Summarizing Performance Data
Confidence Intervals

\ Important

Easy to Difficult

Warning: some mathematical content
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1 Summarizing Performance Data

B How do you quantify:
» Central value
» Dispersion (Variability)
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EXAMPLE 2.1: COMPARISON OF TWoO OPTIONS. An operating system vendor claims
that the new version of the database management code significantly improves the
performance. We measured the execution times of a series of commonly used pro-
grams with both options. The data are displayed in Figure 2.1. The raw displays and
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Histogram is one answer
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ECDF allow easy comparison

Comparing Data Sets is easily done with their empirical cumulative distribution functions
(ECDFs). The ECDF of a data set =4, ..., =,, 1s the function f defined by

1

so that f(x) is the proportion of data samples that do not exceed x. On Figure 2.2 we see that the
new data set clearly outperforms the old one.

CDI=
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Summarized Measures

B Median, Quantiles
» Median Ifn 1s odd. the median is T (nt1 celse 1 (T{ ) —|— T(p41))

» Quartiles S :f/b /é

» P-quantiles

B Mean and standard deviation

» Mean
m = 12_1?1

» Standagd dev1at10n

G — \ = Ll o (= ??1.)7

» What is the interpretation of standard deviation ?

» A:if data is normally distributed, Nﬂ} ‘ﬁ\(’)ﬁ/brkb,abllﬁ)ygaw Magug&‘é lies in

the interval m 4+ 1.96s ﬂ g?/o Pmbp\
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Coefficient of Variation Summarizes
Variability

B Scale free
B Second order variability

CoV = —

m

- m 18 the mean and s the standard deviation.

B For adata set with n samples

0 < CoV < yn—1

B Exponential distribution: CoV =1

B What does CoV =0 mean?



Lorenz Curve Gap is an Alternative to CoV

B Alternative to CoV: First-order variability

MAD = 1 Z |z — m Mean Absolute Deviation
n m=1
o _ MAD
59 = 2m

B For adata set with n samples

1
0< gap <1~

n

B Scale free, index of unfairness



Jain’s Fairness Index is an Alternative to CoV

xit B Quantifies fairness of x;

2

X2 . _ (D i1 Ti)
‘TFI - i 9

’ n Zi:l I3

B Ranges from

» 1:all x, equal
(X1, %3) _ _
0 » 1/n: maximum unfairness

o B Fairness and variability are
- Jain’s fairness index is cos? 6. ) ]
For n =2 two sides of the same coin

1
I =
1 4+ CoV?
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Perfect equality (fairness) I_O renz C urve

S
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(a) Execution times in Figure 3.2, old code. (b) Execution fimes in Figure 3.2, new code.
CV=0.779; JFI=0.622; gap=0.321; gini=0.434; gini- CV=0.720; JFI=0.658; gap=0.275; gini=0.386; gini-
approx=0.430 approx=0.375

LORENZ CURVE The Lorenz Curve is defined as follows. A point (p, ) on the curve. with
p, ¢ € [0, 1], means that the bottom fraction p of the distribution contributes to a fraction ¢ of the

total > 7", ;.

B Old code, new code: is JFI larger ? Gap ?

B Gini’s index is also used; Def: 2 x area between diagonal and Lorenz curve
» More or less equivalent to Lorenz curve gap

11



/4 ost
4 o8
4 orb
4 s}
4 osf
1 o4t
4 o3}
4 o2t

4 01k

0

0.1 02 03 04 04 0.8 07 08 09

(a) Execution times in Figure 2.3, old code
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(b) Execution times in Figure 2.3, new code
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(c) Ethernet Byte Counts (z,, is the byte length of the
nth packet of an Ethernet trace [55])

| | CoV | JFT | gap | Gini | Gini-approx |
Figure 2.3, old code | 0.779 | 0.622 | 0.321 | 0.434 0.430
Figure 2.3, new code || 0.720 | 0.658 | 0.275 | 0.386 0.375
Ethernet Byte Counts || 1.84 | 0.228 | 0.594 | 0.730 0.715
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Which Summarization Should One Use ?

B There are (too) many synthetic indices to choose from

» Traditional measures in engineering are standard deviation, mean and CoV

» Traditional measures in computer science are mean and JFI
» JFl is equivalent to CoV

» In economy, gap and Gini’s index (a variant of Lorenz curve gap)

» Statisticians like medians and quantiles (robust to statistical assumptions)

B We will come back to the issue after discussing confidence intervals

13



2. Confidence Interval

B Do not confuse with prediction interval
B Quantifies uncertainty about an estimation

14
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Confidence Intervals for Mean of Difference

Datasets come from the same database transaction sequences:
Paired Experiment

B Meanreduction=  26.1 4+ 10.2

0 is outside the confidence intervals fox mean and for median

B Confidence interval for median
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Computing Confidence Intervals

B This is simple if we can assume that the data comes from an iid model

Independent Identically Distributed

17



Cl for median

B [s the simplest of all
B Robust: always true provided iid assumption holds

DEFINITION 2.2.1. A confidence interval af level ~ for the fixed but unknown parameter m is an
interval (u(Xy. ..., X,,), v(Xy,... X,,)) such that

P(u(Xy, ... X)) <m<o(Xy, .. X)) >y (2.2)

In other words, the mterval is constructed from the data, such that with at least 95% probability (for
~ = (.95) the true value of m falls in 1t. Note that it is the confidence interval that is random,

not the unknown parameter m.

While u() and v() are random, the true value of m is deterministic.

18



m, is a threshold (and one of the data) which divides the data into bottom p*100% and the rest.

THEOREM 2.2.1 (Confidence Interval for Median and Other Quantiles). Let X, ....X,, be n iid
random variables, with a common CDF F (). Assume that F() has a density, and for 0 < p < 1 let
my, be a p-quantile of F'(), i.e. F'(m,) = p. p=0.50 for median.

Let X1y < X(9) < ... < X(y) bethe order statistic, i.e. the set of values of X; sorted in increasing
order. Let B,, ,, be the CDF of the binomial distribution with n repetitions and probability of success

p. A confidence interval for m,, at level ~ is > true p-quantile m,
Pr (one sampled datum < m,) =p.

X (j)")&(ﬁ*}] = my € [X(jy, Xy | implies!
Xj<m,—> At least | samples satisfy X;<m,
where j and k satisfy m,< Xy At most k-1 samples satisfy X;<my
Bn!p(:{’.? — 1) — Bn?p( j — 1) :Z 8l The probability of intersection of the

above event sets must be >y
See the tables in Section A for practical values. For large n, we can use the approximation

&

J L?I-p - \/?Ip ( I - p )J The above derivation is a bit tricky but

_ can be understood easily by noting that
k= ﬁlp + 1 \/?l-p(l — pﬂ + 1 the two event sets must be maximized.
Note also the power of “order statistic”:
F() 1s not used at all.

where 1) is defined by Ny 1(1n) = 1—251 (e.g. 1 = 1.96 for v = 0.95).

Binomial distribution B, ,() 1s the distribution of the sum of n Bernoulli trials with probability p.

19



Confidence Interval for Median, level 95%

B n=31
j kP (X(.” < o5 = }{{_{f})
9 21 0.959
10 22 0.971
11 23 (0.959
B n=32
j kP (XU} < Mos < X{H)
10 22 0.965
11 23 0.965
70 27 44 0.959
n=71 | = [0.60n — 0.950
0.980+,/n ] m 50n+ 14
0.980+/11 |

L | J | | ¥ |
n < 5: no confidence interval possible.
6 1 ] 0.969
7 1 7 0.984
8 1 7 0.961
9 2 8 0.961
10 2 9 0.979
11 2 10 0.988
12 3 10 0.961
13 3 11 0.978
14 3 11 0.965
15 4 12 0.965
16 4 12 0.951
17 5 13 0.951
18 5 14 0.969
19 5 15 0.981
20 6 15 0.959
21 6 16 0.973
22 6 16 0.965
23 7 17 0.965
24 7 17 0.957
25 8 18 0.957
26 8 19 0.971
27 8 20 0.981
28 9 20 0.964
29 9 21 0.976
30 10 21 0.957 |
31 10 22 0.971
32 10 22 0.965

B

J and Kk are chosen s.t. y = 0.95.

-

s E
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Example n = 100, confidence interval for

L AN 4 L | il Lt “+ L |
70 27 44 0.959 72 25 47 0.990
n=>T1 |~ [050n— | = 0.950 n>73 | = [050n— | = 0.990
0.980+/7 [0.50n+1+ 1.288./m | [0.50n+1+
0.980/n] 1.288,/n]

Table A.1: Quantile ¢ = 50%, Confidence Levels v = 95% (left) and 0.99% (right)

- . . X(so)+X
B The median estimate is —22——61

B Confidence level 95%
j=150—-9.8] =40
k =[514+9.8] =61
a confidence interval for the median is
[ X 40y X(61)]
B Confidence level 99%
j=150-12.8] =37
k =[51+ 12.8] = 64
a confidence interval for the media is
:X(37)»' X(64)]
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Cl for mean and Standard Deviation

B This is another method, most commonly used method...

B Butrequires some additional assumptions to hold, may be misleading if
they do not hold

22



Cl for mean, asymptotic case

B If central limit theorem holds

(in practice: n is large and distribution is not “wild”) finite variance

finite mean

THEOREM 2.2.2. Let X1...., X,, be n iid random variables, the common distribution of which is
assumed to have well defined mean 1 and a variance o, Let [i,, and s> by

1 T
A, = =S"X, (2.19)
n
i=1
1 T
9 .2
g = — X; — [y, 2.20
2 n;( fin) (2.20)

The distribution of \/ﬁ% converges to the normal distribution Ny ; when n — +o00. An approx-
imate confidence interval for the mean at level - is

~ Sn
L, = ”ﬁ (2.21)

where 1 is the 1—;'1 quantile of the normal distribution N 1, i.e Ny(n) = 1—;'1 For example,
n = 1.96 for v = 0.95 and n = 2.58 for v = 0.99.

-+ a normal distribution is symmetric.
23



Example

B n=100:95% confidence level

S
CI for mean: m + 1.96\/—ﬁ

B amplitude of CI decreases in

1/4/n

compare to prediction
interval
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Normal Case

B Assume data comes from an iid + normal distribution
Useful for very small data samples (n <30)

THEOREM 2.2.3. Let X1, ..., X, be a sequence of iid random variables with common distribution N ,, ,2
1 T
ln, = = X,
= 23
=

1 & o,
= EZ(Xi—ﬂn)
i=1

= b2

e

No More An Approximation

T
CI for mean at level y [l £ r_.?_”
\/ﬁ for Normal Case

where 1) is the (1—?-) quantile of the student distribution t,,_1.
o The distribution of (n — 1}“—;2&- is x\2_,. A confidence interval at level ~ for the standard deviation is

CI for std at level y [0

where ¢ and € are quantiles of x2_1: x%2_1(¢) = 1Y and 2 _ (&) = 1ty

25



Example

n =100 : 95% confidence level

Cl formean: [/ — 0.198¢4, i + 0.1980]

Cl for standard deviation:  [0.865,1.140]

same as before except
0, instead of s,

1.98 for n=100 instead of 1.96 for all n

In practice both (normal case and large n
asymptotic) are the same if n > 30

But large n asymptotic does not require
normal assumption

150 F

1001

50+




% points of N(0.1)

Tables in [Weber-Tables]

% points of t,

0.995 0.99 0975 0.95
258 2.33 1.96 1.645
% points of 2

n 099 0975 0.95 (.9
1 663 502 384 271
2 921 T7.38 5.99 4.61
5 11.34 935 7.81 6.25
4 13.28 11.14 9.49 7.78
o 15.09 12.83 11.07 9.24
0 16.531 14.45 12.59 10.64
7 18.48 16.01 14.07 12.02
XS 2009 17532 15581 13 2R

n 0995 099 0975 095
I 63.66 31.82 12.71 6.31
2 992 069 430 2.92
3 o34 454 318 2.3
4 4060 3.7 2.78 213
5 4.03 336 2,57 2.02
6 3.1 314 245 1.94
300 300 236 1.89
& 336 290 251 1.56
9 325 282 220 1385
10 317 2.6  2.23 1.1
11 311 272 220 1.80
12 3.0 2068 218 1.78




Standard Deviation: nor n-1?

- - ~9 1 A\2 2 1 ~o\2
The estimators of the variance 0, = —= > " | (X; — j1,)" and 57 = = > " (Xi — fin)
differ by the factor = versus —. The factor

— may seem unnatural, but it is required for
Theorem 2.2.3 to hold exactly. The factor % appears naturally from the theory of maximum
likelihood estimation (Section B.1). In practice, it is not required to have an extreme accu-
racy for the estimator of 0 (since it is a second order parameter); thus using ﬁ or % makes
little difference. Both &,, and s,, are called sample standard deviation.

We use 1/(n-1) instead of 1/n when the data is normal.

28



Bootstrap Percentile Method

A heuristic that is robust (requires only iid assumption)
» But be careful with heavy tail, see next

but tends to underestimate CI
Simple to implement with a computer

Idea: use the empirical distribution in place of the theoretical (unknown)
distribution
Assumption: empirical distribution can substitute for the real distribution.
For example, with confidence level = 95%:
» the data setis S= {-‘171, In}

» Dor=1tor=999

» (replay experiment) Draw n bootstrap replicates with replacement from S

» Compute sample mean T, If X, is drawn this time, you draw next
time from the entire data set {X,, ..., X,}.

» Bootstrap percentile estimate is (T ,s), T(975))

29
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B Doesdatalooknormal?

B Theorems 2.2.2 and 2.2.3 give same

Example: Compiler Options

» No

result (n >30)

B Chapter 2.2.4 (Bootstrap) gives same

result

» => Asymptotic assumption valid

[0
E
l_
c
i)
5
0
Q
x
L
C
@
0
=

o
5

1]
(=]

45

£
[=]

35

30

25

35
30
25
20
15
10

100

1 1Hnai nDyIII'JLUI.ILt arnmu LIUUI.CII.ICI'J I TIVCHIUG WUHTNIUTTHIVE TG vals

Th.2.2.3
Th. 2.2.2
Bootstrap

Data Set

Lo

20C

30



Confidence Interval for Fairness Index

B Use bootstrap if data is iid

interval (in this context () is called a stafistic). For example, if the statistic of interest is the
Lorenz curve gap, then by Section 2.1.3:

B 1 - | o VIAD
1) = 3 S > |- n D> v gap =——

- i=1"" j=1 i=1
1L R=[2ry/(1=7)] -1 > For example g = 25, v = 0.95, R = 999
2- forr=1: R do Typically 999~4999
3: draw n numbers with replacement from the list (x1, ..., x, ) and call them X7, ..., X
4: let 7" = ?L(X "') Re-sampled data?
5. end for
. ! _ . 1 R
6: (T{U’ T{R)) = sort (T T I ) Prediction interval: variability of samples/data themselves
7: Prediction interval is [T(.,.O} X T( R—l-l—'r'o}] Confidence interval: variability of statistics of samples/data
To put it simply,

compute the statistic sufficient number of times R by “draw n numbers with replacement”!

31



1 I 1 1 1 1 1 I i)
01 02 03 04 05 06 07 08 09 1 0

(a) Execution times in Figure 2.3, old code

1 I 1 1 I 1 1 1
0.1 02 03 04 0.5 06 07 08 08 1

(b) Execution times in Figure 2.3, new code

EXAMPLE 2.3: CONFIDENCE INTERVALS FOR FAIRNESS INDICES. The confidence
intervals for the left two cases on Figure 2.5 were obtained with the Bootstrap, with
a confidence level of 0.99, i.e. with I = 4999 bootstrap replicates (left and right:
confidence interval; center: value of index computed in Figure 2.5).

Jain’s Fairness Index

Lorenz Curve Gap

Old Code
New Code

0.5385 /0.6223 " 0.7057
0.5673 \.0.6584 / 0.7530

0.2631,0.3209™~ 0.3809
0.2222\.0.2754/ 0.3311

32



We test a system 10°000 time for failures
and find 200 failures: give a 95% confidence
interval for the failure probability p.

Let X; = 0 or 1 (failure / success); E(X;) = p

So we are estimating the mean. The asymptotic theory
applies (no heavy tall) Theorem 2.2.2: Anyway (whether X; is discrete r.v. or not),

the normalized mean converges to a normal distribution.

= 002
Z X{ — s = Z Xi — U = tn — U7
L—ln
(1 — ) = 0.02 X 0.98 ~ 0.02
sp =V0.02 ~ 0.14

: ) NSn__ _
Confidence Interval: u,, + 770000 — 0.02 + 0.003 atlevel 0.95

33



We test a system 10 time for failures and
find 0 failure: give a 95% confidence interval
for the failure probability p.

; 0]

; 0.1]

; 0.11]

; 0.21]
; 0.31]

U1 b W N =
IOI IOI IOI IOI IOI
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Confidence Interval for Success Probability

B Problem statement: want to estimate proba of failure; observe n outcomes;
no failure; confidence interval ? =» Theorem 2.2.2 says [0,0]

B Example: we test a system 10 time for failures and find 0 failure: give a 95%
confidence interval for the failure probability p.

B [s this a confidence interval for the mean ? (explain why)
B The general theory does not give good results when mean is very small

If n is extremely large, you will still be able to apply the general theory, Theorem 2.2.2.

Exploiting the fact that the data X, is the outcome of a Bernoulli experiment, we have the theorem in the next page.

Just as “normality” was exploited for extension of Theorem 2.2.2 to Theorem 2.2.3, “Bernoullian” is used from
Theorem 2.2.2 to Theorem 2.2.4.

35



THEOREM 2.2.4. [43, p. 110] Assume we observe z successes out of n independent experiments.
A confidence interval at level ~ for the success probability p is [L(z); U(z)] with

L(0) = 0
L(z) = ¢n.1 (), 2=1,..,m (2.26)
U(z)=1-L(n — 2)

where ¢y, . () is defined forn = 2,3, ..., z € {0,1,...,n} and o € (0; 1) by

| N nlf
{ O () = —— (2.27)
Tllz)( —|—1); TIQZ)( 1'_7) 1_&:Fﬂ11?12(f)

(F,, n,() is the CDF of the_Fisher distribution with ny,ny degrees of freedom). In particular, the

confidence interval for p when we observe = = 0 successes is |0; po(n)| with
NO SuCCess

po(n) =1 — (1;) :llocr (12)+G(3)ﬁn large n (2.28)

Whenever z > 6 and n — z > 6, the normal approximation

(2.29)

can be used instead, with Ny 1(n) =

36



For v = 0.95, Eq.(2.28) gives py(n) = % and this 1s accurate with less than 10% relative error
for n > 20 already.

If we manage to test a system more than 20 times with no success at all, the following simple formula can be used:

po(n) =1 - (%)%

EXAMPLE: SENSOR LOSS RATIO. We measure environmental data with a sensor net-
work. There is reliable error detection, 1.e. there is a coding system which declares
whether a measurement is correct or not. In a calibration experiment with 10 indepen-
dent replications, the system declares that all measurements are correct. What can
we say about the probability p of finding an incorrect measurement ?

Apply Eq.(2.28): we can say, with 95% confidence, that p < 30.8%.
Theorem 2.2 4.
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We test a system 10’000 time for failures and find 200 failures: give
a 95% confidence interval for the failure probability p

Whenever z > 6 and n — z > 6, the normal approximation

can be used instead, with No1(n) = 1—?&
Theorem 2.2 .4.

B Apply formula 2.29 (z =200 = 6andn —z = 6)
1.96

J200(1 — 0.02) ~ 0.02 + 90 10VZ ~ 0.02 £ 0.003
~ 10000 e T 10000 Tt

38



Take Home Message

Confidence interval for median (or other quantiles) is easy to get from the
Binomial distribution

» Requires iid

» No other assumption
Confidence interval for the mean

» Requires iid

» And

» Either if data sample is normal and n is small
» Or data sample is not wild and n is large enough

The bootstrap is more robust and more general but is more than a simple
formula to apply (NB: Even bootstrap highly depends on no. of sample data)

Confidence interval for success probability requires special attention when
success or failure is rare

If the data is not normal and the size of data is very small, use “median”
approach rather than risking accuracy of confidence interval of “mean”

approach.
39



3. The Independence Assumption

B Confidence Intervals require that we can assume that the data comes from
an iid model

Independent Identically Distributed

B How do I know if this is true ?
» Controlled experiments: draw samples randomly with replacement
» Simulation: independent replications (with random seeds)

» Else: we do not know - in some cases we will have methods for time series

40



What does independence mean ?

IED(}(.L' c A ‘ X1 = Iy, e X = ;’13.3;_1) = ]P(X? & A) (230)

i.e. if we know the distribution F'(r), observing Xy, ..., X; ; does not give more information
about X;.

Note the importance of the “if” statement in the last sentence: remove it and the sentence 1s no
longer true. To understand why, consider a sample x4, ..., x,, for which we assume to know that
it 1s generated from a sequence of 11d random variables X, ..., X,, with normal distribution but
with unknown parameter (, 02). If we observe for example that the average of x4, ..., 2,1 15 100
and all values are between 0 and 200, then we can think that 1t 1s very likely that x,, 1s also in the
interval |0, 200] and that it is unlikely that z,, exceeds 1000. Though the sequence is iid, we did
gain information about the next element of the sequence having observed the past. There is no
contradiction: if we know that the parameters of the random generator are ;1 = 100 and ¢ = 10
then observing x4, ..., r,,_1 gives us no information about z,,.

41



Example

B Pretend data is iid:
CI for mean is [69;

69.8]

140

120

100 [t

80 . .
B [s this biased ?

60 _

40 B8

20
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What happens if data is not iid ?

B [f data is positively correlated
» Neighbouring values look similar
» Frequent in measurements (particularly if data are sampled over fine time scale)

» Clis underestimated: there is less information in the (non-iid) data than one
thinks You must be less confident.
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4. Prediction Interval

B CI for mean or median summarize
» Central value (a scalar function of data)+ uncertainty about it

B Prediction interval summarizes variability of data

DEFINITION 2.4.1. Let X1, ..., X,,, X,,11 be a sequence of random variables. A prediction interval
at level ~ is an interval of the form [u( Xy, ..., X,,), v(Xy, ..., X,,)] such that

Pu(Xy, ... X,) < Xop1 <0o(Xy, .., X)) >y (2.31)

T Instead of central values, i.e., mean & median
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Prediction Interval based on Order Statistic

B Assume data comes from an iid model

B Simplest and most robust result (not well known, though):

THEOREM 2.4.1 (General IID Case). Let X1, ..., X,,. X,.11 be an iid sequence and assume that

the common distribution has a density. Let X A e iy be the order statistic of X1, ..., X,,. For
1< <k<n:
P(X} <X <X”)—k_j (2.32)
G) S Antl = X)) = 7y -

thus for a > —|—1’ [XFL{H_|_1)%J):-XH

(Tt 1)(1- )1)] is a prediction interval at level at least v = 1 — q.

For example, with n = 999, a prediction interval at level 0.95 (o = 0.05) is [ X (25), X(975)]. This
theorem is similar to the bootstrap result in Section 2.2.4, but is exact and much simpler
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Prediction Interval for small n

B Forn=39, [X_,, Xl IS @ prediction interval at level 95%

B For n <39 there is no prediction interval at level 95% with this method
» But there is one atlevel 90% forn > 18

» Forn =10 we have a prediction interval [x at level 81%

min’ Xmax]
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Prediction Interval based on Mean

Normal case

THEOREM 2.4.2 (Normal HD Case). Let Xy, ..., X,,, X,,11 be an iid Sequer’me with common distri-
bution N, ,2. Let ji,, and 0 62 be as in Theorem 2.2.3. The distribution of /- “+1 £ js Student s
th_1, apredzcnun interval ar level 1 — v is

(2.33)
where 1 is the (1 — %) quantile of the student distribution t,,_.
For large n, an approximate prediction interval is
fin £ * (2.34)

where 1 is the (1 — %) quantile of the normal distribution Ny 4.
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Prediction Interval based on Mean

B If data is not normal, there is no general result - bootstrap can
be used

» Self-evident because, in two-number (mean, std) summarization,
the variability depends on std and the distribution type as well.

B [f data is assumed normal, how do CI for mean and Prediction
Interval based on mean compare ?

1 = estimated mean

s? = estimated variance

Confidence interval for mean at level 95 % =ux 1%6 S
Prediction interval at level 95% =u+196s
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Re-Scaling

B Many results are simple if the data is normal, or close to it (i.e. not wild). An
important question to ask is: can I change the scale of my data to have it look
more normal. Put it another way, is it normalizable through re-scaling?

» Ex:log of the data instead of the data
B A generic transformation used in statistics is the Box-Cox transformation:

b (o s #0
() = { nz ,s=0
» Continuousins

s=0:log

s=-1:1/x

s=1: identity
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Prediction Intervals for File Transfer Times
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order statistic  standard deviation
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Which Summarization Should | Use ?

B Two issues

» Robustness to outliers (i.e., significantly bigger/smaller values)
» e.g., what if data is not normal?
» e.g., what if some data are extremely large?

» Compactness (i.e.,, how do you want to summarize them in your paper?)
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QQplot is common tool for verifying assumption

B Normal Qgplot

7
» X-axis: standard normal quantiles rii=F ( + 1)
n

T Inverse of normal CDF

» Y-axis: Ordered statistic of sample: X(i) < X{Q) < ..

B [f data comes from a normal distribution, qgplot is close to a straight line
(except for end points)

» Visual inspection is often enough
» If not possible or doubtful, we will use tests later

QQplot : Quantile-Quantile (Ordered Data) Comparison
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QQPlots of File Transfer Times

Too big
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Figure 2.13: Normal qqplots of file transfer times in Figure 2.12 and of an artificially generated sample
from the normal distribution with the same number of points. The former plot shows large deviation from

normality, the second does not.

Handy tool for checking normality



Take Home Message

Summarized Measures

i i B B The interpretation of ¢ as measure of

» Median  Ifn is odd. the median is z sg1). else §(x(g) + Z(g41)) variability is meaningful if the data is
» Quartiles ..
. P-oasiites normal (or close to normal). Else, it is
. misleading. The data should be best re-
M Mean and standard deviation
» Mean scaled.

s 1 n
m = :; E =l J‘,:
» Standard deviation

a
-

1 n - ] 2__ 1 n . 2
n El:l (ri—m) ors = a1 E':l (Jn - m)

v

Whatisthe interpretation of standard deviation ?

A:if data is normally distributed, with 95% probability, a new data sample lies in
the interval m & 1,96«

\ 1]
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5. Which Summarization to Use ?

B [ssues
» Robustness to outliers
» Distribution assumptions

Example of Outlier:

You are measuring the seismic intensity of a very weak earthquake in a
lab. All of a sudden, a friend of yours slams the door of the lab and you
get extremely strong seismic intensity on the seismometer.
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A Distribution with Infinite Variance
CI based on std dv
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Outlier in File Transfer Time
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Confidence Interval

Robustness of Conf/Prediction Intervals

mean + std dev

. CI for median geom mean
e
Method
(e) (Confidenve Intervals)

Outlier removed
Outlier present

Prediction Interval

300~

200

100

—i00f

—200+

Based on
mean + std dev

Order stat

€ 4 o o

Based on
mean + std dev

+ re-scaling
|

3

Method
(f) (Prediction Intervals)

Normalization aside,

order statistics based methods are much more robust to outliers.
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Fairness Indices with different orders

Index | Lower Bound, CI | Index | Upper Bound, CI
Without Outlier | JFI 0.1012 | 0.1477 | 0.3079
gap 0.4681 | 0.5930 | 0.6903
With Outlier JFI 0.0293 | 0.0462 | 0.3419
gap 0.4691 | 0.6858 | 0.8116

Table 3.2: Fairness indices with and without outlier.

B Confidence Intervals obtained by Bootstrap

B |Flis very dependent on one outlier
» As expected, since JFI is essentially CoV, i.e. standard deviation

B Gap is sensitive, but less
» Does not use squaring ; why ? =» Lower-order statistics are less sensitive



Compactness

B [f normal assumption (or, for CI; asymptotic regime) holds, u and ¢ are
more compact

» two values give both: Cls at all levels, prediction intervals
» Derived indices: CoV, JFI

B [n contrast, CIs for median does not give information on variability (PI)
» PI has to be computed through an additional procedure.

B Prediction interval based on order statistic is robust (and, IMHO, best)
» Use order statistic for prediction intervals
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Take-Home Message

B Understand methods before using them.

B Mean and standard deviation make sense when data sets are not wild.

» Close to normal, or not heavy tailed and large data sample

» For example, certain Weibull distributions are close to a normal one.
B For non-norml case, use quantiles and order statistics.
B Sometimes, you need to rescale.
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Questions

QUESTION 2.8.1. Compare (1) the confidence interval for the median of a sample of n data values,
at level 95% and (2) a prediction interval at level at least 95%, for n = 9,39, 99. °

SFrom the tables in Chapter A and Theorem 2.4.1 we obtain: (confidence interval for median, prediction interval):

n = 9: [x(2), 2], impossible; n = 39: [2(13), Z@n]. [2a).2@e)l: 7 = 991 [230), 2(61)]. [2(2), T(o7)]- The
confidence interval is always smaller than the prediction interval.

QUESTION 2.8.2. Call L = min{ Xy, Xy} and U = max{X, Xo}. We do an experiment and
find L = 7.4, U = 8.0. Say which of the following statements is correct: (§ is the median of the
distribution). (1) the probability of the event {L < § < U} is 0.5 (2) the probability of the event
{74<60<80}is05 10

“In the classical (non-Bayesian) framework, (1) is correct and (2) 1s wrong. There 1s nothing random in the event
{7.4 < 6 < 8.0}, since # is a fixed (though unknown) parameter. The probability of this event is either 0 or 1, here it
happens to be 1. Be careful with the ambiguity of a statement such as “the probability that ¢/ lies between L and U is

0.5”. In case of doubt, come back to the roots: the probability of an event can be interpreted as the ideal proportion of
simulations that would produce the event.

QUESTION 2.8.3. How do we expect a 90% confidence interval to compare to a 95% one ? Check
this on the tables in Section 4. !

19Tt should be smaller. If we take more risk we can accept a smaller interval. We can check that the values of j [resp.
k] in the tables confidence intervals at level v = (.95 are larger [resp. smaller] than at confidence level v = 0.99.
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Questions

QUESTION 2.8.4. A data set has 70 points. Give the formulae for confidence intervals at level

0.95 for the median and the mean '

'Median: from the table in Section A [x (27),;17(44)}. Mean: from Theorem 2.2.2: ;i 4= 0.23435 where ji 1s the
sample mean and S the sample standard deviation. The latter i1s assuming the normal approximation holds, and should

be verified by either a qgplot or the bootstrap.

QUESTION 2.8.5. A4 data set has 70 points. Give formulae for a prediction intervals at level 95%

2 -
I2From Theorem 2.4.1: [min; x;, max; ;.
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Questions

QUESTION 2.8.6. A data set x4, ...x,, is such that y; = In x; looks normal. We obtain a confidence
interval |{,u| for the mean of y;. Can we obtain a confidence interval for the mean of =; by a
transformation of [(,u] ? 11

13No, we know that [ﬁg, ¢"] is a confidence interval for the geometric mean, not the mean of ;. In fact 2; comes

2
from a log-normal distribution, whose mean is e#* = where 1 is the mean of the distribution of y;, and o2 its variance.

QUESTION 2.8.7. Assume a set of measurements is corrupted by an ervor term that is normal,
but positively correlated. If we would compute a confidence interval for the mean using the iid
hyvpothesis, would the confidence interval be too small or too large ? 1°

4Too small: we underestimate the error. This phenomenon is known in physics under the term personal equation:
if the errors are linked to the experimenter, they are positively correlated.

Confusing term: log-normal distribution is the distribution of an exponential of a normal random variable.
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Read!

B To make a good start of this course, please read Chapter 2.
M Ifitis affordable, also read Chapter 1.

B [f you have no knowledge in Markov chain, read Chapter 7.6
before the next lecture.



