Simulation
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Where real stuff starts
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1 What is a simulation ?

B An experiment in computer

B Important differences
» Simulated vs. real time
» Serialization of events



Stationarity

B A simulation can be terminating or not

EXAMPLE 6.2: JOE'S COMPUTER SHOP. We are interested in evaluating the time it
takes to serve n customers who request a file together at time 0. We run a simulation
program that terminates at time 7 when all users have their request satisfied. This is
a terminating simulation; its output is the time 77.

B For aterminating simulation you should make sure it is stationary

EXAMPLE 6.3:INFORMATION SERVER. An information server is modelled as a queue. The sim-
ulation program starts with an empty queue. Assume the arrival rate of requests is smaller than
the server can handle. Due to the fluctuations in the arrival process, we expect some requests to
be held in the queue, from time to time. After some simulated time, the queue starts to oscillate
between busy periods and idle periods. At the beginning of the simulation, the behaviour is not
typical of the stationary regime, but after a short time it becomes so (Figure 6.1 (a)).



Information server, scenario 1
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(a) Utilization = 0.96

N.B.: Dependency on previous states does not violate the definition of stationarity.



What do independent states look like?
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time

AWGN (Additive White Gaussian Noise) is an example of a stochastic process with 1.1.d. outputs
No continuity whatsoever between output values



Mean Queue Length

Information server, scenario 2
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(b) Utilization = 1.01



Stationarity

B In scenario 1:
» Transient phase, followed by “typical” (=stationary) phase

» You want to measure things only in the stationary phase
» Otherwise: non reproducible, non typical

B In scenario 2:

» There is no stationary regime
“walk to infinity”

you should not do a non terminating simulation with this scenario

Intuitive Definition
A stationary simulation is such that you gain no information about its age by analyzing it.




Definition of Stationarity

STATIONARITY We assume that we are observing the output of a simulation, which we interpret
as a sample of a stochastic process S(¢). Time ¢ is either discrete or continuous.This process is
stationary if for any any n, any sequence of times ¢, < t, < ... < t, and any time shift u the
joint distribution of (S(¢; + ), S(ts + u), ..., S(t, + u)) is independent of w.

B ie. simulation does not get “old”
N.B.: stationary does met preclude dependencies between the states at different times, S , St ..., St

Kk

N.B.: Both notations, i.e., X; and S;, are used in the textbook.



Classical Cases

B Markov models

» State X; is sufficient to draw the future of the simulation
» Quite common case for all simulations

B For a Markov model, over a discrete state space (NOT necessarily finite)
» If you run the simulation long enough it will either walk to infinity (unstable) or
converge to stationary
» Ex: queue with p > 1: unstable
» queue with p < 1: becomes stationary after transient

» If the state space is strongly connected (any state can be reached from any state)
then there is 0 or 1 stationary regime

» Ex: queue = either unstable or stable!
» Else, there may be several distinct stationary regimes (Non-ergodic)
» Ex: system with failure modes

Bistable system:
Non-ergodic yet stationary




Stationarity and Transience

B Knowing whether a model is stationary is sometimes a hard problem
» We will see important models where this is solved
» Ex: Solvable for single queues, not readily solvable for networks of queues
B Reasoning about your system may give you indications
» Do you expect growth ?
» Do you expect seasonality ?
B Once you believe your model is stationary, you should handle transients
» Remove (how ? Look at your output and guess)
» Sometimes it is possible to avoid transients at all.
- “Perfect Simulation” technique in Chapter 7
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Dependency on time leads to the violat
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Typical Reasons For Non Stationarity

B Obvious dependency on time
» Seasonality, growth

» Can be ignored at small time scale (minute or second)
» By defining the state of the simulation X; on a coarser time scale

B [nstability: Explosion
» Queue with utilization factor >1

B [nstability: Freezing Simulation
» System becomes slower with time (aging)

» Typically because there are rare events of large impact (« Kings »)
The longer the simulation, the larger the largest king

» Ex: time between regeneration points has infinite mean

» We’'ll come back to this in the chapter « Importance of the View Point »
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2 Simulation Techniques

B Discrete Event Simulations (aka DES)

B Recurrences
3 Stochastic recurrences

13



Discrete event simulation
Uses an Event Scheduler

4+ qucuc
length B Example:
» Information system modelled as
7 a single server queue

\ ‘ » Three event classes
1 » arrival
‘ ‘ » service

» departure
0 t, t, t,

» One event scheduler
(global system clock)

(@ (em E

Events and their dependencies
(How events are triggered, i.e., which events should be added into the event scheduler)

14
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Statistical Counters

B Assume we want to output: mean queue length and mean response time.
How do we do this ?

Statistics Counters: queueLengthCtr IS fg q(s)ds where ¢(s) is the value of
buffer.length attime s and? is the current time. At the end of the simulation,
the mean queue length is queueLengthCtxr /1T where 1 is the simulation finish
time.

e

The counter responseTimeCtr holds > "_, R,, where I?,, is the response
time for the mth request and n is the value of nbRequests at the current time.
At the end of the simulation, the mean response time is responseTimeCtr/N
where N is the value of nbRequests.

R, : the period of time

from the arrival event of request m

B Note the difference between to its departure event.

» Event based statistic : response time
» Time based statistic : mean queue length

16



A Classical Organization of Simulation Code

B Events contain specific code
B A main loop advances the state of the scheduler
B Example: in the code of a departure event (the queue is leaving the system)

Departure:. Update Event Based Counters. Let ¢ be the request at the head
of buffer. Increment responseTimeCtr by d — a, where d is this event's
firingTime and « is the arrival time of the request c. Increment nbRequests
by 1.

Execute Event's Actions. Remove the request ¢ from buf fer and delete it.

Schedule Follow-Up Events. If buffer is not empty after the removal, cre-
ate a new event of class Service, with firingTime equal to this events
firingTime, and insertit into eventScheduler.

17




B Main program

Insertion of one arrival event at time=0

e Bootstrapping. Create a new event of class Arrival with firingTime equal
to O and insert it into eventScheduler.

o Execute Events. While the simulation stopping condition is not fulfilled, do the
following. Total simulated time reached?

Earliest!
— Increment Time Based Counters. Let e be the first event In
eventScheduler. Increment queueLengthCtr by ¢(fnew — f51a) Where

q =buffer. lengtl':fnﬁFe .firingTime and fjr<currentTime.

— Execute e. Either “Arrival” or “Service” or “Departure” Integration of queue
o s length over time

— Set currentTime to e. firingTime

— Delete e

e Termination. Compute the final statistics:
meanQueueLength=queueLengthCtr/currentTime

meanResponseTime=responseTimeCtr/nbRequests

18



Stochastic Recurrence

B An alternative to discrete event simulation
» faster but requires more work on the model
» notalways applicable

B Defined by iteration:

(1) Compactified evolution of state

}{U = 70 (0) No event scheduler : X, 2 X,
fYn_|_1 — f (;Yn L n) (2) Hard to tweak for further extensions

where X, 1s the state of the system at the nth transition (For any realization, X, 1s in some possibly
complicated state space A'). xq 15 a fixed. given state n X', Z,, 1s some stochastic process that can
be simulated (for example a sequence of 1d random variables, or a Markov cham). and f 1s a

deterministic mapp mg Z, can be viewed as an environmental stochastic process.

The simulated time 7,, at which the nth transition occurs 1s assumed to be included 1n the state
variable X,

19



Example: random waypoint mobility model

EXAMPLE 6.5: RANDOM WAYPOINT. adopted in Mobile Ad-Hoc Networks for decades.

The random waypoint is a model for a mobile point, and can be used to simulate
the mobility pattern in Example 6.1. It is defined as follows. The state variable is
X, = (M,.T,) where M,, is the position of the mobile at the nth transition (the nth
“waypoint”) and 1, is the time at which this destination is reached. The point A, is
chosen at random, uniformly in a given convex area A. The speed at which the mobile
travels to the next waypoint is also chosen at random uniformly in [vmin, Vmax]-

The random waypoint model can be cast as a stochastic recurrence by letting Z,, =
(My41, Viuy1), where M, .1, V,,41 are independent 1.i.d. sequences, such that M, 4
Is uniformly distributed in A and V,,. 1 In [Umin, tmax]. We have then the stochastic
recurrence

ﬂ'-{n—l—l - 1'11'_{?1” )

-‘}{ﬂ—|—1 = (ﬂlrn—l—l* Tn—i—l) — {ﬂfﬂ—l—lrﬂl + T

For each single mobile!

20
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Course of all users
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Queuing System implemented as Stochastic
Recurrence

Let X, represent the state of the simulator just after an arrival or a departure, as
follows: reckoned as a convention

with ¢,, = the simulated time at which this transitiorpocc:urs, b, =buffer.length,
¢n = queueLengthCtr (both just after the transition), a,, = the time interval from this
transition to the next arrival and d,,= the time interval from this transition to the next
departure.

Let Z,, be a couple of two random numbers, drawn independently of anything else,
with distribution uniform in (0. 1). (215 25)

The recurrence is defined by f((t.D.q,a,d),(z1,22)) = (. V. q¢",a’.d") with

23



it a < d // this transition is an arrival

A=ua
t'=t+a
V=b+1

¢ = q+ bA
o = F71(z)

if b==0thend =G (z)elsed =d— A
else // this transition is a departure

A=d
t'=1t+d
V=b-1
¢ = q+ bA
ad =a—A

if ¥ > 0thend = G 1(z) else d =

You should brood over a few steps ahead to determine the next state
variables, rather than throwing each event to the scheduler in DES case.
Too compact to be amended for new functionalities!



3 Accuracy of Simulation Output

B A stochastic simulation produces a random output, we need confidence
intervals

B Method of choice: independent replications
B Remove transients

» For non terminating simulations
B Be careful to have truly random seeds

» Suppress any dependency between seeds
» Ex: use computer time as seed

25



Results of 30 Independent Replications
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Do They Look Normal ?
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Replicates are computed based on sampling with replacement as in Bootstrap Percentile Method in Chapter 2.

Bootstrap Replicates

General Bootstrap Method:

To compute prediction intervals of those replicates, various methods including Percentile can be used.
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When to use?:
To see if an estimate (e.g., mean) is normal, rather than the raw data samples themselves.
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Confidence Intervals

Confidence Intervals for Mean and Median
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“Bootstrap” turns out to be slightly superior to normal approximation case.



5 Random Number Generator

B A stochastic simulation does not use truly random numbers but pseudo-

random numbers
» Produces a random number » U(0,1)
» Example (obsolete but commonly used, e.g. the default one in ns2)

EXAMPLE 6.8: LINEAR CONGRUENCE. A widespread generator (for example the

default in ns2) has « = 16’807 and m = 2*! — 1. The sequence is x,, = s&modm
where - Is the seed. m iIs a prime number, and the smallest exponent h such that

— 1 mod m i1s m — 1. It follows that for any value of the seed s, the period of z,, is
exactly m — 1.Figure 6.5 shows that the sequence =,, indeed looks random.

» Output appears to be random (see next slides)
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The Linear Congruential Generator of ns2

Uniform QQPIlot
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Lag Diagram, 1000 points

Lag Diagram: Scatterplot of data pair (X;, X.,,)

How uniformly the pair of random numbers are scattered.
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Period of RNG

B RNG is in fact periodic
» Period of which is formidably large

» Period should be much larger than maximum number of uses

The period of a random number generator should be much smaller than the number of times it is
called in a simulation. The generator in Example 6.8 has a period of ca. 2 x 10%, which may be too
small for very large simulations. There are other generators with much longer periods, for example

the “Mersenne Twister” [67] with a period of 2'9%37 — 1. They use other chaotic sequences and
combinations of them.
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Two Parallel Streams with too simple a RNG
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Impact of RNG

Throughput of TCP connections over a wireless ad-hoc network
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Take Home Message

B Be careful to have a RNG that has a period orders of magnitude larger
than what you will ever use in the simulation
B Serialize the use of the RNG rather than parallel streams

» Reuse only one seed again and again
» to prevent any possible correlation between different streams of RNG.
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6 Sampling From A Distribution

B Problem:

» Given a distribution F(+), and a (uniform) RNG, produce some sample X that
follows this distribution

B A common task in simulation
B MATLAB does it for us most of the time, but not always
B Two generic methods

» CDF inversion
» Rejection sampling
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CDF Inversion

B Applies to real or integer valued RV

B The general theory

THEOREM 6.6.1. Let F be the CDF of a random variable X with values in R. Define the pseudo-
inverse, F~1 of I by
F~l(p) = sup{z : F(x) < p}

Let U be a sample of a random variable with uniform distribution on (0,1); F~Y(U) is a sample
of X.

Twisting a uniform distribution to an arbitrary one
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EXAMPLE 6.10: ExPoNENTIAL RANDOM VARIABLE. The CDF of the exponential distribution with
parameter \ is F(z) = 1 — e=**. The pseudo-inverse (which in this case is the plain inverse) is

obtained by solving the equation

1 . e—)‘.:ﬂ — p
where z is the unknown. The solution is = = —2U=2)  Thus a sample X of the exponential
distribution is obtained by letting X = — l“(lh_U}, or, since U and 1 — U have the same distribution:
In(U)
3 (6.9)

where U is the output of the random number generator.
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Example: integer valued RV

Thus, an iteger valued random variable NV can be sampled by: N = the index n such that
With discrete CDF F(n) = Y.;_o Pk

F(Il) ------------------------ . .
p [T ’i
Fan-1) |77 i
n-li a=Flp)

Figure 6.8: Pseudo-Inverse of CDF F() of an integer-valued random variable
Filn — 1) < U < F(n), where U 1s the output of the random generator.

Integer Case: |F~'(p) =n& F(n—1)<p< F(n)
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EXAMPLE 6.11: GEOMETRIC RANDOM VARIABLE. Here X takes integer values 0,1,2,.... The
geometric distribution with parameter @ satisfies P(X = k) = (1 — 6)*, thus for n € N:

. _ _mk 1 _ o n+1
F(n) Z 0(1—-0)"=1—(1-0) > Plug F(n) into
this formula

by application of Eq.(6.10): [F'(p) =n< F(n—1)<p < F(n)

_ In(1 — p)
—10y . i Sl A
F~(p) n.il}n.gln(l_g)f::n—}—l
The very definition of floor
hence
B In(1 —p)
F(p) \‘111(1 — H)J
and, since U and 1 — U have the same distribution, a sample X of the geometric distribution is
.| In(U)
X = {—111(1 —H)J (6.11)
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Rejection Sampling

Applies more generally, also
to joint n-dimensional
distributions

Example 1: conditional
distribution on this area

Stepl:

» Can you sample a point
uniformly in the bounding
rectangle ?

Step 2 :

» How can you go from there
to a uniform sample inside
the non convex area ?

Just reject those samples
that do not fall in 4
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Rejection Sampling for Conditional Distribution

B Thisis the mainidea

THEOREM 6.6.2 (Rejection Sampling for a Conditional Distribution). Let X be a random variable
in some space S such that the distribution of X is the conditional distribution of X given that
Y € A, where (X.,Y) is a random variable in S x S’ and A is a measurable subset of S.

A sample of X is obtained by the following algorithm:

do

draw a sample of (X.,Y)
untilY € A
return(X )

The expected number of iterations of the algorithm is ﬁf’le_A)'

B How can you apply this to the example in the previous slide ?
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A Sample from a Weird Distribution

701
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o0

401

30+
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(a)

Figure 6.10: (a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fx ()

sin?(x)
x?

proportional to

1{_a§y§a} with ¢ = 10.

It’s tricky to compute pseudo-inverse F~1(-)!
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Rejection Sampling for General Distributions

f() = fx() X fy () where fy(-) is defined over a compact area up to a proportionality constant.

THEOREM 6.6.3 (Rejection Sampling for Distribution with Density). Consider two random vari-
ables X,Y with values in the same space, that both have densities. Assume thit:

e we know a method to draw a sample of X I
e the density of Y is known up to a normalization constant K : fy(y) = K [} (y), where f{ is
a known function

e lhere exist some ¢ > 0 such that .
f Y(x) <

fx(x) —
A sample of Y is obtained by the following algorithm:

do

draw independent samples of X and U, where U ~Unif(0; c)
: £ (X)
until U < #X)
return(X)

£

The expected number of iterations of the algorithm is +
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ARBITRARY DISTRIBUTION WITH DENSITY Assume that we want a sample of Y, which
takes values in the bounded interval [a, b] and has a density fy = K f{*(y). Assume that f{}(y)
(non normalized density) can easily be computed, but not the normalization constant A which 1s
unknown. Also assume that we know an upper bound M on fy:.

We take X uniformly distributed over [a, b| and obtain the sampling method:

do

draw X ~Unif(a,b) and U ~Unif(0, M)
untﬂg_g Ml Both U and X are random.
return(.X)

Note that we do not need to know the multiplicative constant K. For example, consider the distri-
bution with density

_sin®(y A
fry) =K yg( )1{—a£y£a} (6.13)

K 1s hard to compute, but a bound M on fy 1s easy to find (M = 1) (Figure 6.10).
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Another Sample from a Weird Distribution

Density < | X; — X, | in a unit area
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Figure 6.10:(b) 2000 independent samples of the distribution on the rectangle with density fx, x,(z1,z2)
proportional to |z1 — x2].
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EXAMPLE 6.13: A STOCHASTIC GEOMETRY ExaMPLE. We want to sample the random vector

(X1, X2) that takes values in the rectangle [0,1] x [0, 1] and whose distribution has a density

proportional to | X; — X5|. We take fx = the uniform density over [0,1] x [0,1] and f{ (21, 22) =
Iy (x1,72)

lz1 — 22|. An upper bound on the ratio F@rzs) Is 1. The sampling algorithm is thus:

do

draw X1, X9 and U ~Unif(0, 1)
until U < | X; — X5
return( X, Xs)

Figure 6.10 shows an example. Note that there is no need to know the normalizing constant to
apply the sampling algorithm.
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6.3 Ad-Hoc Methods

B Optimized methods exist for some common distributions
» Optimization = reduce computing time
B [f implemented in your tool, use them !

B Example: simulating a normal distribution
» Inversion method is not simple

» normal CDF is complicated = no closed form for F1(-)

» Rejection method is impossible

» But a more efficient method exists, for drawing jointly 2 independent normal RV

B There are also ad-hoc methods for n-dimensional normal distributions
(Gaussian vectors)
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Sample from correlated 2d-Normal Vector

15 | | I i I | | I

_10_' . i

_15 1 | 1 1 1 1 | 1

-6 -4 -2 0 2 4 6 8 10

Figure 3.11: 1000 independent samples of the normal vector X, X, with 0 mean and covariance Q; ; =
03 =5, 012="C021 =05, Q22 =03 =10. It is obtained by the transformation X = LY with Yiid ~ Ny and

Choleski’s factorization = LLT is used for 2D normal



4 Monte Carlo Simulation

B A simple method to compute integrals of all kinds
B Idea: interpret the integralas [ =E (fp(}f’ J).

B Assume you can simulate as many independent samples of X as you want

Monte-Carlo simulation consists in generating R i.1.d. replicates X", r =1,...,R. The Monte-

Carlo estimate of 3 is Vector
R

. 1 S,
B=5D X (6.2)

r=1

A confidence imterval for J can then be computed using the methods imn Chapter 2 for a confidence

interval for the mean. By adjusting /7, the number of replications, we can control the accuracy of
the method. 1.e. the width of the confidence interval.
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In Ch. 4, if p-value is small (<0.05), i.e., sample data is abnormal, null hypothesis is rejected.

This example “estimates” p-value of a goodness of (distribution) fit test. In the example, all experiments (i.e.,
n; are known) are finished and you want to test whether the sample data follows a hypothesized distribution.

EXAMPLE 6.7: p-VALUE OF A TEST. Let X;,....X,, be a sequence of i.i.d. random variables that
take values in the discrete set {1,2,....,I}. Let ¢; = P(Xy = i). Let N; = > ;' 14x, —;} (number of
observation that are equal to 7). Assume we want to compute

Probability is a kind of expectation.

k -
N
> p=P (Z N;In o >

1=

(6.3)

where a £ 0 is given. This computation arises in the theory of goodness.of fit tests, when we
want to/test whether X,; does indeed come from the model defined above (a is then equal to
2?:1 7/; In n—"’f;— where n; is our data set). For large values of the sample size n we can approximate
3 by 4 2 distribution (see Section 4.4), but for small values there is no analytic result.

We have observed 1, ..., I respectively nq, ..., nj times such that Z{‘zl n; = n.
Is it so abnormal that we can’t claim they follow multinomial distribution with n, q4, ..., q;?

To justify the claim, we have to compute this based on samples X; (N;) following multinomial
distribution with n, q4, ..., q; (null hypothesis)
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We use Monte-Carlo simulation to compute p. We generate R i.i.d. replicates X7,...., X of the
sequence (r = 1. ..., I?). This can be done by using the inversion method described in this chapter.
For each replicate r, let

N, = Z 1{X;;:i} (6.4)
k=1
The Monte Carlo estimate of p is
| R
P= R ; lisw N, In L >a} (6.5)

Obviously, p-value can be regarded as a success probability in Theorem 2.2.4.
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Assuming that p? > 6, we compute a confidence interval by using the normal approximation in

Eq.(2.29). The sairnﬁleepv_%t;llalrlwge Is estimated by

('

(6.6)

and a confidence interval at level 0.95 is p == 1.966. Assume we want a relative accuracy at least
equal to some fixed value ¢ (for example e = 0.05). This is achieved if  The ratio of std to mean

1.96c
— <€ (6.7)
p
which is equivalent to
3.92
R > 32 (ll) (6.8)
€ P

Rationale behind (6.8):
Run the simulation enough times R such that the confidence interval for p is no greater than [p —p -€,p + D - €].
=» fine-tuning the error range of the estimate p
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We can test for every value of R whether Eq.(6.8) is verified and stop the simulation when this
happens. Table 6.1 shows some results with n = 100 and a = 2.4; we see that p is_equal to
0.19 with an accuracy of 5%; the number of Monte Carlo replicates is proportional to the relative

accuracy to the power —2. confidence

interval

R ji margin

30 |0.2667 | 0.1582

60 | 0.2500 | 0.1096

120 | 0.2333 | 0.0757

240 | 0.1917 | 0.0498

480 | 0.1979 | 0.0356

960 | 0.2010 | 0.0254

1920 | 0.1865 |1 0.0174

When R=7680, 3840 | 0.1893 1 0.0124

relative accuracy of 7680 | 0.1931 | 0.0088
5% is achieved at last.

Table 6.1: Computation of p in Example 6.7 by Monte Carlo simulation. The parameters of the model are
I =4, ¢ =9/16,q2 = g3 = 3/16, q4 = 1/16, n = 100 and a = 2.4. The table shows the estimate p of p
with its 95% confidence margin versus the number of Monte-Carlo replicates I?. With 7680 replicates the
relative accuracy (margin/p) is below 5%.
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Take Home Message

B Most hard problems relative to computing a probability or an integral can be
solved with Monte Carlo

» Brainless but why not
» Run time may be large -> importance sampling techniques (Chapter 6.7)
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Conclusion

B Simulating well requires knowing the concepts of
» Transience
» Confidence intervals
» Sampling methods
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