Queuing Theory

More Than a Primer




All You Need to Know About Queuing Theory

B Queuing is essential to understanding the behaviour of complex computer
and communication systems

B [n depth analysis of queuing systems is hard
B Fortunately, the most important results are easy

B We will study only simple concepts



1. Deterministic Queuing

It 1s quite plausibly

B Easy but powerful deterministic
B Applies to deterministic and transient A(T) A (T) D(T)
analysis — S — S' —»

B Example: playback buffer sizing

Internet incurs
delay variation

EXAMPLE 8.1: PLAYOUT BUFFER. Consider a packet switched network that carries bits of
information from a source with a constant bit rate » (Figure 8.2) as is the case for example, with
circuit emulation. We have a first system S, the network, with input function A(¢) = rt. The network
imposes some variable delay, because of queuing points, therefore the output A’() does not have
a constant rate ». What can be done to re-create a constant bit stream ? A standard mechanism
is to smooth the delay variation in a playout buffer. It operates as follows. When the first bit of data
arrives, at time d(0), itis stored in the buffer until some initial delay has elapsed. Then the buffer is
served at a constant rate » whenever it is not empty. This gives us a second system &', with input
A’() and output D(). What initial delay should we take ?



integral of the

Use Of Cu m u Iatlve Fu nCtlonS arrival process
A(t) input function 1s the amount of work that arrives into the system in the time interval
0,1
[D(t]] output function is the amount of work done in the time interval [0, #]
Q(t) := A(t) — D(t) 1s the backlog (unfinished work) at time ¢. Undone work
Assume that there 1s some time ¢, < 0 at which A(t,) = D(t,) = 0. We interpret ¢, as an
instant at which the system is empty.
Let Q(t) := A(t) — D{t). we interpret ()(¢) as the backlog (unfinished work) at time ¢.
e There 1s no loss of work.

Also define
dit)=min{u = 0: A(t) < D(t+u)}

The FIFO assumption means that d(¢) is the response time for a hypothetical atom of work that
would arrive at time ¢,

D(*)
response time
A(t) A(t) _ D(¥)
Q('I') —» S —> i —>
backlog
Time
>




Solution of Playback Delay Pb

»

' bits

d(0) - A d(0) d(0)+ A

around d(0)
The second part of Figure 8.2 shows that if the variable_part of the network delay (called delay

jitter) is bounded by some number A, then the output A’(¢) is bounded by the two lines (D1)
and (D2). Let the output D(t) of the playout buffer be the function represented by (D2), namely
D(t) = 1t — d(0) — A) This means that we read data from the playout buffer at a constant rate ,
starting at time d(0) + A. The fact that A’() lies above (D2) means that there is never underflow.
Thus the playout buffer should delay the first bit of data by an amount equal to A, a bound on

delay jitter.

QUESTION 8.1.1. What is the required plavout buffer size ? !
A. 2rA worstcase: A'(t) suddenly increases by 2rA.



Application of Deterministic Queuing

B Systems necessitating deterministic guarantees
B System dominated by deterministic elements with possible stochasticity

Smart-grid system

A(t)

>

| «—D(t)
A,(t) A,(t)
Grid A )battery ’ Home

B Electricity outage is a catastrophe!
» Must: to provide a (hard) deterministic guarantee for A, (t) + A5(t) = D(¢t).
» The best parts of processes are deterministic with sizable stochastic elements.



2. Operational Laws

THEOREM 8.2.2 (Operational Law). Consider a stationary system that is visited by a flow of cus-

tomers (for a formal definition, see Theorem 7.3.4). \
event-based ﬂ

o [Little] . s time-based
AR=N

where \ is the expected number of customers arriving per second, R is the expected response
Llime seen by an arbitrary customer and N is the expected number of customers observed in
the system an arbitrary time

B [ntuition: Likening the response time of each customer to the payment
» Say every customer pays one SEK per minute present: time=money
» Payoff per customer = R (SEK)
» Rate at which we receive money = N (SEK/min)
» In average A (/min) customers arrive per minute, * N = A X R



Littleneness of Little in the vast sea of Palm

B Little’s Law is a tiny subset of Palm Calculus Published in 1983

/ f (ext. for Cadlag) \

(lemma for dispersed arrival load) \‘x

— Little’s Law

(lemma for the case load is no. of customers)

\\ . - /

B Which is why we first treat Little’s Formula separately

B Grasping these theorems will be enormously beneficial for your research
» Rather than too well-known boring formulae of M/G/1



Little Again:
Most Abstract Sketch of Proof of Little’s Law

B Consider a simulation where you measure R and N. You use two counters
responseT imeCtr and queueLengthCtr. Atend of simulation,
estimate

R = responseTimeCtr / NbCust
N =queueLengthCtr / T
where NbCust = number of customers served and T=simulation duration.

B Initially, both responseTimeCtr=0 and queueLengthCtr=0.

B Q: When an arrival or departure event occurs, how are both counters
updated?
A: queuelLengthCtr += (t ., - t,;4) * q(t,q) where q(t ) is the
number of customers in queue just before the event.

responseTimeCtr += (t., - t,a) * q(t,q)
thus responseTimeCtr == queueLengtthlm‘h\

Coming up with this expression is very
N =Rx NbcuSt/ T ) roughly equivalent to proving the theorems

B . NbCllSt/T is our estimator of A : Campbell’s Formula, Little’s Law




Other Operational Laws

A : throughput as well as arrival rate

o [Throughput] The throughput, defined as the expected number of arrivals per second, is

also equal to the inverse of the expected time between arrivals.
o [Utilization Law] If the system is a single server queue with arrival rate \ and expected

service time S
P(server busy) = p .=

time-based / ; event-based

Ifitis a S-server queue:
E(number of busy servers) = sp

with p 1= Tg

Be astute: Utilization Law is nothing but an immediate consequence of Little’s Law!

A (arrival rate) - § (exp. response time during service) := p (exp. no. of customers in service)

10



Little’s Law covers all stationary systems
:The Interactive User Model

thinking .
or waiting processing
Z R

-

r'y
A
A 4

THEOREM 8.2.3 (Interactive User).

MZ+R)=n

A Service
Center

00000

n users

EXAMPLE 8.4: SERVICE DESK. A car rental company in a large airport has 10 service attendants.
Every attendant prepares transactions on its PC and, once completed, send them to the database
server. The software monitor finds the following averages: one transaction every 5 seconds,

response time =2 s. _ o yl
What is the average think time?

48 seconds

Why?
X (Z + 2 sec) =10

5 sec
11



Network Laws

M

}L J node k L

How customers are split?
o [Forced Flows] \;, = AVi, where \; is the expected number of customers arriving per
second at node k and V), is the e\'gecred number of visits to node k by an arbitrary customer
e N . .
during its stay in the network. per customer ~—
e [Total Response Time] Let K [resp. Ri] be the expected total response time R seen by an
arbitrary customer [resp. by an arbitrary visit to node k.

Total response time interms of 5 5 1
response times at nodes R= Z Ry Vi

EXAMPLE 8.5: Transactions on a database server access the CPU, disk A and disk B (Figure 8.5).
Tlgﬁ statistics are: Vopy = 102,V = 30,Vg = 68 and RCPU — 0.192 s, RA = 0.101 s, RB =
0 6 s Departure

The average response time for a transaction is 23.7 s.

Arrival —

+R=0.192 X102+ 0.101 X 30 + 0.016 X 68 = 23.702 @

12



Bottleneck Analysis
: Useful for Queueing Networks

B Apply the following two bounds 0 Example
1. waiting time is > 0 \ n
2. aserver utilization is bounded by 1  Z+ 3. ViR,
Little’s Law to the entire network
(1) A < — 71
- Z‘T'Zk T'fksk
8 e Little’s Law to each server
B -- 1
2) A2 oo w
nusers
in think time

Figure 8.5: Network example used to illustrate bottleneck analysis. n attendants serve customers. Each
transaction uses CPU, disk A or disk B. Av. numbers of visits per transaction: VCPU = 102,V =30,Vg =

17; av. service time per transaction: Ssp; = 0.0045, Sp = 0.0115, Sg = 0.013 5; think time Z = 1.

13



Throughput Bounds

v 2
‘ /(Z+XV,.S)
throughput 1 bound

.-"'J
-
-
-
a"’H

2nd hound lf(\'{& SA) «

'

2ipound  1/(Vepy Scpv)

Under light load,
CPU is the bottleneck.

11

Figure 8.6: Throughput bound (BO) obtained by bottleneck analysis for the system in Figure 8.5, as a
function of the number of users n. B1, B2: typical throughput values for a system without [resp. with]
congestion collapse.
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Bottlenecks

or minimizes 1/V .S},
A node k that maximizes V. S}, is called. in this model, a bottleneck. To see why a bottleneck
determines the performance. consider improving the system by decreasing the value of V.S (by
reducing the number of times the resource is used. or by replacing the resource by a faster one). If
k is not a bottleneck. this does not affect asymptote on Figure 8.6. and only marginally increases

the slope of the bound at the origin, unlike if k£ 1s a bottleneck. On Figure 8.6, we see that the
bottleneck is the CPU.

QUESTION 8.2.2. What happens to the example of Figure 8.5 if the CPU processing time is reduced
from 0.004 to 0.003 ? to 0.002 ? *

\J\/

Bottleneck change = No significant change

4The disk A becomes the bottleneck. Decreasing the CPU processing time to 0.002 does not improve the bound
significantly.

15



DASSA

8.2.1 DEPARTURES AND ARRIVALS SEE SAME AVERAGES (DASSA)

n-th inter-arrival time N-th inter-departure time

THEOREM 8.2.1. (DASSA) Confider a system where individyal customers come in and out. As-
sume that the arrival process A,, and the departure process ,, are stationary point processes, and
that they have no point in common (thus there are no simultaneous arrivals or departures).

Let N(t) € N be the number of customers present in the system at time t. Assume that N(t), A,
and D,, are jointly stationary (see Section 7.2).

Then the probability distribution of N (t) sampled just before an arrival is equal to the probability
distribution of N (t) sampled just after a departure.

B Intuition: within one busy period, to every departure, we can associate one
arrival with same number of customers left behind.

Example
N(t) just before arrivals: 0,1,2,2,3
|_| N(t) just after departures: 2,3,2,1,0

16



Recapitulation

(ext. for Cadlag)
- . 7 ™\
Campbell’s Formula
/ (lemma E:r dispersed arrival load)

Little’s Law
[ (lemma for the case load is no. of customers) \

O ~ /

B Little’s Law permeates through several key techniques

» Applicable to all imaginable stationary systems
» Utilization Law

» Bottleneck Analysis
» See Theorem 7.3.4 to appreciate its generality

B Combination of DASSA and PASTA (to be discussed later)

» Oftentimes provides best part of necessary insights for analysis
» See Example 8.3

17



3. Single Server Queue
Kendall’s Notation

The classical notation for a queue, in its simplest form, is of the type A/S/B/ K where:

e A (character string) describes the type of arrival process: G stands for the most general
arrival process, A =GI means that the arrival process 1s a point process with 11d interarrival
times, M is for a Poisson arrival process.

e S (character string) describes the type of service process: G for the most general service
process, S =GI means that the service times are 11d and independent of the arrival process,
S =M 1s the special case of GI with exponential service times, S =D with constant service

times.
e B and /< are integers repr l wumber of servers and the capacity (maximum number

of customers allowed 1n the system, queued + in service). When /X = oo, 1t may be omitted.
e Let A, be the arrival time and S,, the service time of the nth customer, labeled in order
of arrival. We assume that the sequence (A, S, ) 1s stationary with respect to the index n
and that 1t can be interpreted as a stationary marked point process (i.e. the expectation of
Ap+1 — Ay 1s finite, see Theorem 7.4.1).
e The service discipline 1s by default FIFO, otherwise it 1s mentioned explicitly.

18



Stationarity of Single Server Queue

THEOREM 8.3.1. (Loynes [3, Thm 2.1.1])
If p < 1 the backlog process has a unique stationary regime. In the stationary regime, the queue

empties infinitely often.
Furthermore, for any initial condition, the waiting time of the nth customer converges in distribu-
tion as n — o0 to the waiting time for an arbitrary customer computed in the stationary regime.

If p > 1 the backlog process has no stationary regime. Well, single server queue is
expectably stationary for p < 1.

QUESTION 8.3.1. Consider a queuing system of the form G/G/1 where the service time S, of

customer n is equal to the inter-arrival time A, 1 — A,. What are the values of p and of the

expected number of customers N ? ° S~ arrival time of n-th customer

N\ = -% thus p = 1. There is always exactly one customer in the queue. Thus N = 1.

19



M/GI/1 QUEUE Stability 1s for p < 1
¢ — 2 7]
Avg. no. of customers in system N = #n with k = L (1 fi)
ve. no. of cu rs in sy ) T, TP K=35|1+= | time-based
Avg. no. of customers in waiting room N, = f . CoV? I
Avg. response time R=30 1’3 (1—r))
- 3y —F - event-based
Avg. waiting time \ W = Jf__p |
Stability 1s for p < 1 for all the examples below.
_ S(1-p(1-x)) SA-p+pr) pSk _ __
= _S(-p ) _ p+pr) _ pSK o o

1-p 1-p 1p

QUESTION 8.3.4. Which of the quantities N, N,,, R, W are Palm expectations ? °

QR, W
mnemonic:

customer =2 time-based
time = event-based (Palm)

20



M/M/1/K QUEUE  Stability 1s for any p.

P(N = k) = (1 - p)pLjocrer)
IRt

PO( arriving customer is discarded ) = P(N = K)

max. queue size is K

2



Multiple Server Queue

no. of servers is S

M/M/s QUEUE Stability is for p < 1. Let

Iy N G
U= G andp—l_ "
D im0 h P
*_T = % + sp
U
N 1§’3
__p
= i +5
I P
W= s{1—p)

r = sV =) + (1= p)?
¢ ow =15vpe(l+p—pp)

(sp)* .

P(;\v:k): nak!k lfo"_i:"’u':_is

=it k> s

"'?_1 - Ef;é (Bﬁji + EE(Slpjp]

]PJO(H; <r)=1- pE—s[l—p]E

P(all servers busy) = P(N > s) = p (Erlang-C formula)

“

M/M/S/S QUEUE (Erlang Loss Formula) Stability is for any p. Finite buffer
: | ; implies stability.
( P(N = k) =??1{ﬂ5kis}% p y
P’ ( arriving customeris discarded ) = P(N = s) Erlang-B formula
' suchthat > ) P(N =i)=1

22



Insight 1/2: Non Linearity of Response Time

In fact, response time oo —p

Mean Response Time 1In seconds

Requests per Second
2 4 6 8 10

Figure 8.7: Average response time versus requests per second for a database server modeled as M/GI/1
gueue. The time needed to process a request is 0.1 second and its standard deviation is estimated to 0.03.
The maximum load that can be served if an average response time of 0.5 second is considered acceptable

is 8.8 requests per second. If the traffic volume increases by 10%, the response time becomes 1.75, thus
is multiplied by a factor of 3.5.

23



Insight 2/2: Impact of Variability

Mean Response Time
M/Hyperexponential/l

14;
12
10
81 M/M/1
N —
ol
Utilization

Figure 8.8: Mean response time for M/GI/1 queue, relative to service time, for different values of coefficient
of variation CoVg = = from top to bottom: CoVg = 1.4, CoVs = 1 (M/M/1 queue) and CoVg = 0 (M/D/1
gueue).

Variability of service time has an adverse effect on response time.
24



Confidence Interval of Delay Statistics

B Super-linearity is the quintessential property of delay performance
» in almost all queueing networks (except closed ones)

B Delay averages in ALL server queues with infinite buffer so far take:

Mean Response Time in seconds

________,_,—”

Requests per Second
2 4 [3 8 10

B Yetanother alternative to compute confidence interval: Take logarithm!
» Note: The arrival rate should be carefully chosen for stability.

B How to justify the logarithmic transformation?

» Claim 1: By appealing to queueing theory, since delay performance is
inherently super-linear (steeper than exponential), the transformation is
necessary to process them.

» Claim 2: Perceived satisfaction level of human being with respect to delay
performance is logarithmic, rightfully on which scale, you should compute
confidence intervals.

25



Optimal Sharing

B Compare the two in terms of e e L

» Response time ) System 2

» Capacity .
: System 1

System 1 System 2 ;

- 2

" O B ¥ S (O It

> \ 0 3 0 2 0 € 08 Utilization
e.g., M/M/2 e.g., two parallel M/M/1

(inexpressible by Kendall’s notation)

We see that for very small loads, the systems are similar, as expected. In contrast,
for large loads, the response time for the first system is much better, with a ratio equal
to 1 + p. For example, for p = 0.5, the second system has a response time 1.5 times
larger. However, the capacity is the same for both systems.

Load sharing leads to the decrease of response time, but the capacity remains unchanged.

Why?: Throughput Operational Law

26



The Processor Sharing Queue (M/Gl/1/PS)

Optimal Sharing: Customers are shared by multiple servers.
Processor Sharing Queue: The server is shared by all customers.

B Models: processors, network links

This is a special case of the single server queue, with the Processor Sharing (PS) service dis-
cipline instead of FIFO. Here we assume that the server divides itself equally into all present
customers; this is an idealization when 0 — 0 of the round robin service discipline, where the
server allocates times slices of duration o0 in turn to each present customer. If there are /V customers
in the queue, the residual service time for each of them decreases at a rate 1//N. This is also called
egalitarian processor sharing. Loynes’s theorem applies and the system is stable when p < 1.

B Insensitivity: whatever the service requirements:
P (N(t) — ]{) — (1 — p)pk Depends only on the mean

In general M/GI/1 queues, the above expression depend not only on the means but also on the variances (i.e., CoV).

B Egalitarianism (PS implies customers with large service times wait longer)

Xr Large packets
EO (RO ‘Sg — ZE) —
L—=p
the average response time R, of an arbitrary customer, conditional to its service time .S
packet size

27



M PS

PS versus FIFO -
Negligible for

p=1

l' p S

=4 —

- . FIFO E" (R |SO = T)
p 1 =0

0 ~
E (R,D bq]. — ;L) =
1 —
Mean Response Time
# =01 *x =1 *x =10
120 120 120 '
—PS
- - -FIFO
100 100 100
PS benefits customers PS penalizes customers
aoLWith small service times. ;4| The same aol With large service times.
||||
I|
601 601 601 /"
|IIllI
A0} A0F a0f /
20} | S0k I ol /
% ~os5 % o5 i “% 0.5 1
P P
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4. A Case Study

Dagart oy Ty,

B Impact of capacity increase ?
B Optimal Capacity ?

sSyries pieles .

7 & N x|
A \\\ A

For non queuing theorists, it is far more lmportant to know more methodologles and be able to apply them.
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Methodology

We want to verify the advertisement of a ski resort:
“Capacity doubled, waiting time halved!”

Goal: evaluate impact of doubling the capacity of a skilift on the response time.

Factors: ¢ = capacity of skilift in people per second.

Metrics: response time. A more detailed reflection leads to considering the waiting time, as
this is the one that affects customer’s perception.

Load: we consider two load models : (1) heavy burst of arrival (after a train or a bus arrives
at the skilift) (2) peak hour stationary regime

30



4.1. Deterministic Analysis

Waiting room

*

Capacity
C=>2C

Figure 8.21: Queuing Model of Skilift
d

F | bu—s max

Worst case
waiting time halves

B

A burst of skiers, B,
arrives at time 0.
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Deterministic Analysis

d

; Worst case dela
We ignore + bits max y

waiting time —]

Waiting room L d,../2

F

. ( : ) B
> Lift
@ (t)=2ct A

Cumbplative Cu tive
arrival|function departure function

olf)=ct

Figure 8.21: Queuing Model of Skilift

Burst arrivals of B at t=0 time R

number of skiers that entered|the skilift in |0, #]. Thus the delay d(?) is the waiting time, excluding
the time spent on the skilift. We also have 3(#) = ct, with ¢ = the capacity of the skilift, in skiers
per second. We have A(t) = B for t > 0. Figure 8.22 shows that doubling the capacity does
divide the worst case waiting time by two.

[s the average waiting time also divided by 2 7 To answer this question we take the viewpoint
of an arbitrary customer. We see that the waiting time seen by a customer arriving as number ¥

(0 < y < B) is linear in y, thus the average waiting time is equal to the worst case response time
divided by a 2. Here too, doubling the capacity divides the average waiting time by 2.

QUESTION 8.9.1. In reality, even if the arrival of skiers is bursty, it may not be as simultaneous as
we just described. We can account for this by taking A(t) = ket for 0 < t <ty and A(t) = A(ty)
fort > tg, with k > 1. What is now the conclusion ? ° Draw the function A(t)=kct on the graph!



4.2 Single Queue Analysis

B Assume no feedback loop:

_'_._._._'_._._'_'_._,_.——"‘

2 4 e 2 10

Assume now we are observing the system in the middle of the peak hour. We can model the gate as
a single queue, with one or perhaps several servers. It is difficult to give a more accurate statement
about the arrival process without performing actual measurements. Whatever the details, doubling
the capacity halves the utilization factor p. A major pattern of single queue systems is the non
linearity of response time, as in Figure 8.7.

The effect on response time depends on where we stood on the curve. If the system was close to
saturation, as was probably the case, the effect is a large reduction of the average waiting time,

probably much larger than 2. With this model, doubling the capacity decreases the waiting time
by more than two.

This is because of the super-linearity of the response time w.r.t. to the utilization factor in M/GI/1.

33



4.3 Operational Analysis

B A refined model, with circulating users, with feedback

A variant of the ‘Interactive User Model’. A closed queuing network with mean number of customers N

Waiting room

B Apply Bottleneck Analysis ( = Operational Analysis )

{ AW4+S+2Z)=N

y

'waiting time

o Z/NY)

1/c
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Cross (+) : Analytical Solution (exact solution from the queuing network model, so-called MVA)

80

waiting

time
70

60

50

40

30

20

10

0O 002 0.04 0.06 0.08 0.1

1/c

Figure 8.23: Waiting time in minutes for this model versus <, where c is skilift capacity (in people per minute).
The solid line is the approximation by bottleneck analy3|s The crosses are obtained by analytical solution
of the queuing network model in Figure 8.24, with the following parameters: population size K = 800 skiers;
number of servers at gate B € {1,2,...7,8}; service time at gate S € {2.5. 5, 10, 20} seconds; time between
visits to the gate Z = 10 minutes.
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This strongly suggests that the function f that maps % to the average response time 1s convex; the
graph of a convex function is below its chords, thus
M+ (¢)
/(a2)<

"+ convexity of f()

=) <5/)

f(QC

and doubling the capacity does reduce the waiting time by more than 2.

We also see that a key value 1s ¢* = ﬂ Note that 1s the rate at which one customer would arrive

at the gate if there would be no qué‘umg thus c* 1s the rate of customers if the gate would not delay
them. If ¢ 1s much larger than c* thé waiting time 1s small, so doubling the capacity has little effect

anyhow. For ¢ much smaller than (5‘ the waiting time increa n almost constant rate. Thus
we should target ¢ of the order of ¢* ,t‘wm other words, we should match the capacity. of the gate to

tB) N
the “natural” rate c* N wrt. 1/c

Vv, N-1

QUESTION 8.9.2. Assume the system is highly congested before doubling the capacity. What is
the reduction in waiting time after doubling capacity ? *°

20For a highly congested system (2¢ much smaller than ¢*) the offset at 0 becomes negligible and the response time
is almost linear in 1/¢. Thus doubling the capacity does reduce the waiting time by 2, roughly speaking — but the
system is still congested after doubling the capacity.
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5. Networks of Queues: Stability

B Queuing networks are frequently used models.
B The stability issue may, in general, be a hard one.

B Necessary condition for stability (Natural Condition)
server utilization < 1

at every queue

B All closed queuing networks are stable unconditionally.
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Instability Examples

IIE Transactions (1997) 29, 213-219

Simulation studies of multiclass queueing networks

J. BANKS and J. G. DAI

Station | Station 2
A=1
"?.1 m2
ms3 L
)
My

Fig. 1. An example of reentrant lines.

Poisson arrivals ; jobs go
through stations 1,2,1,2,1
then leave

Ajob arrives as type 1, then
becomes 2, then 3 etc.

Exponential, independent
service times with mean m;,
Priority scheduling

» Station1:5>3>1

» Station 2: 2>4

Q: What is the natural

stability condition ?

Ar A(my+mg+mg)<1
A(m,+my) <lI
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Station 1 Station 2
A=1
my - na
ms 1 my
ms

Fig. 1. An example of reentrant lines.

m =1
m;=mz;=m,=0.1
m,=mg= 0.6

M Utilization factors

» Station 1: 0.8
» Station 2: 0.7

B Networkis unstable!

W IfA(m+..+m:)<1I
network is stable;
why?

a0

250

Quaus lergth

T
‘slation-1* —

450
A¢

350

Vi

QUELS largih

20 +

150 | /l

1/ f'nf

"l /

1

o Mﬂﬂf lll In Il 1 1 L4
D] a0 i 600 At 00
time

Fig. 2. Job size plots at stations | and 2.
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Bramson’s Example 1: A Simple FIFO Network

The Annals of Applied Probability
1994, Vol. 4, No. 2, 414-431

INSTABILITY OF FIFO QUEUEING NETWORKS, | . . |
AB,--- B A
J times
B Poisson arrivals; jobs go through
stations A, B, B, ..., B, A then leave

B Exponential, independent service

By MAURY BRAMSON!

Vv YV

Step 1 ‘ ‘ ‘ ‘ A — times but dependent on step
Step 2 » Steps 2 and last: mean is L
» Other steps: meanis S

N

vV

v

‘ ‘ B — B Q: What is the natural stability
condition ?

SepH2 g A A(L+S)<1

Steps 3, ..., J+1 A(J-1D)S+L)<1

Bramson showed: may be

unstable whereas natural stability
condition holds

N

N
u



Bramson’s Example 2

A FIFO Network with Arbitrarily Small Utilization Factor

The Annals of Applied Probability
1994, Vol. 4, No. 3, 693-718

INSTABILITY OF FIFO QUEUEING NETWORKS WITH

QUICK SERVICE TIMES!

By MAURY BRAMSON

1_;.2_} e 23 2 533 5 i 3= o Mmoo S M
11-92— +++ 522 53—> « 53>« 5>5m— - =-m-—-1
S S L S S L S S L S S L

B Utilization factor at every station<4 A S

B Network is unstable for ‘very small utilization’
§<0.01
L<S8
m = floor(-2 (log L )/L)

m queues

2 types of
customers

A = 0.5 each type

routing as
shown,

... = 7 VIisits
FIFO
Exponential
service times,

with mean as
shown
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Take Home Message

B The natural stability condition is necessary but may not be sufficient
» It does not bring about stability in general queueing networks.

B There is a class of networks where this never happens.
» Product Form Queuing Networks
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Product Form Networks

B Customers have a class attribute

B Customers visit stations according to Markov Routing

routing matrix () = (qjjf)

s,8",¢c,c’

B External arrivals, if any, are Poisson

Step 1

YV VYV

1] -

N

—

-~
.
”~

1] &

N

Steps 3, ...,J+1

Step 2

Step J+2

N

A class-c customer leaving station s joins
station s’ as class ¢’ with probability q.,

2 Stations
Class = step, J+2 classes

Can you reduce the number
of classes ?

No. ‘Markov Routing’ does not
remember the step state.

‘Class’ must capture all kinds of ‘state’.
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Chains

B Customers can switch class, but remain in the same chain
We say that two classes ¢, ¢’ are chain equivalent if ¢ = ¢ or if it is possible for a class c-

customer to eventually become a class ¢’ customer, or vice-versa. This defines an equivalence
relation between classes, the equivalence classes are called chains.

CAlZ
MNMaiildisala C oo roas
IVIUILIIJIC JC1I VU1
with Concurrent
Classes of Customers
p,,class 2 Station s=1
MSCCC O3 (11+B1
o
‘. ps,class 3 (:) i
)\J -._.,..._....__.-: R Y ‘r N . -
1 > ® >
p;,class 1 > Q
Class 4 : CAT1 CAT1
e Infinite
ARG erv
) IS
Station s=3 Station s=2

Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.
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Chains may be open or closed

Open chain: with Poisson arrivals. Customers must eventually leave
Closed chain: no arrival, no departure; number of customers is constant
There is no other type of chain than these two.

Closed network has only closed chains.
Open network has only open chains.
Mixed network may have both.
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Components of
Markov Routing Matrix:

a1, 02, A3, Bl

3 Stations

4 classes

1 open chain = Chain 1
1 closed chain = Chain 2

CATZ

pz,_c]ass 2

 Ps,class. 3

—— | @

Aaaléiaal [ 3
i"’ll.llLll)lL JUL VUL
with Concurrent

Classes of Customers
station s=1

MSCCC (13 (11+Bl
>

;\ A
— i

Yy

i’ Ly
B

v

pi,class 1

YyYyvyy

Class 4

Pr

CAT1
ocessor

1 o

CAT1
Infinite

TVEK
L IS

Station s=3 Station s=2

Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.



Visit Rates

of class c at station s
We define the numbers 6 (visit rates) as one solution to

the queuing network equivalent of Z 93: qi, CS + 1/ (8.24)
‘stationary distribution’

S! C.’

If the network is open, this solution is unique and 6¢ can be interpreted'* as the number of arrivals
per time unit of class-c customers at station s. If ¢ belongs to a closed chain, ¢ 1s determined only
up to one multiplicative constant per cham We assume that the array (67), . is one non identically
zero, non negative solution of Eq.(8 24)5 T

\

The constant depends on the total number
of customers in the closed network.

Distinction between routing matrix and visit rate vector:
For each customer, routing matrix decides the probability she transitions to a station
whereas visit rate decides how many customers 1s present in a station.

12This interpretation is valid when the network satisfies the stability condition in Theorem 8.5.1
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Station | Station 2

A=1
My ma
-
msa L
T
s

Fig. 1. An example of reentrant lines.

2 Stations Visit rates

5 classes 01, =0,=0.=6%,=6%,=2A
1 chain 0s. = 0 otherwise

Network is open




( ql,l a1 ql,l . B .
1,1 b 412 b yields:
qQr;3 = Qo ‘ ;
1.1 Class 1: 0} = v&; 07 = 0; 63 0;
{ Q3’3 = a3; 1 o 9 3
1,2 1 2,3 1 3,1 1 Class2: 0; = v (p2+,c3’11 m); 5 = 0; 65 0;
q — : g — s q — 5 ‘
Si’fl h’ 4,4 ’ 4,4 " |Class 3: f); = (p;—l—(upgnwnd“ nl):_ 0% = 0 f)_:f 0;
| 9o = U otherwise Class 4: 0} = L 02 = 1; 03 = 1
into
s s’ s'.s
0. = E 00q.,
s’ ¢!
CATZ
Muttipte-Server
with Concurrent
Classes of Customers
p,,class 2 Station s=1
MSCCC Oy al+Bl
o
. ps,class 3 O .
Rlvy > * >
k .__,,’—3"'5/ (]; S | ‘ | ‘ & >
p;,class 1 — > Q i
T1
Glass 4| g CAT1
gsie il Infinite

with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

&
-

v
-

Station s=3 Station s=2
Figure 8.11: A Simple Product Form queuing network with 2 chains of customers, representing a machine




Constraints on Stations

for ‘Product Form Networks’

B Stations must belong to a restricted catalog of stations
B See Section 8.4 for comprehensive description
B We will give commonly used examples

W Category1
B Example 1: Global Processor Sharing Station
» One server
» Rate of server is shared equally among all customers present

» Service requirements (time) for customers of class c are drawn iid from a
distribution which depends on the class (and the station)

B Example 2: Delay Station (also called as Infinite Server)

» Infinite number of servers (comprises the station)

» Service requirements for customers of class c are drawn iid from a distribution
which depends on the class (and the station)

» No queuing, service time = service requirement = residence time
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B Category 2 (MSCCC station): MSCCC with B servers
» Bservers
» FIFO queuing with constraints
For each class, no. of customers in service is upper bounded.

» Service requirements for customers of class ¢ are drawn iid from an exponential
distribution, independent of the class (but may depend on the station)

B Example 3 : FIFO with B servers
» B servers
» FIFO queuing discipline
» Service requirements for customers of class ¢ are drawn iid from an exponential
distribution, independent of the class (but may depend on the station)

B Examples 1 and 2 are insensitive (to service distribution)
» service time not restricted, but the types of stations are uncommon and, no FIFO

B Example 3 is not (service time must be exponential, same for all)
» FIFO is commonly used queuing discipline
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B Say which network
satisfies the
hypotheses for
product form

A
— —]
I |
claas 3 'l| staalggcs=1 . K\iu o
= p3:i1ass 3 9¥JI ____TTT]_ (:)! %\
i O 1 1] i

:itzﬁhss 1—
Class 4’

sStation s=3

station s=2

B (FIFO, Exp)

serd 1] D ...
| :
_\ Step J+3

/ S‘tL'S’S, S [ 2 5P

-~

C (Prio, Exp)
Station 1 Station 2
A=1
/ = L

“ig. 1. An example of reentrant lines.

Similar to Category 2 but
class-dependent service time

Violation!

Similar to Category 2 but
‘Priority’ queuing discipline

Violation!
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The Product Form Theorem
Natural Stability Condition Finally Holds!

B I[f a network satisfies the «Product Form» conditions given earlier

» The stationary distribution of numbers of customers can be written explicitly
» Itis a product of terms, where each term depends only on the station

» Efficient algorithms exist to compute performance metrics for even very large
networks

» For PS and Delay stations, service time distribution does not matter other
than through its mean (insensitivity)

» The natural stability condition holds

» See Theorem 8.5.4 for the simplest form
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Two Representative Cases

8.3.3 THE PROCESSOR SHARING QUEUE, M/GI/1/PS
—

M/M/B QUEUE

For more specific system, one can say more. A frequently used system is the M/M/B queue, i.e.
the system with Poisson arrivals, B servers, exponential service times and FIFO discipline. The

system can be studied directly by solving for the stationary probability. Here when p < 1 there
is a unique stationary regime, which is also reached asymptotically when we start from arbitrary
initial conditions; for p > 1 there is no stationary regime.

When p < 1 the stationary probability is given by

k
if0<k < B
P(N(t) = k) = { B“‘

e~ k>B
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Conclusions

Be aware of the state-of-the-art and demystify it.

Poisson arrival is reasonable for many problems: Don’t reject it outright!
» M/M/1,M/GI/1, M/G/1/PS and variants have closed forms

Bottleneck analysis and worst case analysis are usually very simple and
often give good insights (far more desirable than nothing)

Queuing networks may be very complex to analyze except if they are
product form! If you manage to adapt your system to a product-form
network with reasonable assumptions, there are plentiful theory.

» For computational aspects (exacerbated by product form per se), see Ch. 8.6.

The most critical limitation of queueing network is the absence of
“conditional branch” between stations.
» How to circumvent this absence?
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