ibution of
queue length X (t) is given by P(X (?) =0) =P(X(t) =1) =0.5and P(X(¢) = k) =0fork > 2. In
contrast, the queue is always empty when a customer arrives. Thus the Palm distribution of queue
length just before an arrival is different from the time average distribution of queue length.

The arrival process does not satisfy the independence assumption: at a time ¢t where the queue
is not empty, we know that there cannot be an arrival; thus the probability that an arrival occurs
during a short time slot depends on the global state of the system.

Service time depends on T, 1, i.e., the future arrival!
Which means all arrival events depend on the system.
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EXAMPLE 7.17: ARP REQUESTS WITHOUT REFRESHES. IP packets delivered by a host are
produced according to a Poisson process with A packets per second in average. When a packet
is delivered, if an ARP request was emitted not more than 7, seconds ago, no ARP request is
generated. Else, an ARP request is generated. What is the rate of generation of AZP° requests ?

Call 7,, the point process of ARP request generations, .. its intensity and p the probability that an
arriving packet causes an ARP request to be sent. First, we have ;1 = pA\ (to see why, assume
time is discrete and apply the definition of intensity).

Second, let Z(t) = 1 if the ARP timer is running, 0 if it has expired. Thus p is the probability that an
arriving packet sees Z(t) = 0. The PASTA property applies, as the |IP packet generation process
is independent of the state of the ARP timer.

By the inversion formula: Conditional on the
event of ARP request
Time average generation 1
p=P(Z(t)=0)=uE" (T} —t,) = p (— — ta) =1 — ut, (7.56)
_ ]
~PASTA
Combining with 11 = p\ gives p = Tjﬁ ahdlhe rate of gerﬁ\tion of ARP requests is 1 = ﬁ

Ty
p=P(Z(t) = 0)=E(1z(p)=0}) = HE® (j 1(z(6)=0) dt) = uE® (T1 — t,)
0
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5. RWP and Freezing Simulations

B Modulator Model (Supplement of mathematical details to Stochastic Occurrence.)

Recall that a stochastic recurrence is defined by a sequence Z,,. n € Z. (also called the modulator
state at the nth epoch) and a sequence 5, > 0, interpreted as the duration of the nth epoch. The
state space for Z,, is arbitrary, not necessarily finite or even enumerable. We assume that (Z,,, .S,,)
is random, but stationary? with respect to the index n. As usual, we do not assume any form of
independence.

Roughly, it’s merely a continuous version.

We are interested in the modulated process (Z(t),S(t)) defined by Z(t) = Z,,S(t) = S,
whenever ¢ belongs to the nth epoch (i.e. when 7T, < t < T,,.1). We would like to apply Palm
calculus to (Z(t), S(t)).

EXAMPLE 7.13: Loss CHANNEL MODEL. A path on the internet is modelled as a loss system,
where the packet loss ratio at time ¢, p(¢) depends on a hidden state Z(t) € {1, ..., I} (called the
modulator state). During one epoch, the modulator remains in some fixed state, say i, and the
packet loss ratio is constant, say p;. At the end of an epoch, the modulator changes state and a

new epoch starts.

Once in a while we send a probe packet on this path, thus asure | erage loss ratio

p. How does it relate to p; ? Apply the inversion formula:
-

Z_ﬁ, ’}T?pi-_ 5_*3 € Integral of “loss ratio” between two epochs

. S m0S, €——— 1/1

where 7! is the probability that the modulator is in state i at an arbitrary epoch (proportion of i
epochs) and S; is the average duration of an i-epoch. 47



Is the previous simulation stationary ?

B Seems like a superfluous question, however there is a difference in
viewpoint between the epoch n and time.

B LetS,, be the length of the nt* epoch.
B [f there is a stationary regime, then by the inversion formula
1

fooo tfy (t)dt >0

so the mean of S,, must be finite.

B Thisisin fact sufficient (and necessary)
THEOREM 7.4.1. Assume that the sequence S, SarsfiesHiand has finite exipectation. There exists

e
a stationary process Z(t) and a stationary point process 1", such that

1. ITn—I—l _ trn — Sn
2. Zn — Z(Ez)

Finite expectation of epoch =» Stationarity
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Application to RWP

EXAMPLE 7.14: RANDOM WAYPOINT, CONTINUATION OF EXAMPLE 7.6. For the random waypoint
model, the sequence of modulator states is

Zn — (J-[n ﬂfn—l—lz T’;ﬂ)

and the duration of the nth epoch is

d (M,,, M,,
S, = (M, Mn11) (7.48)

- 7

where d (M,,. M,) is the distance from M, to M,, ..
Can this be assumed to come from a stationary process ? We apply Theorem 7.4.1. The average

epoch time is
d (My, My, - 1
E(So) =E ( ( 7 “)) = E (d (M, Mn11))E (17)

since the waypoints and the speed are chosen independently. Thus we need that E | Vin) < 00,
l.e. Upin > 0.
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A Random waypoint model that has no
stationary regime !

B Assume that at trip transitions, node speed is sampled
uniformly on [Vmin, Vmax|

W Take viphinp = 0 and vpax > 0

: . T Ymax

B Mean trip duration = (mean trip distance) x 1 j dv — +oo
E(Sg) £ (d (ﬂ[n ﬂ"{n+1 )) Vmax Jo v

B Mean trip duration is infinite! K (7)

B Very often used in a number of research papers

B Speed decay: “considered harmful” [YLNO3]
» [t took a couple of decades for us to be enlightened.

» Exclusion of zero speed, e.g., (0, vmax], still results in
infinite mean drip duration

[YLNO3] J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harmful”, IEEE Infocom, 2003.
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What happens when the model does not
have a stationary regime ?

B When v, = 0, the simulation becomes old.
B Also, the sample average speed decays to 0.

- NS o o N
T T T T

speed (mfs)
Q Q
= o
T T
| I

—
speed (m/s)
Nk

’ . 0s

0.6

04} - B 04f . -
I M
0.2} - ( e Ll oz2f v W g

Il 1 1 1 1 1 T 1 0 1 1 1 Il 1 Il 1 1
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 (o] 1000 2000 3000 4000 5000 6000 7000 8000 2000
time (sec) time (sec)

Figure 7.9: Freezing simulation: random waypoint with v,,;, = 0. The model does not have a stationary
regime and the simulation becomes slower and slower. First panel: sample of instant speed versus time

for one mobile. Second panel: speed averaged over [0; ¢] for one mobile (zig zag curve) or for 30 mobiles
(smoother curve). The average speed slowly tends to 0.

You may want to marginalize this finding as a mathematical trivia. However, if you think hard, it’s
not in line with your intuition because exclusion of v,:,, = 0 does not mitigate the situation.



Stationary Distribution of Speed
(For model with stationary regime)

Event Average Time Average

Figure 7.4: Distribution of speed sampled at waypoint (first panel) and at an arbitrary time instant (second
panel). vyin = 0.2, vmax = 2M/S.

Easy to analyze with Palm theory.
Wish if they had understood it through the lens of Palm theory!



Closed Form

B Assume a stationary regime exists and simulation is run long enough
B Applyinversion formula and obtain distribution of instantaneous speed V(t)

\V 11
E (o(V(t)) = AE ( /0 o(V(1)) d?f)

Time average of a function of V()

= AE" (0(Vo)Th)

| My — M
= AE’ (o(vo) — ”‘)
0

M — My||) E° (”( : ))
T

C

= \EY(

“Real” distribution of V(1) is
f V(t) (?}) dv = - f 5 (?}) dv lighter-tailed than its Palm version.




Removing Transient Matters

B A (true) example: Compare impact of M A.Inthe mobile case, the nodes are
mobility on a protocol: more often towards the center,

distance between nodes is shorter,
performance is better

B The comparison is flawed. Should use
for static case the same distribution of
» Finds that static is better node location as random waypoint.

B Q.Find the bug!

» Experimenter places nodes
uniformly for static case, according
to random waypoint for mobile case

10

N

Random waypoint

Average rate per user [Mb/s]

4t i

ol 1 Static
—— Random waypoint

0 —-—- Static

0 20 40 60 80 100 120

Number of nodes
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Curiosity

B [sitpossible to have the time distribution (as opposed to Palm distribution)
of speed uniformly distributed in [0, viax] ?

Yes. Use the inversion formula fv(t)(-z;)dvg i (v)dv
;

At a waypoint, pick a new speed according to
the distribution

f‘(}(v) — KU]‘OSUSUmax
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6. Application to Throughput Analysis

B Techniques for Throughput Analysis
» Renewal Reward Theorem
(also applicable to Markov chains)
» Palm Inversion Formula

B Renewal Reward Theorem

» Observations or metrics (a.k.a. ‘Rewards’)
W, are independent and identically
distributed (iid)

» Inter-transition times (a.k.a. ‘Renewals’)
S,, are independent and identically
distributed (iid)

B Palm Inversion Formula

» Observations or metrics X;, and inter-
transition times T, — T,,_4 are only
required to be jointly stationary

» All kinds of dependencies are allowed.

Wi

Jy

Js

Ja
W

Jy

LT,

W,

—»
I
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Throughput Formula in IEEE 802.11 MAC

Data processed T,

. ) o o o 1. o o Ty o o o
in each interval

7 S =
P sEiERaaRRaaaE s

Event Clock TO T1 T2 T3 T4 T5 T6
Fig. 1. The channel view of a node
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R
R
R
SN
R
SN
R

|

B The time intervals during which the node (of interest) remains in each of the four
states, (i) idle channel; (ii) channel occupied by a successful transmission of the
node; (iii) channel occupied by a collision of the node; (iv) busy channel due to
activity of other nodes are respecti dengted by:

idle slot due to activity of other nodes are respectively denote
T,p, b
With complicated
probability distributions
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Throughput Formula in IEEE 802.11 MAC

Data processed T.

SRS ERE

Event Clock TO T1 T2 T3 T4 T5 T6
Fig. 1. The channel view of a node

T, — 7(1 —p)
: T(l_p)TS+TpTc+(1—T)(1 b)o + (1— T)bTb

By Palm Inversion formula

[GSKO8] M. Garetto, T. Salonidis, E. Knightly, “Modeling Per-flow Throughput and Capturing Starvation in CSMA
Multi-hop Wirelss Networks”, IEEE/ACM Trans. Networking, 2008.
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Throughput Formula in IR-UWB Networks

B Correct packet reception in IR-UWB
(Impulse Radio Ultra-wideband)
networks

» Packet detection
» Timing acquisition
» Retransmissions

Saturation throughput in packets per second

pacal 1—7 v (R+1
/\U _ waq( )g( + ))

R
pacq (tacq +ix ) (1-7 x (R+1) ) +pgail E ?_:U(f,.acqﬂfaﬂ(-a.))n—X(-z.)+a.(1r()_p7rX(R.+1)

Palm calculus gets rid of exponential inter-transition time assumption in Markov chains.

[MERO9] R. Merz and J.-Y. Le Boudec, “Performance Evaluation of Impulse Radio UWB Networks Using
Common or Private Acquisition Preambles”, IEEE Trans. Mobile Computing, 2009.

59



Peppering Your Formal Analysis

B Energy-efficient Wi-Fi sensing algorithms for an arbitrary inter-AP time distribution

] .8 M i

— -++ | Phase k-1 Phase k Phase k+1 >
i Y I . time

-—— - - -

Contact loss - S Association duration: Y — §

i A R\. ;!
To T T T A AY : AP Association time
T T> 13 APencounter T4«
(a)

_> Contact loss : Y

A
____I__ o |le X Sl Y ’; Association duration : 0
% 7, T 1 4 " A 3|APmiss time
It 1> 15 T4
(b)

Fig. 1. An illustration of the model. (a) When AP contact duration Y’ is larger
than .S, a mobile successfully detects an AP. (b) When AP contact duration
Y is smaller than S, a mobile node fails to detect it. Shaded areas denote the
contact loss time [(5).

B Objective: Minimize energy for sensing (T4,T5,...) plus contact loos time (S)
B Residual time until the next AP (/(t) is duration of current interval):

1 (‘71(1:))2
E[S] = 5 E[I(t)] + —=

E[1(t)]
[JEO13]J. Jeong, Y. Y1, J. Cho, D. Eun and S. Chong, “Wi-Fi Sensing: Should Mobiles Sleep Longer As They Age?”,
IEEE Infocom, 2013.
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Qe =
/4 k&

B A metric should specify the sam_pling method

Conclusnons

AN

Different sampling methods may give very different values
Palm calculus contains a few important formulas

Markov chain model can be generalized to a Palm version, _
hence arbitrary inter-transition time distribution

Yet the most rational stance is to view Palm as a solid
intermediary and mathematical language for advanced skills.



