
Simulation

Where	real	stuff	starts



ToC

• What,	transience,	stationarity
• How,	discrete	event,	recurrence

• Accuracy	of	output
• Random	Number	Generators

• How	to	sample
• Monte	Carlo
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1  What is a simulation ?

An	experiment	in	computer
Important	differences

Simulated	vs.	real	time
Serialization	of	events
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Stationarity

A	simulation	can	be	terminating	or	not

For	a	terminating	simulation	you	should	make	sure	it	is	stationary
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Information server, scenario 1
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૙. ૙૙ૢ૟

N.B.: Dependency on previous states does not violate the definition of stationarity.



What do independent states look like?
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AWGN (Additive White Gaussian Noise) is an example of a stochastic process with i.i.d. outputs
No continuity whatsoever between output values

time



Information server, scenario 2
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Stationarity

In	scenario	1:
Transient	phase,	followed	by	“typical”	(=stationary)	phase	
You	want	to	measure	things	only	in	the	stationary	phase	

Otherwise:	non	reproducible,	non	typical

In	scenario	2:
There	is	no	stationary	regime
“walk	to	infinity”

you	should	not	do	a	non	terminating	simulation	with	this	scenario
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Intuitive Definition
A stationary simulation is such that you gain no information about its age by analyzing it.



Definition of Stationarity

i.e.	simulation	does	not	get	“old”	
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N.B.: stationary does not preclude dependencies between the states at different times, ܵ௧భ, ܵ௧మ, … , ܵ௧ೖ.

N.B.: Both notations, i.e., ܺ௧ and ܵ௧, are used in the textbook.



Classical Cases

Markov	models
State	ܺ௧ is	sufficient	to	draw	the	future	of	the	simulation
Quite	common	case	for	all	simulations

For	a	Markov	model,	over	a	discrete	state	space	(NOT	necessarily	finite)
If	you	run	the	simulation	long	enough	it	will	either	walk	to	infinity	(unstable)	or	
converge	to	stationary

Ex:	queue	with	ߩ ൐ 1:	unstable
queue	with	ߩ ൏ 1	:	becomes	stationary	after	transient

If	the	state	space	is	strongly	connected	(any	state	can	be	reached	from	any	state)	
then	there	is	0	or	1	stationary	regime

Ex:	queue	 either	unstable	or	stable!
Else,	there	may	be	several	distinct	stationary	regimes	(Non‐ergodic)

Ex:	system	with	failure	modes
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Bistable system: 
Non-ergodic yet stationary



Stationarity and Transience

Knowing	whether	a	model	is	stationary	is	sometimes	a	hard	problem
We	will	see	important	models	where	this	is	solved
Ex:	Solvable	for	single	queues,	not	readily	solvable	for	networks	of	queues

Reasoning	about	your	system	may	give	you	indications
Do	you	expect	growth	?	
Do	you	expect	seasonality	?

Once	you	believe	your	model	is	stationary,	you	should	handle	transients
Remove	(how	?	Look	at	your	output	and	guess)
Sometimes	it	is	possible	to	avoid	transients	at	all.

 “Perfect	Simulation”	technique	in	Chapter	7
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Non‐Stationary (Time Dependent Inputs)
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N.B.: Dependency on time leads to the violation of the definition of stationarity.



Typical Reasons For Non Stationarity

Obvious	dependency	on	time
Seasonality,	growth
Can	be	ignored	at	small	time	scale	(minute	or	second)

By	defining	the	state	of	the	simulation	ܺ௧ on	a	coarser time	scale

Instability:	Explosion
Queue	with	utilization	factor	>1

Instability:	Freezing	Simulation	
System	becomes	slower	with	time	(aging)
Typically	because	there	are	rare	events	of	large	impact	(« Kings »)
The	longer	the	simulation,	the	larger	the	largest	king
Ex:	time	between	regeneration	points	has	infinite mean

We’ll	come	back	to	this	in	the	chapter	« Importance	of	the	View	Point »
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2 Simulation Techniques

Discrete	Event	Simulations	(aka	DES)
Recurrences

Stochastic	recurrences
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Discrete event simulation
Uses an Event Scheduler

Example:
Information	system	modelled	as	
a	single	server	queue
Three	event	classes

arrival
service
departure

One	event	scheduler
(global	system	clock)
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(How events are triggered, i.e., which events should be added into the event scheduler)



Scheduler: 
Timeline
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Statistical Counters

Assume	we	want	to	output:	mean	queue	length	and	mean	response	time.		
How	do	we	do	this	?

Note	the	difference	between
Event	based	statistic	: response	time
Time	based	statistic	:	mean	queue	length
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ܴ௠ : the period of time 
from the arrival event of request m

to its departure event.



A Classical Organization of Simulation Code

Events	contain	specific	code
A	main	loop	advances	the	state	of	the	scheduler
Example:	in	the	code	of	a	departure event	(the	queue	is	leaving	the	system)
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Main	program
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Insertion of one arrival event at time=0

Total simulated time reached?

Earliest!

Integration of queue 
length over time

Either “Arrival” or “Service” or “Departure”



Stochastic Recurrence

An	alternative	to	discrete	event	simulation
faster	but	requires	more	work	on	the	model
not	always	applicable

Defined	by	iteration:
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(0) No event scheduler : Xn Xn+1
(1) Compactified evolution of state
(2) Hard to tweak for further extensions

࢔ࢆ can be viewed as an environmental stochastic process.



Example: random waypoint mobility model
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adopted in Mobile Ad-Hoc Networks for decades.

For each single mobile!
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NB: Event average!



Queuing System implemented as Stochastic 
Recurrence
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n

reckoned as a convention

(z1, z2)
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You should brood over a few steps ahead to determine the next state 
variables, rather than throwing each event to the scheduler in DES case.

Too compact to be amended for new functionalities!



3 Accuracy of Simulation Output

A	stochastic	simulation	produces	a	random	output,	we	need	confidence	
intervals
Method	of	choice:	independent	replications
Remove	transients

For	non	terminating	simulations
Be	careful	to	have	truly	random	seeds

Suppress	any	dependency	between	seeds
Ex:	use	computer	time	as	seed
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Results of 30 Independent Replications
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Do They Look Normal ?
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Bootstrap Replicates
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General Bootstrap Method: 
Replicates are computed based on sampling with replacement as in Bootstrap Percentile Method in Chapter 2.

To compute prediction intervals of those replicates, various methods including Percentile can be used.

When to use?: 
To see if an estimate (e.g., mean) is normal, rather than the raw data samples themselves.



Confidence Intervals
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Mean, normal approx

Median
Mean, bootstrap

“Bootstrap” turns out to be slightly superior to normal approximation case.



5 Random Number Generator

A	stochastic	simulation	does	not	use	truly	random	numbers	but	pseudo‐
random	numbers

Produces	a	random	number	» U(0,1)
Example	(obsolete	but	commonly	used,	e.g.	the	default	one	in	ns2)	

Output	appears	to	be	random	(see	next	slides)
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The Linear Congruential Generator of ns2
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uniform qq plot

autocorrelation



Lag Diagram, 1000 points
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Lag Diagram: Scatterplot of data pair (Xi, Xi+h)

How uniformly the pair of random numbers are scattered. 



Period of RNG

RNG	is	in	fact	periodic
Period	of	which	is	formidably	large
Period	should	be	much	larger	than	maximum	number	of	uses
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Two Parallel Streams with too simple a RNG
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The default RNG in ns2



Impact of RNG
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Smaller variation

Throughput of TCP connections over a wireless ad-hoc network



Take Home Message

Be	careful	to	have	a	RNG	that	has	a	period	orders	of	magnitude	larger	
than	what	you	will	ever	use	in	the	simulation
Serialize the	use	of	the	RNG	rather	than	parallel	streams

Reuse	only	one	seed	again	and	again	
to	prevent	any	possible	correlation	between	different	streams	of	RNG.
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6 Sampling From A Distribution

Problem:	
Given	a	distribution	ܨ ∙ ,	and	a	(uniform)	RNG,	produce	some	sample	ܺ that	
follows	this	distribution

A	common	task	in	simulation
MATLAB	does	it	for	us	most	of	the	time,	but	not	always
Two	generic	methods

CDF	inversion
Rejection	sampling
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CDF Inversion

Applies	to	real	or	integer	valued	RV

The	general	theory
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Twisting a uniform distribution to an arbitrary one
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Example: integer valued RV
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With discrete CDF ࡲ ࢔ ൌ ∑ ࢔࢑࢖
ୀ૙࢑

Integer Case: 
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Plug ࡲሺ࢔ሻ into 
this formula

The very definition of floor



Rejection Sampling
Applies	more	generally,	also	
to	joint	n‐dimensional	
distributions
Example	1:	conditional	
distribution	on	this	area
Step1	:

Can	you	sample	a	point	
uniformly	in	the	bounding	
rectangle	?

Step	2	:
How	can	you	go	from	there	
to	a	uniform	sample	inside	
the	non	convex	area	?
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1000 samples

Just reject those samples
that do not fall in ࡭



Rejection Sampling for Conditional Distribution

This	is	the	main	idea

How	can	you	apply	this	to	the	example	in	the	previous	slide	?
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A Sample from a Weird Distribution
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It’s tricky to compute pseudo-inverse ିࡲ૚ ⋅ !



Rejection Sampling for General Distributions
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݂ ⋅ ൌ ௑݂ ⋅ ൈ ௒݂ ⋅ 	where	 ௒݂ ⋅ 	is	defined	over	a	compact	area	up	to	a	proportionality	constant.
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Both U and X are random.



Another Sample from a Weird Distribution
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Density ∝ ૚ࢄ െ ૛ࢄ in a unit area



48



6.3 Ad‐Hoc Methods

Optimized	methods	exist	for	some	common	distributions
Optimization	=	reduce	computing	time

If	implemented	in	your	tool,	use	them	!
Example:	simulating	a	normal	distribution

Inversion	method	is	not	simple	
normal	CDF	is	complicated	 no	closed	form	for	F‐1(∙)

Rejection	method	is	impossible
But	a	more	efficient	method	exists,	for	drawing	jointly	2 independent	normal	RV

There	are	also	ad‐hoc	methods	for	n‐dimensional	normal	distributions	
(Gaussian	vectors)
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Sample from correlated 2d‐Normal Vector

50Choleski’s factorization Ω ൌ ்ܮܮ is used for 2D normal



4 Monte Carlo Simulation

A	simple	method	to	compute	integrals	of	all	kinds
Idea:	interpret	the	integral	as	
Assume	you	can	simulate as	many	independent	samples	of	X as	you	want
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Vector
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This example “estimates” p-value of a goodness of (distribution) fit test. In the example, all experiments (i.e., 
݊௜ are known) are finished and you want to test whether the sample data follows a hypothesized distribution.

In Ch. 4, if p-value is small (<0.05), i.e., sample data is abnormal, null hypothesis is rejected.

To justify the claim, we have to compute this based on samples ࢏ࢄ  following multinomial (࢏ࡺ)
distribution with ࢔, ,૚ࢗ … , ࢑ࢗ (null hypothesis)

We have observed ૚,… , ࡵ respectively ࢔૚,… , ࢑࢔ times such that ∑ ࢑࢏࢔
ୀ૚࢏ ൌ .࢔

Is it so abnormal that we can’t claim they follow multinomial distribution with ࢔, ,૚ࢗ … , ?࢑ࢗ

Probability is a kind of expectation.
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Obviously, p-value can be regarded as a success probability in Theorem 2.2.4.
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of the p-value

The ratio of std to mean

Rationale behind (6.8): 
Run the simulation enough times R such that the confidence interval for ࢖ෝ is no greater than [࢖ෝ െ ෝ࢖ ⋅ ࣕ, ෝ࢖ ൅ ෝ࢖ ⋅ ࣕ].

fine-tuning the error range of the estimate ࢖ෝ
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When R=7680,
relative accuracy of 

5% is achieved at last.

confidence 
interval 



Take Home Message

Most	hard	problems	relative	to	computing	a	probability	or	an	integral	can	be	
solved	with	Monte	Carlo

Brainless	but	why	not
Run	time	may	be	large	‐>	importance	sampling	techniques	(Chapter	6.7)
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Conclusion

Simulating	well	requires	knowing	the	concepts	of
Transience
Confidence	intervals
Sampling	methods
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