
Queuing Theory
More Than a Primer

1

All You Need to Know About Queuing Theory

Queuing	is	essential	to	understanding	the	behaviour	of	complex	computer	
and	communication	systems
In	depth	analysis	of	queuing	systems	is	hard
Fortunately,	the	most	important	results	are	easy

We	will	study	only	simple	concepts

2

1. Deterministic Queuing
Easy	but	powerful
Applies	to	deterministic	and	transient	
analysis
Example:		playback	buffer	sizing

3

Internet incurs
delay variation

It is quite plausibly
deterministic

Use of Cumulative Functions

4

integral of the
arrival process

Undone work

response time

backlog

Solution of Playback Delay Pb

5

A(t) A’(t) D(t)

time

bits

d(0)d(0) -  d(0) + 

d(t)

A.

around d(0)

worst case: ܣ′ሺݐሻ suddenly increases by 2ݎ∆.

																				

Application of Deterministic Queuing

Systems	necessitating	deterministic	guarantees
System	dominated	by	deterministic	elements	with	possible	stochasticity

Electricity	outage	is	a	catastrophe!
Must:	to	provide	a	(hard)	deterministic	guarantee for	ܣଵ ݐ ൅ ଷܣ ݐ ൒ .ሻݐሺܦ
The	best	parts	of	processes	are	deterministicwith	sizable	stochastic	elements.

6

Smart-grid system

2. Operational Laws

Intuition:
Say	every	customer	pays	one	SEK	per	minute	present:	time=money
Payoff	per	customer	=	ࡾ (SEK)
Rate	at	which	we	receive	money	=	ࡺ (SEK/min)
In	average	ࣅ (/min) customers	arrive	per	minute,	∵ ܰ ൌ ߣ ൈ ܴ

7

time-based
event-based

at

Likening the response time of each customer to the payment

Little’s	Law	is	a	tiny subset	of	Palm	Calculus

Which	is	why	we	first	treat	Little’s	Formula	separately
Grasping	these	theorems	will	be	enormously	beneficial	for	your	research

Rather	than	too	well‐known	boring	formulae	of	M/G/1	

Littleneness of Little in the vast sea of Palm

8

Palm Inversion Formula

Campbell’s Formula
(lemma for dispersed arrival load)

Little’s Law
(lemma for the case load is no. of customers)

Miyazawa’s Rate Conservation Law (ext. for Càdlàg)

Published in 1983

Little Again:
Most Abstract Sketch of Proof of Little’s Law

Consider	a	simulation	where	you	measure	ࡾ and	ࡺ.	You	use	two	counters	
responseTimeCtr and	queueLengthCtr. At	end	of	simulation,	
estimate	

ࡾ = responseTimeCtr /			NbCust
ࡺ =	queueLengthCtr /			T

where	NbCust =	number	of	customers	served	and	T=simulation	duration.

Initially,	both	responseTimeCtr=0 and	queueLengthCtr=0.
Q:	When	an	arrival	or	departure	event	occurs,	how	are	both	counters	
updated?
A:	 queueLengthCtr +=	(tnew ‐ told)	× q(told)	where	q(told)	is	the	

number	of		customers	in	queue	just	before	the	event.
responseTimeCtr +=	(tnew ‐ told)	× q(told)

thus	responseTimeCtr == queueLengthCtr and	thus

ࡺ ࡾ	= x		NbCust/T ;		
∴ NbCust/T is	our	estimator of	ࣅ

9

Coming up with this expression is very
roughly equivalent to proving the theorems

: Campbell’s Formula, Little’s Law

Other Operational Laws

10

ࣅ : throughput as well as arrival rate

Be astute: Utilization Law is nothing but an immediate consequence of Little’s Law!

	rateሻ	ሺarrival	ࣅ ∙ 	serviceሻ	during	time	response	ሺexp.	ഥࡿ	 ≔ serviceሻ	in	customers	of	no.	ሺexp.	࣋	

time-based event-baseds

Little’s Law covers all stationary systems
:The Interactive User Model

1111

What is the average think time?
48 seconds

Why?
૚

૞ sec ൈ ഥࢆ ൅ ૛	sec ൌ ૚૙

thinking
or waiting processing

ࣅ

Network Laws

12

How customers are split?

Total response time in terms of
response times at nodes

∵ ഥࡾ ൌ ૙. ૚ૢ૛ ൈ ૚૙૛ ൅ ૙. ૚૙૚ ൈ ૜૙ ൅ ૙. ૙૚૟ ൈ ૟ૡ ൌ ૛૜. ૠ૙૛

per customer

Bottleneck Analysis
: Useful for Queueing Networks

Apply	the	following	two	bounds
1.
2.

13

 Example

(1)

(2)

Little’s Law to the entire network

Little’s Law to each server

Throughput Bounds

14

2nd bound

2nd bound

1st bound

ࣅ

Under light load,
CPU is the bottleneck.

Bottlenecks

15

or minimizes ૚ ⁄࢑ഥࡿ࢑ࢂ

Bottleneck change No significant change

DASSA

Intuition:		within	one	busy	period,	to	every	departure,	we	can	associate	one	
arrival	with	same	number	of	customers	left	behind.

16

n-th inter-arrival time n-th inter-departure time

Example
N(t) just before arrivals: 0,1,2,2,3

N(t) just after departures: 2,3,2,1,0

Little’s	Law	permeates	through several	key	techniques
Applicable	to	all	imaginable stationary	systems
Utilization	Law
Bottleneck	Analysis
See	Theorem	7.3.4	to	appreciate	its	generality

Combination	of	DASSA	and	PASTA	(to	be	discussed	later)
Oftentimes	provides	best	part	of	necessary	insights	for	analysis
See	Example	8.3

Recapitulation

17

3. Single Server Queue
Kendall’s Notation

18

࡮

19

Well, single server queue is
expectably stationary for ࣋ ൏ ૚.

arrival time of n-th customer

Stationarity of Single Server Queue

20

Avg. no. of customers in system

Avg. no. of customers in waiting room

Avg. response time

Avg. waiting time

CoV2

ഥࡾ ൌ
ഥࡿ ૚ െ ࣋ ૚ െ ࣄ

૚ െ ࣋ ൌ
ഥࡿ ૚ െ ࣋ ൅ ࣄ࣋

૚ െ ࣋ ൌ
ࣄഥࡿ࣋
૚ െ ࣋ ൅ ഥࡿ ൌ ൅ࢃ ഥࡿ

time-based

event-based

mnemonic:
customer  time-based

time  event-based (Palm)

21

max. queue size is K

22

no. of servers is s

Multiple Server Queue

Finite buffer
implies stability.

2 4 6 8 10
Requests per Second

0.5

1

1.5

2

2.5

Mean Response Time in seconds

Insight 1/2: Non Linearity of Response Time

23

In fact, response time 	∞	 ૚
૚ି࣋

Insight 2/2: Impact of Variability

24

M/M/1

M/D/1

M/Hyperexponential/1

Variability of service time has an adverse effect on response time.

Super‐linearity is	the	quintessential property	of	delay	performance
in	almost	all	queueing	networks	(except	closed	ones)

Delay	averages	in	ALL server	queues	with	infinite	buffer	so	far	take:

Yet	another	alternative	to	compute	confidence	interval:	Take	logarithm!
Note:	The	arrival	rate	should	be	carefully	chosen	for	stability.

How	to	justify	the	logarithmic	transformation?
Claim	1:	By	appealing	to	queueing	theory,	since	delay	performance	is	
inherently	super‐linear	(steeper	than	exponential),	the	transformation	is	
necessary	to	process	them.
Claim	2:	Perceived	satisfaction level	of	human	being	with	respect	to	delay	
performance	is	logarithmic,	rightfully	on	which	scale,	you	should	compute	
confidence	intervals.

Confidence Interval of Delay Statistics

25

૚
૛ࡷ
૚ି࣋

Optimal Sharing
Compare	the	two	in	terms	of

Response	time
Capacity

26

e.g., M/M/2

System 1

System 2

e.g., two parallel M/M/1
(inexpressible by Kendall’s notation)

Load sharing leads to the decrease of response time, but the capacity remains unchanged.
Why?: Throughput Operational Law

The Processor Sharing Queue (M/GI/1/PS)

Models:	processors,	network	links

Insensitivity:	whatever	the	service	requirements:

Egalitarianism (PS	implies	customers	with	large	service	times	wait	longer)

N.B.
Optimal Sharing: Customers are shared by multiple servers.

Processor Sharing Queue: The server is shared by all customers.

In general M/GI/1 queues, the above expression depend not only on the means but also on the variances (i.e., CoV).

27

Depends only on the mean

Large packets

packet size

PS versus FIFO

PS FIFO

28

PS penalizes customers
with large service times.The same

Mean Response Time

Negligible for
࣋ ൎ ૚

PS benefits customers
with small service times.

4. A Case Study

Impact	of	capacity	increase	?
Optimal	Capacity	?

29

For non queuing theorists, it is far more important to know more methodologies and be able to apply them.

Gate

Lift

Methodology

30

We want to verify the advertisement of a ski resort:
“Capacity doubled, waiting time halved!”

4.1. Deterministic Analysis

31

A burst of skiers, ࡮,
arrives at time 0.

Capacity
c 2c

Worst case
waiting time halves

32

Deterministic Analysis

Burst arrivals of B at t=0

We ignore
waiting time

in ‘Lift’

Cumulative
arrival function

Cumulative
departure function

Worst case delay

Draw the function A(t)=kct on the graph!

4.2 Single Queue Analysis

33

Assume	no	feedback loop:

This is because of the super-linearity of the response time w.r.t. to the utilization factor in M/GI/1.

A	refined	model,	with	circulating	users,	with	feedback

Apply	Bottleneck	Analysis	(=	Operational	Analysis)

4.3 Operational Analysis

34

Z/(N-1)

-Z

1/c

waiting time

ࢃ ഥࡿ ൌ ૚/ࢉ ഥࢆ

A variant of the ‘Interactive User Model’. A closed queuing network with mean number of customers ࡺഥ .

൅ࢃ ഥࢆ ൌ
ഥࡺ
ࣅ െ ഥࡿ

∴ ൅ࢃ ഥࢆ ൒
ഥࡺ െ ૚
ࢉ

∴ ࢃ ൒ ܠ܉ܕ
ഥࡺ െ ૚
ࢉ െ ,ഥࢆ ૙

35

Cross (+) : Analytical Solution (exact solution from the queuing network model, so-called MVA)

waiting
time

૚/ࢉ

36

ࢌ
૚
૛ࢉ ൏

ࢌ ૙ ൅ ࢌ ૚
ࢉ

૛
∵ convexity of ࢌሺ⋅ሻ

∗ࢉ ൌ
ഥࡺ െ ૚
ഥࢆ

w.r.t. ૚/ࢉ

5. Networks of Queues: Stability

Queuing	networks	are	frequently	used	models.
The	stability	issue	may,	in	general,	be	a	hard	one.

Necessary condition	for	stability	(Natural	Condition)

server	utilization	<	1	

at	every queue

All	closed	queuing	networks	are	stable	unconditionally.

37

Instability Examples

38

Poisson	arrivals	;	jobs	go	
through	stations	1,2,1,2,1
then	leave
A	job	arrives	as	type	1,	then	
becomes	2,	then	3	etc.
Exponential,	independent	
service	times	with	mean	mi

Priority	scheduling
Station	1	:	5	>	3	>1
Station	2:		2	>	4

Q:	What	is	the	natural
stability	condition	?
A:	 λ	(m1 +	m3 + m5)	<	1

λ (m2 + m4) < 1

λ	=	1
m1 =	m3 =m4 = 0.1
m2 =m5 = 0.6
Utilization	factors

Station	1:	0.8	
Station	2:	0.7

Network	is		unstable	!

If		λ	(m1 +	… +m5)	<	1	
network	is	stable;	
why?

39

Bramson’s Example 1: A Simple FIFO Network

Poisson	arrivals;	jobs	go	through	
stations	A,	B,	B,	…,	B,	A	then	leave
Exponential,	independent	service	
times	but	dependent	on	step

Steps	2	and	last:	mean	is	L
Other	steps:	mean	is	S

Q:	What	is	the	natural	stability	
condition	?
A:	 λ	(L +	S)	<	1

λ	((J‐1)S +	L)	<	1	
Bramson showed:		may	be	
unstable	whereas	natural	stability	
condition	holds

⋯,࡮,࡭ ,࡮, 	࡭
ࡶ times

S L S S L

Bramson’s Example 2
A FIFO Network with Arbitrarily Small Utilization Factor

m queues
2	types	of	
customers
λ	=	0.5	each	type		
routing	as	
shown,	
…		=		7	visits
FIFO
Exponential	
service	times,	
with	mean	as	
shown

41

L LS L LS S S S S S S

Utilization	factor	at	every	station	≤	4	λ	S
Network	is	unstable	for	‘very	small	utilization’
S ≤	0.01
L ≤	S8
m =	floor(‐2	(log	L)/L)

Take Home Message

The	natural	stability	condition	is	necessary	but	may	not	be	sufficient
It	does	not bring	about	stability in	general	queueing	networks.

There	is	a	class	of	networks	where	this	never	happens.	
Product	Form	Queuing	Networks

42

Product Form Networks

Customers	have	a	class attribute
Customers	visit	stations according	to	Markov	Routing

External	arrivals,	if	any,	are	Poisson

43

2	Stations
Class	=	step,		J+2	classes

Can	you	reduce	the	number	
of	classes	?

A class-ࢉ customer leaving station ࢙ joins
station ࢙ᇱ as class ࢉ′ with probability ࢉ,ࢉࢗᇱ

ᇱ࢙,࢙

No. ‘Markov Routing’ does not
remember the step state.

‘Class’ must capture all kinds of ‘state’.

Chains

Customers	can	switch	class,	but	remain	in	the	same	chain

44

ν

CAT1
Processor	
Sharing

CAT1
Infinite
Server

CAT2
Multiple	Server
with	Concurrent	

Classes	of	Customers

Chains may be open or closed

Open	chain:	with	Poisson	arrivals.	Customers	must	eventually leave
Closed	chain:	no	arrival,	no	departure;	number	of	customers	is	constant
There	is	no	other	type of	chain	than	these	two.

Closed	network	has	only	closed	chains.
Open	network	has	only	open	chains.
Mixed	network	may	have	both.

45

46

3	Stations
4	classes
1	open	chain	 Chain	1
1	closed	chain	 Chain	2

Components of
Markov Routing Matrix:

૚ࢼ ,૜ࢻ ,૛ࢻ ,૚ࢻ

Visit Rates

47

The	constant	depends	on	the	total	number	
of	customers	in	the	closed	network.	

the	queuing	network	equivalent	of	
‘stationary	distribution’

of	class	ࢉ at	station	࢙

Distinction between routing matrix and visit rate vector:
For each customer, routing matrix decides the probability she transitions to a station

whereas visit rate decides how many customers is present in a station.

48

2	Stations
5	classes
1	chain
Network	is	open

Visit	rates
θ11 =	θ13	= θ15 =θ22 =θ24 = λ
θsc =	0	otherwise

49

Plugging

into

yields:

Constraints on Stations
for ‘Product Form Networks’

Stations	must	belong	to	a	restricted	catalog of	stations
See	Section	8.4	for	comprehensive	description
We	will	give	commonly	used	examples

Category	1
Example	1:	Global	Processor	Sharing	Station

One	server
Rate	of	server	is	shared	equally	among	all	customers	present
Service	requirements	(time)	for	customers	of	class	c	are	drawn	iid from	a	
distribution	which	depends on	the	class	(and	the	station)

Example	2:	Delay	Station	(also	called	as	Infinite	Server)
Infinite	number	of	servers	(comprises	the	station)
Service	requirements	for		customers	of	class	c	are	drawn	iid from	a	distribution	
which	depends on	the	class	(and	the	station)
No	queuing,	service	time		=	service	requirement	=	residence	time

50

Category	2 (MSCCC	station):	MSCCC	with	B	servers
B servers
FIFO	queuing	with	constraints
For	each	class,	no.	of	customers	in	service	is	upper	bounded.
Service	requirements	for	customers	of	class	c	 are	drawn	iid from	an	exponential
distribution,	independent of	the	class (but	may	depend	on	the	station)

Example	3	:	FIFO	with	B	servers
B servers
FIFO	queuing	discipline
Service	requirements	for	customers	of	class	c	 are	drawn	iid from	an	exponential
distribution,	independent of	the	class (but	may	depend	on	the	station)

Examples	1	and	2	are	insensitive (to	service	distribution)
service	time	not	restricted,	but	the	types	of	stations	are	uncommon	and,	no	FIFO

Example	3	is	not	(service	time	must	be	exponential,	same	for	all)
FIFO	is	commonly	used	queuing	discipline

51

Say	which network	
satisfies the	
hypotheses for	
product form

52

A

B (FIFO, Exp)
C (Prio, Exp)

Similar to Category 2 but
‘Priority’ queuing disciplineSimilar to Category 2 but

class-dependent service time

Violation! Violation!

The Product Form Theorem
Natural Stability Condition Finally Holds!

If	a	network	satisfies	the	«Product	Form»	conditions	given	earlier
The	stationary	distribution	of	numbers	of	customers	can	be	written	explicitly

It	is	a	product	of	terms,	where	each	term	depends	only	on	the	station
Efficient	algorithms	exist	to	compute	performance	metrics	for	even	very	large	
networks

For	PS	and	Delay	stations,	service	time	distribution	does	not	matter other	
than	through	its	mean	(insensitivity)

The	natural	stability condition	holds	
See	Theorem	8.5.4	for	the	simplest	form

53

54

Two Representative Cases

Conclusions

Be	aware	of	the	state‐of‐the‐art	and	demystify it.

Poisson arrival	is	reasonable	for	many	problems:	Don’t	reject	it	outright!
M/M/1,	M/GI/1,	M/G/1/PS	and	variants	have	closed	forms	

Bottleneck	analysis and	worst	case	analysis	are	usually	very	simple	and	
often	give	good	insights	(far	more	desirable	than	nothing)

Queuing	networks	may	be	very	complex	to	analyze	except	if	they	are	
product	form!	If	you	manage	to	adapt your	system	to	a	product‐form	
network	with	reasonable	assumptions,	there	are	plentiful	theory.

For	computational	aspects	(exacerbated	by	product	form	per	se),	see	Ch.	8.6.

The	most	critical	limitation of	queueing	network	is	the	absence	of	
“conditional	branch”	between	stations.

How	to	circumvent	this	absence?

55

