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Summarizing Performance Data
Confidence Intervals

Important
Easy	to	Difficult

Warning:	some	mathematical	content



Contents

1. Summarized	data
2. Confidence	Intervals

3. Independence	Assumption
4. Prediction	Intervals

5. Which	Summarization	to	Use	?	

2



3

1  Summarizing Performance Data

How	do	you	quantify:	
Central	value
Dispersion	(Variability)

old new
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Histogram is one answer

old new
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ECDF allow easy comparison

oldnew
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Summarized Measures

Median,	Quantiles
Median		
Quartiles
P‐quantiles

Mean	and	standard	deviation
Mean

Standard	deviation	

What	is	the	interpretation	of	standard	deviation	?

A:	if	data	is	normally	distributed,	with	95%	probability,	a	new	data	sample	lies	in	
the	interval	



Example
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mean and standard deviationquantiles
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Coefficient of Variation Summarizes 
Variability

Scale	free
Second	order	variability

For	a	data	set	with	n	samples		

Exponential	distribution:	CoV =1

What	does	CoV =	0	mean	?		



Lorenz Curve Gap is an Alternative to CoV

Alternative	to	CoV:	First‐order	variability

For	a	data	set	with	n	samples

Scale	free,	index	of	unfairness

9

Mean Absolute Deviation



Jain’s Fairness Index is an Alternative to CoV

Quantifies	fairness	of	x;

Ranges	from	
1:	all	xi equal
1/n:	maximum	unfairness			

Fairness	and	variability	are	
two	sides	of	the	same	coin
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For n = 2



Lorenz Curve

Old	code,	new	code:	is	JFI	larger	?	Gap	?
Gini’s	index	is	also	used;	Def:	2	x	area	between	diagonal	and	Lorenz	curve

More	or	less	equivalent	to	Lorenz	curve	gap
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Lorenz Curve gap

Perfect equality (fairness)

li: ratio of ‘partial mean’ to ‘mean’

pi: ratio of ‘index’ to ‘number of data’
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Which Summarization Should One Use ?

There	are	(too)	many	synthetic	indices	to	choose	from
Traditional	measures	in	engineering	are	standard	deviation,	mean	and	CoV

Traditional	measures	in	computer	science		are	mean	and	JFI
JFI	is	equivalent	to	CoV

In	economy,	gap	and	Gini’s	index	(a	variant	of	Lorenz	curve	gap)

Statisticians	like	medians	and	quantiles	(robust	to	statistical	assumptions)

We	will	come	back	to	the	issue	after	discussing	confidence	intervals
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2. Confidence Interval

Do	not	confuse	with	prediction	interval
Quantifies	uncertainty about	an	estimation
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mean and standard deviationquantiles
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Confidence Intervals for Mean of Difference

Mean	reduction	=	

0	is	outside	the	confidence	intervals	for	mean	and	for	median

Confidence	interval	for	median

Datasets come from the same database transaction sequences: 
Paired Experiment
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Computing Confidence Intervals

This	is	simple	if	we	can	assume	that	the	data	comes	from	an	iid	model

Independent	Identically	Distributed
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CI for median

Is	the	simplest	of	all
Robust:	always	true	provided	iid assumption	holds

While u() and v() are random, the true value of m is deterministic.
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mp is a threshold (and one of the data) which divides the data into bottom p*100% and the rest.

Binomial distribution Bn,p() is the distribution of the sum of n Bernoulli trials with probability p.

p=0.50 for median.

∴ true p-quantile mp	
Pr (one sampled datum mp) = p.

∴ ∈ , implies!
X(j)≤mpAt least j samples satisfy Xi<mp
mp≤ X(k)At most k-1 samples satisfy Xi<mp

The probability of intersection of the 
above event sets must be ≥γ

The above derivation is a bit tricky but 
can be understood easily by noting that 
the two event sets must be maximized.
Note also the power of “order statistic”: 
F() is not used at all. 
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Confidence Interval for Median, level 95%

n	=	31

n	=	32

j and k are chosen s.t. 0.95.
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Example n  , confidence interval for 
median

The	median	estimate	is		

Confidence	level	95%
50 9.8 40
51 9.8 61

a	confidence	interval	for	the	median	is
;

Confidence	level	99%
50 12.8 37
51 12.8 64

a	confidence	interval	for	the	media	is
;
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CI for mean and Standard Deviation

This	is	another	method,	most	commonly	used	method…
But	requires	some	additional assumptions	to	hold,	may	be	misleading	if	
they	do	not	hold
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CI for mean, asymptotic case

If	central	limit	theorem	holds
(in	practice:	n is	large	and	distribution	is	not	“wild”) finite variance

finite mean

∵ a normal distribution is symmetric.
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Example

n	=100	;	95%	confidence	level

CI	for	mean:	

amplitude	of	CI	decreases	in	

compare	to	prediction	
interval	

mean

PI

CI for 
mean

Box Plot Representation
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Normal Case
Assume	data	comes	from	an	iid	+	normal distribution
Useful	for	very	small	data	samples	(n	<30)

CI for mean at level 

CI for std at level 

No More An Approximation 
for Normal Case
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Example

n	=100	;	95%	confidence	level

CI	for	mean:

CI	for	standard	deviation:	

same	as	before	except	
instead	of	

1.98	for	n=100		instead	of	 for	all	n

In	practice		both	(normal	case	and	large	n	
asymptotic)	are	the	same	if	n	>	30
But	large	n	asymptotic	does	not	require	
normal	assumption
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Tables in  [Weber‐Tables]
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Standard Deviation: n or n‐1 ?

We use 1/(n-1) instead of 1/n when the data is normal.
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Bootstrap Percentile Method

A	heuristic	that	is	robust	(requires	only	iid assumption)
But	be	careful	with	heavy	tail,	see	next

but	tends	to	underestimate	CI
Simple	to	implement	with	a	computer
Idea:	use	the	empirical	distribution	in	place	of	the	theoretical	(unknown)	
distribution	

For	example,	with	confidence	level	=	95%:
the	data	set	is	S=

Do	r=1	to	r=999
(replay	experiment)	Draw	n bootstrap	replicates	with	replacement from	S
Compute	sample	mean	Tr

Bootstrap	percentile	estimate	is	(T(25),	T(975))		

Assumption: empirical distribution can substitute for the real distribution.

If x1 is drawn this time, you draw next 
time from the entire data set {x1, …, xn}.
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Example: Compiler Options

Does	data	look	normal	?
No

Theorems	2.2.2	and	2.2.3	give	same	
result	(n	>30)
Chapter	2.2.4	(Bootstrap)	gives	same	
result

=> Asymptotic	assumption	valid

Th. 2.2.3
Th. 2.2.2
Bootstrap



Confidence Interval for Fairness Index

Use	bootstrap if	data	is iid
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To put it simply, 
compute the statistic sufficient number of times R by “draw n numbers with replacement”!

Typically 999~4999

Prediction interval: variability of samples/data themselves
Confidence interval: variability of statistics of samples/data

∵ gap
MAD
2

Re-sampled data?
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We test a system 10’000 time for failures 
and find 200 failures: give a 95% confidence 

interval for the failure probability  .

33

Theorem 2.2.2: Anyway (whether Xi is discrete r.v. or not), 
the normalized mean converges to a normal distribution. 



We test a system 10 time for failures and 
find 0 failure: give a 95% confidence interval 

for the failure probability  .

1. [0	;	0]
2. [0	;	0.1]
3. [0	;	0.11]
4. [0	;	0.21]
5. [0;	0.31]
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Confidence Interval for Success Probability

Problem	statement:	want	to	estimate	proba of	failure;	observe	n outcomes;	
no	failure;	confidence	interval	?	 Theorem	2.2.2	says	[0,0]
Example:	we	test	a	system	10	time	for	failures	and	find	0	failure:	give	a	95%	
confidence	interval	for	the	failure	probability	 .
Is	this	a	confidence	interval	for	the	mean	?	(explain	why)
The	general	theory	does	not	give	good	results	when	mean	is	very	small
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If n is extremely large, you will still be able to apply the general theory, Theorem 2.2.2.

Exploiting the fact that the data Xi is the outcome of a Bernoulli experiment, we have the theorem in the next page.

Just as “normality” was exploited for extension of Theorem 2.2.2 to Theorem 2.2.3, “Bernoullian” is used from 
Theorem 2.2.2 to Theorem 2.2.4.
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no success
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If we manage to test a system more than 20 times with no success at all, the following simple formula can be used:

Theorem 2.2.4.



We test a system 10’000 time for failures and find 200 failures: give 
a 95% confidence interval for the failure probability  .

Apply	formula	2.29	( 200 6	and	 6

0.02
1.96
10000 200 1 0.02 0.02

1.96
10000 10	 2 0.02 0.003
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Theorem 2.2.4.
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Take Home Message

Confidence	interval	for	median (or	other	quantiles)	is	easy	to	get	from	the	
Binomial	distribution

Requires	iid
No	other	assumption

Confidence	interval	for	the	mean
Requires	iid
And

Either	if	data	sample	is	normal and	n	is	small
Or	data	sample	is	not	wild and	n is	large	enough

The	bootstrap	is	more	robust	and	more	general but	is	more	than	a	simple	
formula	to	apply	(NB: Even	bootstrap	highly	depends	on	no.	of	sample	data)
Confidence	interval	for	success	probability	requires	special	attention	when	
success	or	failure	is	rare
If	the	data	is	not	normal	and	the	size	of	data	is	very	small,	use	“median”	
approach	rather	than	risking	accuracy	of	confidence	interval	of	“mean”	
approach.



3. The Independence Assumption
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Confidence	Intervals	require	that	we	can	assume	that	the	data	comes	from	
an	iid model

Independent	Identically	Distributed

How	do	I	know	if	this	is	true	?
Controlled	experiments:	draw	samples	randomly	with	replacement
Simulation:	independent	replications	(with	random	seeds)

Else:	we	do	not	know	– in	some	cases	we	will	have	methods	for	time	series
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What does independence mean ?



Example

Pretend data	is iid:	
CI	for	mean is [69;	
69.8]

Is	this biased ?
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data ACF



What happens if data is not iid ?

If	data	is	positively	correlated
Neighbouring	values	look	similar
Frequent	in	measurements	(particularly	if	data	are	sampled	over	fine	time	scale)
CI	is	underestimated:	there	is	less	information in	the	(non‐iid)	data	than	one	
thinks
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You must be less confident.
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4. Prediction Interval

CI	for	mean	or	median	summarize
Central	value	(a	scalar	function	of	data)+	uncertainty about	it

Prediction	interval	summarizes	variability of	data	

↑ Instead of central values, i.e., mean & median
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Prediction Interval based on Order Statistic

Assume	data	comes	from	an	iid model
Simplest		and	most	robust	result	(not	well	known,	though):
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Prediction Interval for small n

For	n=39,	[xmin,	xmax]	is	a	prediction	interval	at	level	95%
For	n	<39	there	is	no	prediction	interval	at	level	95%	with	this	method

But	there	is	one	at	level	90%	for	n	>	18
For	n	=	10	we	have	a	prediction	interval	[xmin,	xmax]	at	level	81%	



Prediction Interval based on Mean
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Normal case



Prediction Interval based on Mean

If	data	is	not	normal,	there	is	no	general	result	– bootstrap	can	
be	used

Self‐evident	because,	in	two‐number	(mean,	std)	summarization,	
the	variability	depends	on	std and	the	distribution	type	as	well.

If	data	is	assumed	normal,	how	do	CI	for	mean	and	Prediction	
Interval	based	on	mean	compare	?

estimated	mean
estimated	variance

Confidence	interval	for	mean at	level	95	% =	 .

Prediction	interval at	level	95% =	

48



49

Re‐Scaling

Many	results	are	simple	if	the	data	is	normal,	or	close	to	it	(i.e.	not	wild).	An	
important	question	to	ask	is:	can	I	change	the	scale of	my	data	to	have	it	look	
more	normal.	Put	it	another	way,	is	it	normalizable	through	re‐scaling?

Ex:	log	of	the	data	instead	of	the	data
A	generic	transformation	used	in	statistics	is	the	Box‐Cox transformation:	

Continuous	in	s
s=0	:	log
s=‐1:	1/x
s=1:	identity
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Prediction Intervals for File Transfer Times

mean and
standard deviation
on rescaled (log) data

mean and
standard deviationorder statistic

↑ Not normal apparently
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Which Summarization Should I Use ?

Two	issues
Robustness	to	outliers	(i.e.,	significantly	bigger/smaller	values)

e.g.,	what	if	data	is	not	normal?
e.g.,	what	if	some	data	are	extremely	large?

Compactness	(i.e.,	how	do	you	want	to	summarize	them	in	your	paper?)
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QQplot is common tool for verifying assumption

Normal Qqplot
X‐axis:	standard	normal quantiles

Y‐axis:	Ordered	statistic	of	sample:

If	data	comes	from	a	normal	distribution,	qqplot is	close	to	a	straight	line
(except	for	end	points)	

Visual	inspection	is	often	enough
If	not	possible	or	doubtful,	we	will	use	tests	later

↑ Inverse of normal CDF

QQplot : Quantile-Quantile (Ordered Data) Comparison
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QQPlots of File Transfer Times

Handy tool for checking normality

Too big
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Take Home Message

The	interpretation	of		 as	measure	of	
variability	is	meaningful	if	the	data	is	
normal (or	close	to	normal).	Else,	it	is	
misleading.	The	data	should	be	best	re‐
scaled.



5. Which Summarization to Use ?

Issues
Robustness	to	outliers
Distribution	assumptions
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Example of Outlier:

You are measuring the seismic intensity of a very weak earthquake in a
lab. All of a sudden, a friend of yours slams the door of the lab and you
get extremely strong seismic intensity on the seismometer.



A Distribution with Infinite Variance
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True mean

True median

True mean

True median

CI based on std dv CI based on bootsrp

CI for median

“True median” lies within the CI for median even for 100 samples.
 “Median” is more robust for infinite variance distributions.
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Outlier in File Transfer Time
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Robustness of Conf/Prediction Intervals

mean + std dev

CI for median geom mean

Outlier removed
Outlier present

Order stat

Based on
mean + std dev

Based on
mean + std dev

+ re-scaling

Normalization aside, 
order statistics based methods are much more robust to outliers.



Fairness Indices with different orders

Confidence	Intervals	obtained	by	Bootstrap

JFI	is	very	dependent	on	one	outlier
As	expected,	since	JFI	is	essentially	CoV,	i.e.	standard	deviation

Gap	is	sensitive,	but	less
Does	not	use	squaring	;	why	?	 Lower‐order	statistics	are	less	sensitive
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Compactness

If	normal assumption	(or,	for	CI;	asymptotic	regime)	holds,	 and	 are	
more	compact

two	values	give	both:	CIs	at	all	levels,	prediction	intervals
Derived	indices:	CoV,	JFI

In	contrast,	CIs	for	median	does	not	give	information	on	variability	(PI)
PI	has	to	be	computed	through	an	additional procedure.

Prediction	interval	based	on	order	statistic	is	robust	(and,	IMHO,	best)
Use	order	statistic	for	prediction	intervals
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Take‐Home Message

Understand	methods	before	using	them.
Mean	and	standard	deviation	make	sense	when	data	sets	are	not	wild.

Close	to	normal,	or	not	heavy	tailed	and	large	data	sample
For	example,	certain	Weibull	distributions	are	close	to	a	normal	one.

For	non‐norml case,	use	quantiles and	order	statistics.
Sometimes,	you	need	to	rescale.



Questions
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Questions
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Questions
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Confusing term: log-normal distribution is the distribution of an exponential of a normal random variable.



Read!

To	make	a	good	start	of	this	course,	please	read	Chapter	2.
If	it	is	affordable,	also	read	Chapter	1.

If	you	have	no	knowledge	in	Markov	chain,	read	Chapter	7.6	
before	the	next	lecture.


