
Palm Calculus
Made Easy

The Importance of the Viewpoint
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This is a branch of probability that is not well known (why?),
though it is quite important for any measurement study.

Speak the most useful mathematical language!
Espouse correct mathematical viewpoint!



Saving Private Ryan
What	is	the	general	framework	of	Palm	in	practical	terms?
Peeling	off	all	formalities,	it	is	analogous	to	the	following	examples.	
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Glancing	at	a	queuing	network	
for	each	arrival	event

Glimpse	into	a	random	way	point	
mobility	model	at	waypoints

Peeping	into	IEEE	802.11	backoff procedure	at	the	beginning	of	time‐slots



1. Event versus Time Averages
Consider	a	simulation,	state	of	which	is	࢚ࡿ (Jumping	Process)
Assume	simulation	has	a	stationary regime

Event	clock:	times	࢔ࢀ at	which	some	specific	changes	of	state	occur
Ex:	arrival	of	job
Ex.	queue	becomes	empty

Event	average	statistic

Time	average	statistic
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e.g., average queue length

“continue à droite, limite à gauche” in French, 
"right continuous with left limits” in English
Property: left limit ܳ ିݐ ൌ lim

௦↑௧
ܳሺݏሻ exists, 

right limit ܳ ାݐ ൌ lim
௦↓௧

ܳሺݏሻ exists and equals to ܳሺݐሻ.
Skorokhod space: a collection of càdlàg functions

càdlàg function

Two interpretations:
i) ࡽ ⋅ just before ࢔ࢀ
ii) ܕܑܔ

࢔ࢀ↑࢚
	ሺ⋅ሻࡽ

càdlàg function
≈ stat. process

jumping function
≈ stat. point process



Example: Gatekeeper; Average execution time
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0 90 100 190 200 290 300

5000
1000

Real time t (ms)

job arrival

5000
1000

5000
1000

Viewpoint 1: System Designer Viewpoint 2: Customer

Two processes, with execution times 
5000 and 1000

௦ܹ ൌ
5000 ൅ 1000

2 ൌ 3000

Inspector arrives at a random time
red processor is used with probability ଽ଴

ଵ଴଴

௖ܹ ൌ
90
100 ൈ 5000 ൅

10
100 ൈ 1000

ൌ 4600

Execution time 
for a job that 

arrives at t (ms)

This is a bit artificially forged example but provides some basic insights.

It looks like an improper method for this example!



Sampling Bias
Ws and	Wc are	different.
A	metric	definition	should	mention	the	sampling	method	(viewpoint).
Different	sampling	methods	may	provide	different	values:	

This	is	the	sampling	bias.

Palm	Calculus	is	a	set	of	formulae	for	relating	different	viewpoints

The	relation	can	often	be	obtained	by	means	of	the	Large	Time	Heuristic
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Large Time 
Heuristic Explained 
on an Example

We	want	to	relate	 ௦ܹ and	 ௖ܹ
We	apply	the	large	time	heuristic

1. How	do	we	evaluate	these	metrics	in	a	simulation	?

௦ܹ ൌ
1
ܰ ෍ ܺ௡

௡ୀଵ…ே

ൌ തܺ

௖ܹ ൌ
1
ܶ
න ܺேశ ௧ ݐ݀
்

଴

where	ܰା ݐ ൌ index	of	next	green or	red arrow	after	ݐ (as	well	as	at	ݐ)
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Times when the 
gatekeeper wakes up

execution 
time for a job 
processed at 

time Tn

System Designer

Customer

ାࡺ ࢚ : the index of the next 
event clock tick after t.



Large Time 
Heuristic Explained 
on an Example

2. Break	one	integral	into	pieces	that	match	the	 ௡ܶ’s:

௦ܹ ൌ
1
ܰ ෍ ܺ௡

௡ୀଵ…ே

ൌ തܺ

௖ܹ ൌ
1
ܶ
න ܺேశ ௧ ݐ݀
்

଴

௖ܹ ൌ
1
ܶ

න ܺேశ ௧ ݐ݀
భ்

଴
൅ න ܺேశ ௧ ݐ݀

మ்

భ்

൅ ⋯൅න ܺேశ ௧ ݐ݀
்ಿ

்ಿషభ

ൌ
1
ܶ

න ଵܺ݀ݐ
భ்

଴
൅ න ܺଶ݀ݐ

మ்

భ்

൅ ⋯൅න ܺே݀ݐ
்ಿ

்ಿషభ

ൌ
1
ܶ ଵܶ ଵܺ ൅ ሺ ଶܶെ ଵܶሻ	ܺଶ ൅ ⋯൅ ேܶ െ ேܶିଵ	 ܺே

ൌ
1
ܶ ଵܵ ଵܺ ൅ ܵଶܺଶ ൅ ⋯൅ ܵேܺே
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Times when the 
gatekeeper wakes up

execution 
time for a job 
processed at 

time Tn

ାࡺ ࢚ : the index of the next 
event clock tick after t.



Large Time 
Heuristic Explained 
on an Example

3. Compare	(and	try	to	assimilate it	to	Ws)	

௖ܹ ൌ
1
ܶ ଵܵ ଵܺ ൅ ܵଶܺଶ ൅ ⋯൅ ܵேܺே

ൌ
ܰ
ܶ ൈ

1
ܰ ଵܵ ଵܺ ൅ ܵଶܺଶ ൅ ⋯൅ ܵேܺே

ൌ ߣ ൈ cov ܵ, ܺ ൅ ܵ̅	 തܺ ൌ ߣ ൈ cov ܵ, ܺ ൅
1
	ߣ
തܺ 	

௖ܹ ൌ cov	ߣ ܵ, ܺ ൅ ௦ܹ
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Times when the 
gatekeeper wakes up

execution 
time for a job 
processed at 

time Tn

ାࡺ ࢚ : the index of the next 
event clock tick after t.

Note: ࣅ ൌ ࡺ
ࢀ
ൌ ૚

തࡿ



This is Palm Calculus!
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௖ܹ ൌ cov	ߣ ܵ, ܺ ൅ ௦ܹ ௖ ௦

Dependency between inter-arrival 
time and execution time



Sn =	90,	10,	90,	10,	90
Xn =	5000,	1000,	5000,	1000,	5000

Correlation	is	>0
Wc >	Ws

When	do	the	two	viewpoints	coincide?	When	either	ܵ௡ or	ܺ௡ is	identical.	
11



The Large Time Heuristic

Formally	correct	if	simulation	is	stationary
∵ It	is	a	corollary	of	Palm	Inversion	Formula	for	the	case	where	ܺ ݐ changes	only
at	ݐ ൌ ௡ܶ.		It	can	be	called	a	synchronized	jump	case.
It	is	a	robust	method,	i.e.,	independent	of	assumptions	on	distributions	(and	
on	independence)
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Large Time Heuristic: 
Break a time average statistic into a sum of its event average equivalent and remaining terms.



Other «Clocks» (in Metaphoric Sense)
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Our intuition tells us that 
this must be correct
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Load Sensitive Routing of Long-Lived IP Flows 
Anees Shaikh, Jennifer Rexford and Kang G. Shin

Proceedings of Sigcomm'99

ECDF, per flow viewpoint

ECDF, per packet viewpoint



Mean flow	size:
per	flow	 ܵி
per	packet ܵ௉
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 Correct estimate



Large «Time» Heuristic
1. How	do	we	evaluate	these	metrics	in	a	simulation	?

per	flow	 ܵி ൌ
ଵ
ே
∑ ܵ௡௡ 	

per	packet ܵ௉ ൌ
ଵ
௉
∑ ܵி ௣௣

where	ࡲ ࢖ ൌ ࢖	packet	when	࢔ belongs	to	flow	࢔
2. Put	the	packets	side	by	side,	sorted	by	flow
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ܵ௉ ൌ
1
ܲ ଵܵ ൅ ଵܵ ൅ ܵଶ ൅ ܵଶ ൅ ૜ࡿ ൅ ૜ࡿ ൅ ૜ࡿ ൅ ૜ࡿ ൅ ૜ࡿ ൅ ⋯

ൌ
1
ܲ ଵܵ ൈ ଵܵ ൅ ܵଶ ൈ ܵଶ ൅ ܵଷ ൈ ܵଷ ൅ ⋯ ൌ

1
ܲ෍ܵ௡ଶ

௡

Size of Flow 3 is counted five times.



ܵ௉ ൌ
1
ܲ෍ܵ௡ଶ

௡

ܵி ൌ
1
ܰ෍ܵ௡

௡

ൌ
1
ܰܲ

ܵ௉ ൌ
ܰ
ܲ ൈ

1
ܰ෍ܵ௡ଶ

௡

ൌ
1
ܵி
ൈ
1
ܰ෍ܵ௡ଶ

௡

ൌ
1
ܵி
ൈ

1
ܰ෍ܵ௡

௡

ଶ

൅ ிݎܽݒ ܵ ൌ
1
ܵி
ൈ ܵிଶ ൅ ிݎܽݒ ܵ

ൌࡼࡿ			 ࡲࡿ ൅
૚
ࡲࡿ
ࡲ࢘ࢇ࢜ ࡿ

Large «Time» Heuristic

3. Compare
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Arbitrary sampling (packet average) leads to overestimation of the flow size. 



Large «Time» Heuristic for PDFs of flow sizes
Put	the	packets	side	by	side,	sorted	by	flow

1. How	do	we	evaluate	these	metrics	in	a	simulation	?

18
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A bit hard to hit 
upon this idea

࢔ࡿ : size of flow ࢔

Move to simplify index condition

There are ࢙ packets in Flow ࢔.

Packet clock based samples lead to a heavier tail.



Cyclist’s Paradox
On	a	round	trip	tour,	
there	is	more	uphills
than	downhills

20

Or running on treadmills?



The km clock vs. 
the standard clock

ℓݒ ൌ speed	for	the	ℓ୲୦ kilometer	(the	trip	consists	of	equal‐sized	pieces,	1,…,L)

ܵ୩୧୪୭୫ୣ୲ୣ୰ ൌ
1
ℓݒ෍ܮ

ℓ

ൌ 	ℓ࢜	܎ܗ	ܖ܉܍ܕ

୲ܵ୧୫ୣ ൌ
ܮ
ܶ ൌ

ܮ

∑ 1
ℓℓݒ

	 ൌ ℓ࢜	܎ܗ	ܖ܉܍ܕ	܋ܑܖܗܕܚ܉ܐ ൏ ℓ࢜	܎ܗ	ܖ܉܍ܕ

21

standard 
clock

kilometer 
clock



2. Palm Calculus : Framework
A	stationary	process	(simulation)	with	state	 ௧
Some	quantity	 ௧ measured	at	time	 .	Assume	that

( ,࢚ stationary	is	(࢚

i.e.,	 ௧ is	in	a	stationary	regime	and	 ௧ may	depend	on	the	
past,	present	and	future	state	of	the	simulation	 ௧ in	a	way	
that	is	(probabilistically)	invariant	by	shift	of	time	origin.
Examples	:	 ࢚ can	be	any	state	of	a	simulation

ܵ௧ =	current	position	of	mobile,	speed,	and	next	waypoint
ܺ௧ jointly	stationary	with	ܵ௧:	

ܺ௧ =	current	speed	at	time	ݐ;	ܺ௧ =	remaining	time	until	next	waypoint
ܺ௧ not	jointly	stationary	with	ܵ௧:	

ܺ௧ =	absolute	time	at	which	last	waypoint	occurred
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Stationary Point Process
Consider	some	selected	transitions of	the	simulation,	occurring	at	times	 ௡ܶ.

Example:	 ௡ܶ =	time	when	݊th trip	ends	in	random	waypoint	model

௡ is	a	called	a	stationary	point process	associated to	 ௧
௡ܶ grows	over	time,	so	think	of	it	as	a	set	of	“points”	generated	by	 ௡ܶ
Stationary	because	ܵ௧ is	stationary
Jointly	stationary	with	ܵ௧

Time	0	is	an	arbitrary point	in	time,	rather	than	the	beginning	of	a	simulation.
∵ The	simulation	has	run	for	so	long	a	time at	࢚ ൌ ૙ that	it	is	now	stationary!
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state transition

We denote the time instant of the point process such that
… ൏ ૛ିࢀ ൏ ૚ିࢀ ൏ ૙ࢀ ൑ ૙ ൏ ૚ࢀ ൏ ૛ࢀ …



Palm Expectation
Assume:	 ௧,	 ௧ are	jointly	stationary,	 ௡ is	a	stationary	
point	process	associatedwith	 ௧.
Definition :	the	Palm	Expectation is

By	stationarity:	

Example:	
௡ܶ =	time	when	݊th trip	ends,	ܺ௧ =	instant	speed	at	time	ݐ
Et(ܺ௧)	=	E0(ܺ଴)	=	average	speed	observed	at	a	waypoint

24



E(ܺ௧)	=	E(ܺ଴)	expresses	the	time	average	viewpoint.
Et(ܺ௧)	=	E0(ܺ଴)	expresses	the	event	average	viewpoint.
Example	for	random	waypoint:	

௡ܶ =	time	when	݊th trip	ends,	ܺ௧ =	instant	speed	at	time	ݐ
Et(ܺ௧)	=	E0(ܺ଴)	=	average	speed	observed	at	trip	ends
E(ܺ௧)	=	E(ܺ଴)	=	average	speed	observed	at	an	arbitrary	point	in	time

ܺ௡ାଵ

25
A Palm expectation is always associated with a stationary point process ࢔ࢀ.

ܺ௡



Formal Definition
In	discrete	time,	we	have	a definition	based	on	an	
elementary	conditional	probability.

In	continuous	time,	the	definition	is	appallingly
sophisticated

Radon‐Nykodim derivative	– see	textbook	for	details.
Also	see	[3,	4]	for	a	formal	treatment.	

Palm	probability is	defined	similarly.
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Assume	simulation	is	stationary +	ergodic,	i.e.,	sample	path	averages	
converge	to	expectations;	then	we	can	estimate	time	and	event	
averages	by:

In	terms	of		probabilities:

Ergodic Interpretation

27

Lack of ergodicity implies these formulae do not hold.
e.g., disconnected Markov chain



Intensity of a Stationary Point Process
Intensity of	selected	transitions:	

ࣅ :=	expected	number	of	transitions	per	time	unit
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General definition

Discrete-time version

Which is zero for 
continuous-time case

Wordy yet consistent 
and intuitive definition



Two Palm Calculus Formulae
Intensity	Formula:

where	by	convention	 ଴ܶ ൑ 0 ൏ ଵܶ

(Palm)	Inversion	Formula	(a.k.a.	Ryll‐Nardzewski and	Slivnyak’s formula)

The	proofs are	simple	in	discrete	time	– see	textbook

29

The only assumption is stationarity, dispensing with independence or Poisson assumptions.
Once again, do not forget that ࢔ࢀ is another point process, only jointly stationary with ࢚ࢄ.

૙ࢀ ൌ ૙

Time average of ࢚ࢄ
( also denoted as ࢄ ࢚ ) average of ࢚ࢄ between two events, ࢀ૙ ൌ ૙ and ࢀ૚

Any time average!
1. Avg. Throughput 
2. Avg. Customer
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Time average of ࢚ࢄ
average of ࢚ࢄ between ࢀ૙ ൌ ૙ and ࢀ૚



3. Other Palm Calculus Formulae

31

Rather than ૚
૛ࣅ

(in line with our intuition) 

Recall

ࢆ (current interval) is heavier than ࢀ ൌ ૚ࢀ െ ૙ࢀ (inter-arrival times)



The larger the interval is, 
the more you are likely to fall there
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ࢆ ࢚ ൌ ାࢀ ࢚ െ ሻ࢚ሺିࢀ : duration of current interval

Density	of	ܼ,	current	interval,	at	ܼ ൌ ݏ is	proportional	to

In	other	words,	the	probability	that	you	fall	within	an	interval	of	size	ݏ
is	proportional	to	ݏ times	the	probability	density	function	of	the	
intervals	of	the	point	process.

You	are	likely	to	fall	in	larger	intervals.



Joe’s Waiting Time

ܧ ܺ ݐ ൌ ఒ
ଶ
଴ܧ ଵܶ

ଶ ൌ ఒ
ଶ
଴ܧ ଵܶ

ଶ ൅ ఒ
ଶ
var଴ ଵܶ

mean	waiting	time	ൌ ଵ
ଶ
଴ܧ ଵܶ ൅ ఒ

ଶ
var଴ ଵܶ
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0.5 ൈ	mean time between buses
system’s viewpoint

penalty due to variability

Residual 
time

Elapsed 
time

Recall



Feller’s Paradox

Time average of  inter-arrival time ࢀ૚ െ ૙ࢀ

penalty

34



We encountered Feller’s Paradox Already
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The larger the interval is, 
the more you are likely to fall there

The bigger the flow is, 
the more packets you are likely to sample from the flow
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For a Poisson process, what is the mean 
length of an interval ?

duration of current interval



Miyazawa’s Rate Conservation Law

37

Càdlàg function Jump ups and downs by point process 

continuous 
part

discontinuous
jumps

௡ܶ ൑ ݐ
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Taking differentiation & 
expectation of the 

previous equation yields: Palm inversion formula



From Miyazawa to Palm
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Roughly speaking,	Palm	is	a	special	case	of	Miyazawa:
Let	us	first	define:

ܺ ݐ ൌ න ܻ
శ் ௧

௧
ݏ ݏ݀

Then	you	have	ܺᇱ ݐ ൌ െܻሺݐሻ and	 ଴ܻష ൌ 0 since	ܶା 0ି ൌ ଴ܶ.	Hence:

ܧ ܺᇱሺ0ሻ ൌ െܧ ܻ 0 ൌ െܧߣ଴ Δܺ 0 ൌ െܧߣ଴ න ܻ ݏ ݏ݀
భ்

଴
Palm Inversion Formula

Δܺ ௡ܶ ൌ න ܻ ݏ ݏ݀
೙்శభ

೙்

Miyazawa: Event average of jumps is counteracted by its right-hand side derivative.
Palm: Time average is equivalent to its average over one interval.
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Campbell’s Formula

Shot	Noise Model:	customer	݊ adds	an	arbitrarily	dispersed load	
݄ሺݐ െ ௡ܶ, ܼ௡ሻ where	ܼ௡ is	some	random attribute	and	 ௡ܶ is	arrival	time

Trivial	example:	Throughputs	of	TCP	flows,	ܮ ൌ ܸߣ with	
ܮ =	bits	per	second,	ܸ =	total	bits	per	flow	and	ߣ=	flows	per	sec
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t

Total load

T1 T2 T3
cf. instantaneous ones so far

Little’s Law is merely an immediate consequence of Campbell’s Formula.

Derivation is quite intuitive: 
Define ࡸത ൌ ࡱ ′ࢄ ࢚ where ࢄ ࢚ is the integration of 

remaining load over time and apply Miyazawa 



Little’s Formula
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t

Total load

T1 T2 T3

Try to conceive:
Response time of a customer in stationary 

systems can be regarded as a dispersed load.

Integral of which becomes ‘response time’

Apply Campbell’s Formula to the time average ࡺ ࢚ ൌ ∑ ૚ ࢔࢔ࡾା࢔ࢀழ࢚ஸ࢔ࢀ .

Events: 
customer arrivals



Dispersed	load	in	Campbell’s	Formula
Coined	term	for	a	generalized	or	reinterpreted version	of	“jump”
On	arrival	of	a	customer,	the	entire	load	dispersed over	her	lifetime	can be	
expressed	as	a	jump	at	her	arrival.
Mathematically	feasible:	only	stationarity!	(cf.,	ܼ௡ ൌ ܴ௡ in	Little’s	Formula)	

Contributions of	Palm	Calculus
Extension of	time	average	(or	event	average	expression)
An	edifice	of	notations – mathematical	condensation/compactification
Concise	rephrasing	indeed	helps	clarify how	you	think	and	view	a	system

High‐level Recap
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All these theorems essentially 
implies conservation:

Event average of jumps must be 
counteracted by its time average derivative.
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4. PASTA
There	is	an	important	case	where	Event	average	=	Time	average
“Poisson	Arrivals	See	Time	Averages”

More	exactly,	it	should	be:	
Poisson	Arrivals	independent	of	simulation	state	See	Time	Averages

A simplified version of which is 
“(Homogeneous) Poisson process”
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Service time depends on ࢔ࢀା૚, i.e., the future arrival! 
Which means all arrival events depend on the system.
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∵PASTA

ൌP࢖ ࢆ ࢚ ൌ ૙ ൌE ૚ ࢆ ࢚ ୀ૙ ൌ E૙ࣆ න ૚ ࢆ ࢚ ୀ૙

૚ࢀ

૙
࢚ࢊ ൌ E૙ࣆ ૚ࢀ െ ࢇ࢚

Time average

Conditional on the 
event of ARP request 

generation



5. RWP and Freezing Simulations
Modulator	Model	(Supplement	of	mathematical	details	to	Stochastic	Occurrence.)
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૚/ࣅ

Integral of “loss ratio” between two epochs

Roughly, it’s merely a continuous version.



Is the previous simulation stationary ?
Seems	like	a	superfluous	question,	however	there	is	a	difference	in	
viewpoint	between	the	epoch	݊ and	time.

Let	࢔ࡿ be	the	length	of	the	࢔th epoch.
If	there	is	a	stationary	regime,	then	by	the	inversion	formula

so	the	mean	of	ܵ௡ must	be	finite.

This	is	in	fact	sufficient (and	necessary)
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ߣ ൌ
1

׬ ݐ ௌ݂
଴ ݐ ஶݐ݀

଴

൐ 0

Finite expectation of epoch  Stationarity
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Application to RWP



A Random waypoint model that has no 
stationary regime !

Assume	that	at	trip	transitions,	node	speed	is	sampled	
uniformly	on	
Take	 and	

Mean	trip	duration	ൌ	ሺmean	trip	distanceሻ	 ൈ 		

Mean	trip	duration	is	infinite!
Very	often	used	in	a	number	of	research	papers
Speed	decay:	“considered	harmful”	[YLN03]

It	took	a	couple	of	decades for	us	to	be	enlightened.
Exclusion	of	zero	speed,	e.g.,	 0, maxݒ ,	still	results	in	
infinite	mean	drip	duration

50

1
maxݒ

න 	
ݒ݀
ݒ ൌ ൅∞

௩max

଴

[YLN03] J. Yoon, M. Liu, and B. Noble, “Random Waypoint Considered Harmful”, IEEE Infocom, 2003.



What happens when the model does not 
have a stationary regime ?

When	ݒ୫୧୬ ൌ 0,	the	simulation	becomes	old.
Also,	the	sample	average	speed	decays	to	0.

You may want to marginalize this finding as a mathematical trivia. However, if you think hard, it’s 
not in line with your intuition because exclusion of ࢜min ൌ ૙ does not mitigate the situation.



Stationary Distribution of Speed
(For model with stationary regime)

Easy to analyze with Palm theory. 
Wish if they had understood it through the lens of Palm theory!

Event Average Time Average



Closed Form 
Assume	a	stationary	regime	exists	and	simulation	is	run	long	enough
Apply	inversion	formula and	obtain	distribution	of	instantaneous	speed	V(t)

Time average of a function of ࢂሺ࢚ሻ

࡯

“Real” distribution of ࢂሺ࢚ሻ is 
lighter-tailed than its Palm version.



Removing Transient Matters

Random waypoint

Static

A	(true)	example:	Compare	impact	of	
mobility	on	a	protocol:

Experimenter	places	nodes	
uniformly	for	static	case,	according	
to	random	waypoint	for	mobile	case
Finds	that	static	is	better

Q. Find	the	bug	!	

A. In	the	mobile	case,	the	nodes	are	
more	often	towards	the	center,	
distance	between	nodes	is	shorter,	
performance	is	better
The	comparison	is	flawed.	Should	use	
for	static	case	the	same	distribution	of	
node	location	as	random	waypoint.

54
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Is	it	possible	to	have	the	time	distribution (as	opposed	to	Palm	distribution)	
of	speed	uniformly	distributed	in	ሾ0, maxሿݒ ?

Curiosity



6. Application to Throughput Analysis
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Techniques	for	Throughput	Analysis
Renewal	Reward	Theorem	

(also	applicable	to	Markov	chains)
Palm	Inversion	Formula

Renewal	Reward	Theorem
Observations	or	metrics	(a.k.a.	‘Rewards’)	
௡ܹ are	independent	and	identically	

distributed (iid)
Inter‐transition	times	(a.k.a.	‘Renewals’)	
ܵ௡ are	independent	and	identically	
distributed (iid)

Palm	Inversion	Formula
Observations	or	metrics	ܺ௧,	and	inter‐
transition	times	 ௡ܶ െ ௡ܶିଵ are	only	
required	to	be	jointly	stationary
All	kinds	of	dependencies	are	allowed.



Throughput Formula in IEEE 802.11 MAC
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଴ܶ ଵܶ ଶܶ ଷܶ ସܶ ହܶ ଺ܶ ⋯Event Clock

Data processed 
in each interval

The	time	intervals	during	which	the	node	(of	interest)	remains	in	each	of	the	four	
states,	(i)	idle	channel;	(ii)	channel	occupied	by	a	successful	transmission	of	the	
node;	(iii)	channel	occupied	by	a	collision	of	the	node;	(iv)	busy	channel	due	to	
activity	of	other	nodes	are	respectively	denoted	by:

,ߪ ௦ܶ, ௖ܶ , ௕ܶ
The	probabilities	that	(i)	the	node	sends	out	a	packet	after	an	idle	slot;	(ii)	a	
transmission	of	the	node	is	not	successful;	(iii)	the	channel	becomes	busy	after	an	
idle	slot	due	to	activity	of	other	nodes	are	respectively	denoted	by:

߬, ,݌ ܾ
With complicated 

probability distributions



Throughput Formula in IEEE 802.11 MAC
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By Palm Inversion formula

[GSK08] M. Garetto, T. Salonidis, E. Knightly, “Modeling Per-flow Throughput and Capturing Starvation in CSMA 
Multi-hop Wirelss Networks”, IEEE/ACM Trans. Networking, 2008.

଴ܶ ଵܶ ଶܶ ଷܶ ସܶ ହܶ ଺ܶ ⋯Event Clock

Data processed 
in each interval



Throughput Formula in IR‐UWB Networks
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[MER09] R. Merz and J.-Y. Le Boudec, “Performance Evaluation of Impulse Radio UWB Networks Using 
Common or Private Acquisition Preambles”, IEEE Trans. Mobile Computing, 2009.

Correct	packet	reception	in	IR‐UWB	
(Impulse	Radio	Ultra‐wideband)	
networks	

Packet	detection
Timing	acquisition
Retransmissions

Saturation throughput in packets per second

Palm calculus gets rid of exponential inter-transition time assumption in Markov chains.



Peppering Your Formal Analysis
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Energy‐efficient	Wi‐Fi	sensing	algorithms	for	an	arbitrary	inter‐AP	time	distribution

Objective:	Minimize	energy	for	sensing	( ଵܶ, ଶܶ,…)	plus	contact	loos	time	(ܵ)	
Residual	time	until	the	next	AP ܫ) ݐ is	duration	of	current	interval):

E ܵ ൌ
1
2 E ܫ ݐ ൅

ூߪ ௧
ଶ

E ܫ ݐ
[JEO13] J. Jeong, Y. Yi, J. Cho, D. Eun and S. Chong, “Wi-Fi Sensing: Should Mobiles Sleep Longer As They Age?”, 

IEEE Infocom, 2013.



Conclusions
A	metric	should	specify	the	sampling	method
Different	sampling	methods	may	give	very	different	values

Palm	calculus	contains	a	few	important	formulas

Markov	chain	model	can	be	generalized to	a	Palm	version,	
hence	arbitrary	inter‐transition	time	distribution

Yet	the	most	rational	stance	is	to	view	Palm	as	a	solid	
intermediary and	mathematical	language	for	advanced	skills.


