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PREFACE

PERFORMANCE EVALUATION is often the critical part
of evaluating the results of a research project. Many of
us are familiar with simulations, but it is often difficult to
address questions like: Should I eliminate the beginning
of the simulation in order for the system to become sta-
bilized ? I simulate a random way point model but the
average speed in my simulation is not as expected. What
happened ? The reviewers of my study complained that I
did not provide confidence intervals. How do I go about
this ? I would like to characterize the fairness of my proto-
col. Should I use Jain’s Fairness Index or the Lorenz Curve
Gap ? I would like to fit a distribution to the flow sizes
that I measured but all my measurements are truncated to a
maximum value; how do I account for the truncation ?

This book groups a set of lecture notes for a course given at EPFL. It contains all the material
needed by an engineer who wishes to evaluate the performanceof a computer or communication
system. More precisely, with this book and some accompanying practicals, you will be able to
answer the above and other questions, evaluate the performance of computer and communication
systems and master the theoretical foundations of performance evaluation and of the corresponding
software packages.

In the past, many textbooks on performance evaluation have given the impression that this is a
complex field, with lots of baroque queuing theory excursions, which can be exercised only by
performance evaluation experts. This is not necessarily the case. In contrast, performance evalu-
ation can and should be performed by any computer engineering specialist who designs a system.
When a plumber installs pipes in our house, one expects her toproperly size their diameters; the
same holds for computer engineers.

This book is not intended for the performance evaluation specialist. It is addressed toevery com-
puter engineer or scientistwho is active in the development or operation of software or hardware
systems. The required background is an elementary course inprobability and one in calculus.

xvii
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THE OBJECTIVE OF THIS BOOK is therefore to make performance evaluation usable by all
computer engineers and scientists. The foundations of performance evaluation reside in statistics
and queuing theory, therefore,somemathematics is involved and the text cannot be overly sim-
plified. However, it turns out that much of the complicationsare not in the general theories, but
in the exact solution of specific models. For example, some textbooks on statistics (but none of
the ones cited in the reference list) develop various solution techniques for specific models, the
vast majority of which are encapsulated in commercially or freely available software packages like
Matlab, S-PLUS, Excel, Scilab or R.

To avoid this pitfall, we focused first on thewhatbefore thehow. Indeed, the most difficult question
in a performance analysis is often “what to do”; once you knowwhat to do, it is less difficult to
find a way with your usual software tools or by shopping the web. For example, what do we do
when we fit a model to data using least square fitting (Chapter 3) ? What is a confidence interval ?
What is a prediction interval (Chapter 2) ? What is the congestion collapse pattern (Chapter 1) ?
What is the null hypothesis in a test and what does the result of a testreally mean (Chapter 4) ?
What is an information criterion (Chapter 5) ? If no failure appears out ofn experiments, what
confidence interval can I give for the failure probability (Chapter 2) ?

Second, for thehow, we looked for solution methods that as universal as possible, i.e. that apply
to many situations, whether simple or complex. There are several reasons for this. Firstly, one
should use only methods and tools that one understands, and agood engineer should first invest
her time learning tools and methods that she will use more often. Secondly, brute force and a
computer can do a lot more than one often seems to believe. This philosophy is in sharp contrast to
some publications on performance evaluation. For example,computing confidence or prediction
intervals can be made simple and systematic if we use the median and not the mean; if we have
to employ the mean, the use of likelihood ratio statistic is quite universal and requires little intel-
lectual sophistication regarding the model. Thus, we focuson generic methods such as: the use of
filters for forecasting (Chapter 5), bootstrap and Monte-Carlo simulations for evaluating averages
or prediction intervals (Chapter 6), the likelihood ratio statistic for tests (Chapter 2, Chapter 4),
importance sampling (Chapter 6), least square andℓ1-norm minimization methods (Chapter 3).

When presenting solutions, we triednot to hide their limitations and the cases where they do not
work. Indeed, some frustrations experienced by young researchers can sometimes be attributed to
false expectations about the power of some methods.

We give a coverage of queuing theory that attempts to strike abalance between depth and rele-
vance. During a performance analysis, one is often confronted with the dilemma: should we use
an approximate model for which exact solutions exist, or approximate solutions for a more exact
model ? We propose four topics (deterministic analysis, operational laws, single queues, queuing
networks) which provide a good balance. We illustrate in a case study how the four topics can
be utilized to provide different insights on a queuing question. For queuing networks, we give a
unified treatment, which is perhaps the first of its kind at this level of synthesis. We show that com-
plex topics such as queues with concurrency (MSCCC queues) or networks with bandwidth sharing
(Whittle networks) all fit in the same framework of product form queuing networks. Results of this
kind have been traditionally presented as separate; unifying them simplifies the student’s job and
provides new insights.

We develop the topic of Palm calculus, also called “the importance of the viewpoint”, which is
so central to queuing theory, as a topic of its own. Indeed, this topic has so many applications to
simulation and to system analysis in general, that it is a very good time investment. Here too, we
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focus on general purpose methods and results, in particularthe large-time heuristic for mapping
various viewpoints (Chapter 7).

CHAPTER 1 GIVES A METHODOLOGY and serves as introduction to the rest of the book. Per-
formance patterns are also described, i.e. facts that repeatedly appear in various situations, and
knowledge of which considerably helps the performance evaluation.

Chapter 2 demonstrates how to summarize experimental or simulation results, as well as how to
quantify their accuracy. It also serves as an introduction to a scientific use of the statistical method,
i.e. pose a model and verify its assumptions. In Chapter 3 we present general methods for fitting
an explanatory model to data and the concept of heavy tail. Chapter 4 describes the techniques of
tests, and Chapter 5 those of forecasting. These four chapters give a coverage of modern statistics
useful to our field.

Chapter 6 discusses discrete event simulation and several important, though simple issues such as
the need for transient removal, for confidence intervals, and classical simulation techniques. We
also discuss importance sampling, which is very useful for computing estimates of rare events; we
give a simple, though quite general and broadly applicable method.

Chapter 7 describes Palm calculus, which relates the varying viewpoints resulting from measure-
ments done by different operators. Here, we discuss freezing simulations, a phenomenon which
can be a problem for even simple simulations if one is not aware of it. We also present how to
perform a perfect simulation of stochastic recurrences. Chapter 8 discusses patterns specific to
queuing, classical solution methods for queuing networks,and, perhaps more important, opera-
tional analysis for rapid evaluation.

The appendix gives background information that cannot yet be easily found elsewhere, such as a
Fourier-free quick crash course on digital filters (used in Chapter 5) and confidence intervals for
quantiles.

Performance evaluation is primarily an art, and involves using sophisticated tools such as mathe-
matical packages, measurement tools and simulation tools.See the web site of the EPFL lecture
on Performance Evaluation for some examples ofpracticals, implemented in matlab and designed
around this book.

The text is intended for self-study. Proofs are not given when there are easily accessible references
(these are indicated in the text); otherwise they can be found in appendixes at the end of the
chapters.

TheIndexcollects all terms and expressions that are highlighted in the text likethis and also serves
as a notation list.
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CHAPTER 1

METHODOLOGY

Perhaps the most difficult part in performance
evaluation is where to start. In this chapter we
propose a methodology, i.e. a set of recommen-
dations valid for any performance evaluation
study. We stress the importance of factors, in
particular hidden factors, and the need to use
the scientific method. We also discuss a few
frequent performance patterns, as a means to
quickly focus on important issues.
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1.1 WHAT IS PERFORMANCE EVALUATION ?

In the context of this book, performance evaluation is aboutquantifying the service delivered by a
computer or communication system. For example, we might be interested in: comparing the power
consumption of several server farm configurations; knowingthe response time experienced by a
customer performing a reservation over the Internet; comparing compilers for a multiprocessor
machine.

In all cases it is important to carefully define theload and themetric, and to be aware of the
performance evaluationgoals.

1.1.1 LOAD

An important feature of computer or communication systems is that their performance depends
dramatically on theworkload (or simply load) they are subjected to. The load characterizes the
quantity and the nature of requests submitted to the system.Consider for example the problem of
quantifying the performance of a web server. We could characterize the load by a simple concept
such as the number of requests per second. This is called theintensity of the workload. In
general, the performance deteriorates when the intensity increases, but often the deterioration is
sudden; this is due to the non-linearity of queuing systems –an example ofperformance pattern
that is discussed in Section 1.5 and Chapter 8.

The performance of a system depends not only on the intensityof the workload, but also its nature;
for example, on a web server, all requests are not equivalent: some web server softwares might
perform well withgetrequests for frequently used objects, and less well with requests that require
database access; for other web servers, things might be different. This is addressed by using
standardized mixes of web server requests. They are generated by abenchmark, defined as a load
generation process that intends to mimic a typical user behaviour. In Chapter 3 we study how such
a benchmark can be constructed.

1.1.2 METRIC

A performancemetric is a measurable quantity that precisely captures what we want to measure
– it can take many forms. There is no general definition of a performance metric: it is system
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dependent, and its definition requires understanding the system and its users well. We will often
mention examples where the metric is throughput (number of tasks completed per time unit), power
consumption (integral of the electrical energy consumed bythe system, per time unit), or response
time (time elapsed between a start and an end events). For each performance metric, we may be
interested in average, 95-percentile, worst-case, etc, asexplained in Chapter 2.

EXAMPLE 1.1:WINDOWS VERSUSL INUX . Chen and co-authors compare Windows versus Linux in
[25]. They use as metric: number of CPU cycles, number of instructions, number of data read/write
operations required by a typical job. The load was generated by various benchmarks: “syscall”
generates elementary operations (system calls); “memory read” generates references to an array;
an application benchmark runs a popular application.

It is also important to be aware of the experimental conditions under which the metric is measured,
as illustrated by the coming example:

EXAMPLE 1.2:POWER CONSUMPTION. The electrical power consumed by a computer or telecom
equipment depends on how efficiently the equipment can take advantage of low activity periods
to save energy. One operator proposes the following metric as a measure of power consumption
[29]:

P Total = 0.35P max + 0.4P50 + 0.25P sleep

where P Total is the power consumption when the equipment is running at full load, P50 when it
is submitted to a load equal to 50% of its capacity and P sleep when it is idle. The example uses
weights (0.35, 0.4 and 0.25); they reflect our assumption about the proportion of time that a given
load condition typically occurs (for example,the full load condition is assumed to occur during 35%
of the time).

In this example,utilization is a parameter of the operating conditions. The utilizationof a resource
is defined as the proportion of time that the resource is busy.

The example also illustrates that it may be important to define whichsampling method is used,
i.e. when the measurements are taken. This is an integral part of the definition of the metric; we
discuss this point in more detail in Chapter 7.

A metric may be simple, i.e. expressed by a single number (e.g. power consumption), ormul-
tidimensional, i.e. expressed by a vector of several numbers (e.g. power consumption, response
time and throughput). When comparing two vectors of multidimensional metric values, one should
compare the corresponding components (e.g. power consumption of A versus power consumption
of B, response time of A versus response time of B, etc). As a result, it may happen that none of
the two vectors is better than the other. We say that comparison of vectors is apartial order, as
opposed to comparison of numbers which is acomplete order. It is however useful to determine
whether a vector isnon-dominated, i.e. there is no other vector (in the set of available results)
which is better. In a finite set of performance results expressed with a multidimensional metric,
there are usually more than one non-dominated results. Whencomparing several configurations,
the non-dominated ones are the only ones of interest.

EXAMPLE 1.3:MULTI -DIMENSIONAL METRIC AND K IVIAT DIAGRAM . We measure the perfor-
mance of a web server submitted to the load of a standard workbench. We compare 5 different
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Figure 1.1:Visualisation of the data in Example 1.3 by means of a Kiviat Diagram. Configurations A and
D are non-dominated.

configurations, and obtain the results below.

Config Power (W) Response (ms) Throughput (tps)

A 23.5 3.78 42.2
B 40.8 5.30 29.1
C 92.7 4.03 22.6
D 53.1 2.19 73.1
E 54.7 5.92 24.3

We see for example that configuration A is better than B but is not better than D. There are two non
dominated configurations: A and D. A is better on power consumption, D is better on throughput
and response time.

The numerical values can be visualized on a Kiviat Diagram (also called Radar graph or Spider
Plot as on Figure 1.1.

1.1.3 THE DIFFERENT GOALS OF PERFORMANCE EVALUATION

The goal of a performance evaluation may either be acomparison of design alternatives, i.e.
quantify the improvement brought by a design option, orsystem dimensioning, i.e. determine
the size of all system components for a given planned utilization. Comparison of designs requires
a well-defined load model; however, the exact value of its intensity does not have to be identified.
In contrast, system dimensioning requires a detailed estimation of the load intensity. Like any
prediction exercise, this is very hazardous. For any performance evaluation, it is important to
know whether the results depend on a workload prediction or not. Simple forecasting techniques
are discussed Chapter 5.
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EXAMPLE 1.4:DIFFERENT GOALS.

QUESTION 1.1.1. Say which is the nature of goal for each of the following performance evaluations state-
ments:1

(A1) PC configuration 1 is 25% faster than PC configuration 2 when running Photoshop.
(A2) For your video on demand application, the number of required servers is 35, and the number

of disk units is 68.
(A3) Using the new version of sendfile() increases the server throughput by 51%

The benefit of a performance evaluation study has to be weighted against its cost and the cost
of the system. In practice, detailed performance evaluations are done by product development
units (system design). During system operation, it is not economical (except for huge systems
such as public communication networks) to do so. Instead, manufacturers provideengineering
rules, which capture the relation between load intensity and performance. Example (A2) above is
probably best replaced by an engineering rule such as:

EXAMPLE 1.5:ENGINEERING RULE.

(E2) For your video on demand application, the number of required servers is given by N1 =
⌈ R
59.3 + B

3.6⌉ and the number of disk units by N2 = ⌈ R
19.0 + B

2.4⌉, where R [resp. B] is the
number of residential [resp. business] customers.

In this book, we study the techniques of performance evaluation that apply to all these cases.
However, how to implement a high performance system (for example: how to efficiently code a
real time application in Linux) or how to design bug-free systems areoutsidethe scope.

1.2 FACTORS

After defining goal, load and metric, one needs to establish alist of factors: these are elements
in the system or the load that affect the performance. One is tempted to focus only on the factor
of interest, however, it is important to know all factors that may impact the performance measure,
whether these factors are desired or not.

EXAMPLE 1.6:WINDOWS VERSUSL INUX , CONTINUED. In [25], Chen and co-authors consider
the following external factors: background activity; multiple users; network activity. These were
reduced to a minimum by shutting the network down and allowing one single user. They also
consider: the different ways of handling idle periods in Windows and Limux, because they affect
the interpretation of measurements.

1(A1), (A3) are comparisons of design options; (A2) is dimensioning
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1.2.1 THE H IDDEN FACTOR PARADOX

Ignoring some hidden factors may invalidate the result of the performance evaluation, as the next
example shows.

EXAMPLE 1.7:TCP THROUGHPUT. Figure 1.2, left, plots the throughput achieved by a mobile
during a file transfer as a function of its velocity (speed). It suggests that throughput increases
with mobility. The right plot shows the same data, but now the mobiles are separated in two
groups: one group (‘s’) is using a small socket buffer (4K Bytes), whereas the second (‘L’) uses
a larger socket buffer (16 K Bytes). The conclusion is now inverted: throughput decreases with
mobility. The hidden factor influences the final result: all experiments with low speed are for small
socket buffer sizes. The socket buffer size is a hidden factor.
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Figure 1.2:Left: plot of throughput (in Mb/s) versus speed (in m/s) for a mobile node. Right: same plot,
but showing socket buffer size; s = small buffer, L = large buffer.

Avoiding hidden factors may be done by proper randomizationof the experiments. On the example
above, a proper design would have distributed socket buffersizes randomly with respect to the
speed.

However, this may not always be possible as some experimental conditions may be imposed upon
us; in such cases, all factors have to be incorporated in the analysis. On Figure 1.2, we fitted a
linear regression to the two figures, using the method explained in Chapter 3. The slope of the
linear regression is negative when we explicit the hidden factor, showing that mobility decreases
throughput.

The importance of hidden factors may be interpreted as our tendency to confound cause and corre-
lation [77]. In Figure 1.2, left, the throughput is positively correlated with the speed, but this may
not be interpreted as a causal relationship.

In conclusion at this point, knowing all factors is a tedious, but necessary task. In particular, all
factors should be incorporated, whether you are interestedin them or not (factors that you are not
interested in are callednuisance factors). This implies that you have to know your system well,
or be assisted by people who know it well.
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1.2.2 SIMPSON ’ S PARADOX

Simpson’s reversal, also known asSimpson’s paradox is a well known case of the problem of
hidden factors, when the performance metric is a success probability.

EXAMPLE 1.8:TCP THROUGHPUT, CONTINUED. We revisit the previous example, but are now
interested only in knowing whether a mobile can reach a throughput of at least 1.5 Mb/s, i.e. we
say that a mobile is successful if its throughput is ≥ 1.5Mb/s. We classify the mobiles as slow
(speed ≤ 2m/s) or fast (speed > 2m/s). We obtain the following result.

failure success P(success)

slow 11 3 14 0.214
fast 5 4 9 0.444

16 7 23

from where we conclude that fast mobiles have a higher success probability than slow ones. Now
introduce the nuisance parameter “socket buffer size”, i.e. we qualify the mobiles as ‘s’ (small
buffer size) or ‘L’ (large buffer size):

‘s’ mobiles failure success P(success)

slow 10 1 11 0.091
fast 1 0 1 0.00

11 1 12

‘L’ mobiles failure success P(success)

slow 1 2 3 0.667
fast 4 4 8 0.500

5 6 11

Now in both cases slow mobiles have a higher success probability than fast ones, which is the
correct answer. The former answer was wrong because it ignored a hidden factor. This is known
as Simpsons’s reversal.

Simpsons’ paradox can be formulated in general as follows [65]. Let S denote the fact that the
outcome of an experiment is a success, and letC be the factor of interest (in the example, mobile
speed). LetNi, i = 1...k be binary hidden factors (nuisance factors; in the example,there is
only one, the socket buffer size). Assume that the factor of interest has a positive influence on the
success rate, i.e.

P(S|C) > P(S|C̄) (1.1)

This may happen while, at the same time, the combination of the factor of interest with the hidden
factorsNi has the opposite effect:

P(S|C and Ni) < P (S|C̄ and Ni) (1.2)

for all i = 1...k. As illustrated in Examples 1.8 and 1.7, the reversal occurswhen the effect of
hidden factors is large.

The fact that Simpson’s reversal is a paradox is assumed to originate in our (false) intuition that an
average of factors leads to an average of outcomes, i.e. we may (wrongly) assume that Eq.(1.1) is
a weighted sum of Eq.(1.2).
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We do have weighted sums, but the weights areP(Ni|C) for the left-handside in Eq.(1.1) versusP(Ni|C) for the
right-handside:

P(S|C) =
∑

i

P(S|C and Ni)P(Ni|C)

P(S|C̄) =
∑

i

P(S|C̄ and Ni)P(Ni|C̄)

1.3 EVALUATION M ETHODS

Once goal, load, metric and factors are well defined, performance evaluation can then proceed
with a solution method, which usually falls in one of the three cases below. Which method to use
depends on the nature of the problem and the skills or taste ofthe evaluation team.

• Measurementof the real system. Like in physics, it is hard to measure without disturbing
the system. Some special hardware devices (e.g.: optical splitters in network links) some-
times can prevent any disturbance. If, in contrast, measurements are taken by the system
itself, the impact has to be analyzed carefully. Measurements are not always possible (eg. if
the system does not exist yet).

• Discrete EventSimulation: a simplified model of the system and its load are implementedin
software. Time is simulated and often flows orders of magnitude more slowly than real time.
The performance of interest is measured as on a real system, but measurement side-effects
are usually not present. It is often easier than a measurement study, but not always. It is the
most widespread method and is the object of Chapter 6.

• Analytical : A mathematical model of the system is analyzed numerically. This is viewed
by some as a special form of simulation. It is often much quicker than simulation, but
sometimes wild assumptions need to be made in order for the numerical procedures to be
applicable. Analytical methods are often used to gain insight during a development phase,
or also to learn fundamental facts about a system, which we call “patterns”. We show in
Chapter 8 how some performance analyses can be solved approximately in a very simple
way, using bottleneck analysis.

1.4 THE SCIENTIFIC M ETHOD

The scientific method applies to any technical work, not onlyto performance evaluation. However,
in the author’s experience, lack of scientific method is one prominent cause for failed performance
studies. In short, the scientific method requires that you donot believe in a conclusion unless it is
thoroughly tested.

EXAMPLE 1.9:JOE’ S KIOSK. Joe’s e-kiosk sells online videos to customers equipped with smart-
phones. The system is made of one servers and one 802.11 base station. Before deployment,
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performance evaluation tests are performed, as shown on Figure 1.3(a). We see that the through-
put reaches a maximum at around 8 transactions per second.

Joe concludes that the bottleneck is the wireless LAN and decides to buy and install 2 more base
stations. After installation, the results are on Figure 1.3(b). Surprisingly, there is no improvement.
The conclusion that the wireless LAN was the bottleneck was wrong.

Joe scratches his head and decides to go more carefully about conclusions. Measurements are
taken on the wireless LAN; the number of collisions is less than 0.1%, and the utilization is below
5%. This confirms that the wireless LAN is not a bottleneck. Joe makes the hypothesis that the
bottleneck may be on the server side. After doubling the amount of real memory allocated to the
server process, the results are as shown on Figure 1.3(c). This confirms that real memory was
the limiting factor.
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Figure 1.3:Performance results for Joe’s server. X-axis: offered load; Y-axis: achieved throughput, both
in transactions per second.

A common pitfall is to draw conclusions from an experiment that was not explicitly designed to
validate these conclusion. The risk is that hidden factors might interfere, as illustrated by the pre-
vious example. Indeed, Joe concluded from the first experiment that the LAN performance would
be improved by adding a base station; this may have beensuggestedby the result of Figure 1.3(a),
but this is not sufficient. It is necessary to perform other experiments, designed to validate this
potential conclusion, before making a final statement. Following Popper’s philosophy of science
[82], we claim that it is necessary for the performance analyst to take both roles : (1) make tentative
statements, and (2) design experiments that try to invalidate them.

EXAMPLE 1.10:ATM UBR BETTER THAN ATM ABR. In [66], the authors evaluate whether the
ATM-UBR protocol is better than ATM-ABR (both are alternative methods used to manage switches
used in communication networks). They use a typical scientific method, by posing each potential
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conclusion as a hypothesis and designing experiments to try and invalidate them:

ABSTRACT. We compare the performance of ABR and UBR for providing high-speed
network interconnection services for TCP traffic. We test the hypothesis that UBR
with adequate buffering in the ATM switches results in better overall goodput for TCP
traffic than explicit rate ABR for LAN interconnection. This is shown to be true in a
wide selection of scenarios. Four phenomena that may lead to bad ABR performance
are identified and we test whether each of these has a significant impact on TCP
goodput. This reveals that the extra delay incurred in the ABR end-systems and the
overhead of RM cells account for the difference in performance. We test whether it is
better to use ABR to push congestion to the end-systems in a parking-lot scenario or
whether we can allow congestion to occur in the network. Finally, we test whether the
presence of a “multiplexing loop” causes performance degradation for ABR and UBR.
We find our original hypothesis to be true in all cases. We observe, however, that ABR
is able to improve performance when the buffering inside the ABR part of the network
is small compared to that available at the ABR end-systems. We also see that ABR
allows the network to control fairness between end-systems.

Other aspects of the scientific method are:

• Give an evaluation of theaccuracy of your quantitative results. Consider the measured
data in Table 1.11. There is a lot of variability in them; saying that the average response
time is better with B than A is not sufficient; it is necessary to give uncertainty margins, or
confidence intervals. Techniques for this are discussed in Chapter 2.

• Make the results of your performance evaluation easilyreproducible. This implies that all
assumptions are made explicit and documented.

• Remove what can be removed. Often, at the end of a performanceevaluation study, many
results are found uninteresting; the right thing to do is to remove such results, but this seems
hard in practice !

1.5 PERFORMANCE PATTERNS

Performance evaluation is simpler if the evaluator is awareof performancepatterns, i.e. traits that
are common to many different settings.

1.5.1 BOTTLENECKS

A prominent pattern isbottlenecks. In many systems, the overall performance is dictated by the
behaviour of the weakest components, called the bottlenecks.

EXAMPLE 1.11:BOTTLENECKS. You are asked to evaluate the performance of an information
system. An application server can be compiled with two options, A and B. An experiments was
done: ten test users (remote or local) measured the time to complete a complex transaction on
four days. On day 1, option A is used; on day 2, option B is. The results are in the table below.
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remote local
A 123 43

189 38
99 49
167 37
177 44

remote local
B 107 62

179 69
199 56
103 47
178 71

The expert concluded that the performance for remote users is independent of the choice of an
information system. We can criticize this finding and instead do a bottleneck analysis. For remote
users, the bottleneck is the network access; the compiler option has little impact. When the
bottleneck is removed, i.e. for local users, option A is slightly better.

Bottlenecks are the performance analysts’ friend, in the sense that they may considerablysimplify
the performance evaluation, as illustrated next.

EXAMPLE 1.12:CPU MODEL. A detailed screening of a transaction system shows that one trans-
action costs in average: 1’238’400 CPU instructions; 102.3 disk accesses and 4 packets sent on
the network. The processor can handle 109 instructions per second; the disk can support 104

accesses per second; the network can support 104 packets per second. We would like to know
how many transactions per second the system can support.

The resource utilization per transaction per second is: CPU: 0.12% – disk: 1.02% –network: 0.04%;
therefore the disk is the bottleneck. The capacity of the system is determined by how many
transactions per second the disk can support, a gross estimate is thus 100

1.02 ≈ 99 transactions per
second.

If we would like more accuracy, we would need to model queuing at the disk, to see at which
number of transactions per seconds delays start becoming large. A global queuing model of CPU,
disk access and network is probably not necessary.

In Section 8.2.4 we study bottleneck analysis for queuing systems in a systematic way.

However, one should not be fooled by the apparent simplicityof the previous example, as bot-
tlenecks are moving targets. They depend on all parameters of the system and on the load: a
component may be a bottleneck in some conditions, not in others. In particular, removing a bottle-
neck may let some other bottleneck appear.

EXAMPLE 1.13:HIGH PERFORMANCEWEB SITES. In [99], the author discusses how to design high
performance web sites. He takes as performance metric user’s response time. He observes that
modern web sites have highly optimized backends, and therefore their bottleneck is at the front
end. A common bottleneck is DNS lookup; entirely avoiding DNS lookups in web pages improves
performances, but reveals another bottleneck, namely, script parsing. This in turn can be avoided
by making scripts external to the web page, but this will reveal yet another bottleneck, etc. The
author describes 14 possible components, any of which, if present, is candidate for being the
bottleneck, and suggests to remove all of them. Doing so leaves as bottlenecks network access
and server CPU speed, which is desirable.
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1.5.2 CONGESTION COLLAPSE

Congestion occurs when the intensity of the load exceeds system capacity (as determined by the
bottleneck). Any system, when subject to a high enough load,will become congested: the only
way to prevent this is to limit the load, which is often difficult or impossible. Therefore, it is
difficult to avoid congestion entirely.

In contrast, it is possible, and desirable, to avoidcongestion collapse, which is defined as a
reduction in system utility, or revenue when the load increases.
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Figure 1.4:First panel: A network exhibiting congestion collapse if sources are greedy. Second panel:
throughput per source λ′′ versus offered load per source λ, in Mb/s (plain line). Numbers are in Mb/s; the
link capacity is c = 20Mb/s for all links. Dotted line: ideal throughput with congestion but without congestion
collapse.

EXAMPLE 1.14:CONGESTION COLLAPSE. Consider a ring network as in Figure 1.4 (such a topol-
ogy is common, as it is a simple way to provide resilience single link or node failure). There
are I nodes and links, and sources numbered 0, 1, ..., I − 1. At every node there is one source,
whose traffic uses the two next downstream links (i.e. source i uses links [(i + 1) mod I] and
[(i+ 2) mod I]). All links and sources are identical.

Every source sends at a rate λ and let c be the useful capacity of a link (c and λ are in Mb/s). Let
λ′ the rate achieved by one source on its first hop, λ′′ on its second hop (λ′′ is the throughput per
source). Since a source uses two links, we can assume (in a simplified analysis) that, as along as
λ < c

2 , all traffic is carried by the network without loss, i.e.

if λ <
c

2
then λ′ = λ” = λ

Assume now that sources are greedy and send as much as they can, with a rate λ > c
2 . The

network capacity is exceeded, therefore there will be losses. We assume that packet dropping is
fair, i.e. the proportion of dropped packets is the same for all flows at any given link. The proportion
of packets lost by one source on its first hop is λ−λ′

λ ; on its second hop it is λ′−λ′′

λ′ . By the fair packet
dropping assumption, those proportions are equal, therefore

λ′

λ
=
λ′′

λ′
(1.3)
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Furthermore, we assume that links are fully utilized when capacity is reached, i.e.

if λ >
c

2
then λ′ + λ′′ = c

We can solve for λ′ (a polynomial equation of degree 2) and substitute λ′ in Eq.(1.3) to finally
obtain the throughput per source:

λ′′ = c− λ

2

(
√

1 + 4
c

λ
− 1

)

(1.4)

Figure 1.4 plots λ′′ versus λ; it suggests that λ′′ → 0 as λ → ∞. We can verify this by using a
Taylor expansion of

√
1 + u, for u→ 0 in Eq.(1.4). We obtain

λ′′ =
c2

λ
(1 + ǫ(λ))

with limλ→∞ ǫ(λ) = 0. which shows that the limit of the achieved throughput, when the offered
load goes to +∞, is 0. This is a clear case of congestion collapse.

Figure 1.4 also illustrates the difference between congestion and congestion collapse. The dotted
line represents the ideal throughput per source if there would be congestion without congestion
collapse; this could be achieved by employing a feedback mechanism to prevent sources from
sending more than c

2 (for example by using TCP).

Two common causes for congestion collapse are:

1. The system dedicates significant amounts of resources to jobs that will not complete, as in
Figure 1.4, where packets are accepted on the first hop, whichwill eventually be dropped on
the second hop. This is also known to occur on busy web sites orcall centers due to customer
impatience: when response time gets large impatient customers drop requests before they
complete.

2. The service time per job increases as the load increases. This occurs for example when
memory is paged to disk when the number of active processes increases.

Congestion collapse is very common in complex systems. It isa nuisance since it reduces the
total system utility below its capacity. Avoiding congestion collapse is part of good system design.
A common solution to the problem isadmission control, which consists in rejecting jobs when
there is a risk that system capacity would be exceeded [50].

1.5.3 COMPETITION SIDE EFFECT

In many systems the performance of one user influence other users. This may cause an apparent
paradox, where putting more resources makes the performance worse for some users. The root
cause is as follows: increasing some resources may allow some users to increase their load, which
may in turn decrease the performance of competing users. From the point of view of the user whose
performance is decreased, there is an apparent paradox: resources were added to the system, with
an adverse effect.

EXAMPLE 1.15:COMPETING USERS WITH IDEAL CONGESTION CONTROL. Figure 1.5 shows a
simple network with 2 users, 1 and 2, sending traffic to destinations D1 and D2 respectively. Both
users share a common link X − Y .



14 CHAPTER 1. METHODOLOGY

1

2

X Y

D1

D2

link 1
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Figure 1.5:A simple network with two users showing the pattern of competition side effect. Increasing the
capacity of link 5 worsens the performance of user 1.

Assume that the sources use some form of congestion control, for example because they use the
TCP protocol. The goal of congestion control is to limit the source rates to the system capacity
while maintaining some fairness objective. We do not discuss fairness in detail in this book, see
for example [50] for a quick tutorial; for simplicity, we may assume here that congestion control has
the effect of maximizing the logarithms of the rates of the sources, subject to the constraints that
all link capacities are not exceeded (this is called proportional fairness and is approximately what
TCP implements). Let x1 and x2 be the rates achieved by sources 1 and 2 respectively. With the
numbers shown on the figure, the constraints are x1 ≤ 100kb/s and x2 ≤ 10kb/s (other constraints
are redundant) so we will have x1 = 100kb/s and x2 = 10kb/s.

Assume now that we add resources to the system, by increasing the capacity of link 5 (the weakest
link) from c5 = 10kb/s to c5 = 100kb/s. The constraints are now

x1 ≤ 100 kb/s

x2 ≤ 100 kb/s

x1 + x2 ≤ 110 kb/s

By symmetry, the rates allocated under proportional fairness are thus x1 = x2 = 55kb/s. We see
that increasing capacity has resulted in a decrease for source 1.

The competition side effect pattern in the previous exampleis a “good” case, in the sense that the
decrease in performance for some users is compensated by an increase for others. But this is not
always true; combined with the ingredients of congestion collapse, the competition side effect may
result in a performance decrease without any benefit for any user (“put more, get less”), as shown
in the next example.

EXAMPLE 1.16:COMPETING USERS WITHOUTCONGESTIONCONTROL. Consider Figure 1.5 again,
but assume that there is no congestion control (for example because sources use UDP instead of
TCP). Assume that sources send as much as their access link allows, i.e. source 1 sends at the
rate of link 1 and source 2 at the rate of link 2.

Assume that we keep all rates as shown on the figure, except for the rate of link 2, which we vary
from c2 = 0 to c2 = 1000kb/s. Define now the rates x1 and x2 as the amounts of traffic that do
reach the destinations.

If c2 ≤ 10kb/s, there is no loss and x1 = 100kb/s, x2 = c2. If c2 > 10kb/s, there are losses at X.
Assume losses are in proportion to the offered traffic. Using the same analysis as in Example 1.14,
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we obtain, for c2 > 10:

x1 = 110 × 100

c2 + 100

x2 = min

(

110× c2
c2 + 100

, 10

)

Figure 1.6 plots the rates versus c2. We see that increasing c2 beyond 10kb/s makes things worse
for source 1, with no benefit for source 2.
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Figure 1.6:Achieved throughputs for the sources in Figure 1.5 versus c2.
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1.5.4 LATENT CONGESTION COLLAPSE

Many complex systems have several potential bottlenecks, and may be susceptible to congestion
collapse. Removing a bottleneck (by adding more resources)may reveal a congestion collapse,
resulting in worse performance. Before resources were added, the system was protected from
congestion collapse by the bottleneck, which acted as implicit admission control. This results in
the “put more, get less” paradox.

EXAMPLE 1.17:MUSEUM AUDIO GUIDES. A museum offers free audio guides to be downloaded
on MP3 players. Visitors put their MP3 player into docking devices. The docking devices connect
via a wireless LAN to the museum server. Data transfer from the docking device to the MP3
player is via a USB connector. The system was tested with different numbers of docking devices;
Figure 1.7(a) shows the download time versus the number of docking devices in use.

The museum later decides to buy better docking devices, with a faster USB connection between
device and MP3 player (the transfer rate is now doubled). As expected, the download time is
smaller when the number n of docking devices is small, but, surprisingly, it is larger when n ≥ 7
(Figure 1.7(a)). What may have happened ? It is known that the wireless LAN access method
is susceptible to congestion collapse: when the offered load increases, packet collisions become
frequent and the time to successfully transfer one packet becomes larger, so the throughput de-
creases. We may conjecture that improving the transfer speed between docking device and MP3
player increases the load on the wireless LAN. The congestion collapse was not possible before
because the low speed docking devices acted as an (involuntary) access control method.

We can verify this conjecture by plotting throughput instead of download time, and extending the
first experiment to large values of n. We see on Figure 1.7(b) that there is indeed a reduction in
throughput, at a point that depends on the speed of the USB connection.
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Figure 1.7:Illustration of latent congestion collapse. Download time and System throughput as a function
of the number of docking devices, with lower speed USB connections (o) with higher speed USB connec-
tions (+).

1.6 REVIEW

1.6.1 CHECK -L IST

PERFORMANCE EVALUATION CHECKLIST

PE1 Define your goal.For example: dimension the system, find the overload behaviour; evaluate
alternatives. Do you need a performance evaluation study ? Aren’t the results obvious ? Are
they too dependent on the input factors, which are arbitrary?

PE2 Identify the factors. What are all the factors ? are there external factors which need to be
controlled ?

PE3 Define your metrics.For example: response time, server occupancy, number of transactions
per hour, Joule per Megabyte. Define not only what is measuredbut also under which
condition or sampling method. If the metric is multidimensional, different metric values are
not always comparable and there may not be a best metric value. However, there may be non
dominated metric values.

PE4 Define the offered load. How is it expressed: transactions per second, number of users,
number of visits per hour ? Is it measured on a real system ? artificial load generated by a
simulator, by a synthetic load generator ? load model in a theoretical model ?

PE5 Know your bottlenecks. The performance often depends only on a small number of factors,
often those whose utilization (= load/capacity) is high. Make sure what you are evaluating
is one of them.

PE6 Know your system well. Know the system you are evaluating and list all factors. Use
evaluation tools that you know well. Know common performance patterns for your system.

SCIENTIFIC M ETHOD CHECKLIST

S1 Scientific Method
do {Define hypothesis; design experiments; validate} until validation is OK

S2 Quantify theaccuracyof your results.

S3 Make your findingsreproducible; define your assumptions.
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1.6.2 REVIEW QUESTIONS

QUESTION 1.6.1. For each of the following examples:

1. Design web server code that is efficient and fast.
2. Compare TCP-SACK versus TCP-new Reno for hand-held mobile devices.
3. Compare Windows 2000 Professional versus Linux.
4. Design a rate control for an internet audio application.
5. Compare various wireless MAC protocols.
6. Say how many servers a video on demand company needs to install.
7. Compare various compilers.
8. How many control processor blades should this Cisco router have ?
9. Compare various consensus algorithms.

10. Design bug-free code.
11. Design a server farm that will not crash when the load is high.
12. Design call center software that generates guaranteed revenue.
13. Size a hospital’s information system.
14. What capacity is needed on an international data link ?
15. How many new servers, if any, should I install next quarter for my business application ?

say whether a detailed identification of the intensity of theworkload is required.2

QUESTION 1.6.2. Consider the following scenarios.

1. The web server used for online booking at the “Fête des Vignerons” was so popular that it
collapsed under the load, and was unavailable for several hours.

2. Buffers were added to an operating system task, but the overall performance was degraded
(instead of improved, as expected).

3. The response time on a complex web server is determined primarily by the performance of
the front end.

4. When too many users are using the international link, the response time is poor
5. When too many users are present on the wireless LAN, no one gets useful work done
6. A traffic volume increase of 20% caused traffic jams
7. New parking facilities were created in the city center butfree parking availability did not

increase.

and the following patterns

(a) non-linearity of response time with respect to load
(b) congestion collapse (useful work decreases as load increases)
(c) performance is determined by bottleneck

Say which pattern is present in which scenario3

QUESTION 1.6.3. Read [63], written by one of Akamai’s founders. What topics in this chapter
does this illustrate ?4

2Examples 6, 8, 13, 14, 15 are dimensioning exercises and require identification of the predicted workload intensity.
Examples 1 and 10 are outside the scope of the book. Examples 11 and 12 are about avoiding congestion collapse.

31b; 2: perhaps a combination of b and c; 3c; 4a; 5b; 6b; 7c
4(1) The performance bottleneck in internet response time isthe middle mile, i.e. the intermediate providers
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between web site provider and end-user ISP. (2) performancemetrics of interest are not only response time but also
reliability.
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CHAPTER 2

SUMMARIZING PERFORMANCEDATA ,
CONFIDENCE INTERVALS

In most measurements or simulations, we ob-
tain large amounts of data. Displaying the
data correctly is important, and implies to use
some graphical packages, or maths packages
with graphical capabilities (Different tools have
different capabilities, and produce graphics of
different aesthetic value; but the most important
is to use one tool that you know well). Tools
do not do everything and you need to know what
to represent. We discuss important and frequent
summarizations that can be used to display and
compare data: the complete distribution; summa-
rized quantities such as mean, standard deviation,
median and tail quantiles; fairness indices.
We discuss some properties of these summarization and indices; they are not all equivalent, and
some, though less frequently used, are preferable if one hasa choice; for example, the Lorenz
curve gap is more robust than Jain’s Fairness index (which isessentially the same as the standard
deviation rescaled by the mean) and should be preferred.

Simulation and measurement usually contain some randomness, therefore it is important to capture
the uncertainty about measured performance. This is done with confidence or prediction intervals;
we discuss the use and interpretation of both. There are manydifferent ways for defining a confi-
dence or prediction interval; some are robust and some not. We give useful, and simple formulas
and show that, if one has a choice, intervals based on mediansand quantiles should be preferred
to the more classical mean and standard deviation. We also give useful, though little know results

21
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such as how to compute a confidence interval for a success probability when has seen no success.
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2.1 SUMMARIZED PERFORMANCE DATA

2.1.1 HISTOGRAM AND EMPIRICAL CDF

Assume you have obtained a large set of results for the value of a performance metric. This can be
fully described by the distribution of the data, and illustrated by ahistogram. A histogram uses
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bins for the data values and plots on they-axis the proportion of data samples that fall in the bin
on thex axis, see Figure 2.1.
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Figure 2.1:Data for Example 2.1. Measured execution times, in ms, for 100 transactions with the old and
new code, with histograms.

The empirical cumulative distribution function (ECDF) is an alternative to histograms which
sometimes makes comparisons easier. The ECDF of a data setx1, ..., xn is the functionF defined
by

F (x) =
1

n

n
∑

i=1

1{xi≤x} (2.1)

so thatF (x) is the proportion of data samples that do not exceedx.

Data sets may be compared by means of their ECDFs. If one is always above the other, then one
may consider that it is superior, even though some data points in the first set may be less good
(this is calledstochastic majorization). On Figure 2.2 we see that the new data set (left) clearly
outperforms the old one. Note that stochastic majorizationis a partial order, as is the comparison
of multidimensional metrics (Section 1.1.2).

Assume the data samples come from a well defined probability distribution; the histogram can then
be viewed as an estimate of the PDF of the distribution, and the ECDF as an estimate of the CDF1.

2.1.2 MEAN , M EDIAN AND QUANTILES

Instead of considering entire histograms or ECDFs, one often would like to summarize, i.e. com-
press the histogram into one or a few numbers that represent both average and variability. This is
commonly done by either one of the following:

Median and Quantile. A median is a value that falls in the middle of the distribution, i.e. 50%
of the data is below and 50% above. Ap%-quantile leavesp% of the observation below and
(100−p)% above. The median gives some information about the average, while extreme quantiles
give information about the dispersion. A commonly used plotis theBox Plot. It shows the median,
the 25% and 75% quantiles (called “quartiles”) and the “outliers”, defined as data points that are a
fixed fraction away from the quartiles (Figure 2.3).

1The CDF of the random variableX is the function defined byF (x) = P(X ≤ x).
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Figure 2.2:Data of Example 2.1. Empirical distribution functions for the old code (right curve) and the new
one (left curve). The new outperforms the old, the improvement is significant at the tail of the distribution.

Thesample median of a data set is defined as follows. Assume there aren data pointsx1, ..., xn. Sort the points
in increasing order and obtainx(1) ≤ ... ≤ x(n). If n is odd, the median isx( n+1

2 ), else1
2 (x( n

2 ) + x( n
2 +1)). More

generally, thesample q- quantile is defined as
x(k′)+x(k”)

2 with k′ = ⌊qn+ (1− q)⌋ andk′ = ⌈qn+ (1− q)⌉. ⌊x⌋ is
the largest integer≤ x and⌈x⌉ is the smallest integer≥ x

Mean and Standard Deviation. The mean m of a data setx1, ..., xn is m = 1
n

∑n
i=1 xi. It

gives some information about the center of the distribution. Thestandard deviation s of a data
set is defined bys2 = 1

n

∑n
i=1 (xi −m)2 or s2 = 1

n−1

∑n
i=1 (xi −m)2 (either conventions are

used – see Section 2.2 for an explanation). It gives information about the variability. The use
of standard deviation is rooted in the belief that data roughly follows a normal distribution, also
calledgaussian distribution. It is characterized by a histogram with Bell shape (see wikipedia
and Table 3.1 on Page 93); the CDF of the general normal distribution is denoted withNµ,σ2 ,
whereµ is the mean andσ2 the variance. It is very frequently encountered because of the central
limit theorem that says that an average of many things tends to be normal (but there are some
exceptions, called heavy tail in Chapter 3). If such a hypothesis is true, and if we hadm ≈ µ
andσ ≈ s, then with 95% probability, the data sample would lie in the intervalm ± 1.96s. This
justifies the use ofmean-variance plots like in Figure 2.3, which use as measure of variabilitythe
intervalm ± 1.96s. This is also called aprediction interval since it predicts a likely range for a
future sample (Section 2.4).

EXAMPLE 2.1:COMPARISON OFTWO OPTIONS. An operating system vendor claims that the new
version of the database management code significantly improves the performance. We measured
the execution times of a series of commonly used programs with both options. The data are
displayed in Figure 2.1. The raw displays and histograms show that both options have the same
range, but it seems (graphically) that the new system more often provides a smaller execution
time. The box plots are more suggestive; they show that the average and the range are about half
for the new system.

In Section 2.5 we discuss the differences between these two modes of summarization.
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Figure 2.3:Box Plots for the data for Example 2.1. Left: standard box plot commonly used by statisticians
showing median (notch) and quartiles (top and bottom of boxes); “dispersion” is an ad-hoc measure, defined
here as 1.5 times the inter-quartile distance; the notch width shows the confidence interval for the median.
Right: same, overlaid with quantities commonly used in signal processing: mean, confidence interval for
the mean (= mean ± 1.96σ/

√
n, where σ is the standard deviation and n is the number of samples) and

prediction interval (= mean ± 1.96σ).

2.1.3 COEFFICIENT OF VARIATION AND L ORENZ CURVE GAP

Those are frequently used measures of variation, rescaled to be invariant by change of scale. They
apply to a positive data setx1, ..., xn.

COEFFICIENT OF VARIATION . It is defined by

CoV =
s

m
(2.2)

wherem is the mean ands the standard deviation, i.e. it is the standard deviation rescaled by the
mean. It is also sometimes calledSignal to Noise ratio. For a data set withn values one always
has2

0 ≤ CoV ≤
√
n− 1 (2.3)

where the upper bound is obtained when allxi have the same value except one of them. The lower
bound is reached when all values are equal.

L ORENZ CURVE GAP. It is an alternative measure of dispersion, obtained when wereplace the
standard deviation by theMean Absolute Deviation (MAD). The MAD is defined by

MAD =
1

n

n
∑

i=1

|xi −m|

2Consider the maximization problem: maximize
∑

i(xi − m)2 subject toxi ≥ 0 and
∑

xi = mn. Sincex 7→
∑

i(xi −m)2 is convex, the maximum is at an extremal pointxi0 = mn, xi = 0, i 6= i0.
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i.e. we compute the mean distance to the mean, instead of the square root of the mean square
distance. Compared to the standard deviation, the MAD is less sensitive to a few very large values.
It follows from the Cauchy-Schwarz inequality that it is always less than the standard deviation,
i.e.

0 ≤ MAD ≤ s (2.4)

with equality only ifxi is constant, i.e.xi = m for all i.

If n is large andxi is iid from a gaussian distribution, then

MAD ≈
√

2

π
s ≈ 0.8s (2.5)

If in contrast, ifxi comes from a heavy tailed distribution with a finite meanm, thens → ∞ asn
gets large, whereas MAD converges to a finite limit.

TheLorenz Curve Gap is a rescaled version of MAD, defined by

gap =
MAD
2m

(2.6)

The reason for the factor2 is given in the next section. We always have

0 ≤ gap ≤ 1− 1

n
(2.7)

thus, contrary to CoV, gap is between0 and1. If n is large andxi is iid from a gaussian dis-
tribution, then gap≈ 0.4CoV; if it comes from an exponential distribution, gap≈ 0.37 and
CoV ≈ 1.

If xi is iid and comes from a distribution with PDFf(), then, for largen, CoV and MAD converge to their theoretical
counterparts:

CoV → CoVth =

√

∫∞
0 (x− µ)2f(x)dx

µ

MAD → gapth =

∫∞
0 |x− µ| f(x)dx

2µ

with µ =
∫∞
0
xf(x)dx.

If the distribution is gaussianNµ,σ2 then CoVth = σ
µ

and gapth =
√

1
2π

σ
µ

; if it is exponential then CoVth = 1 and

gapth = 1
e
.

2.1.4 FAIRNESS I NDICES

Often one interprets variability as fairness, and several fairness indices have been proposed. We
review here the two most prominent ones. We also show that they are in fact reformulations of
variability measures, i.e. they are equivalent to CoV and gap , after proper mapping (so that using
these indices may appear superfluous). Like in the previous section, the data setxi is assumed here
to be positive.
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Figure 2.4:Jain’s fairness index is cos2 θ. x1, ..., xn is the data set and m is the sample mean. The figure
is for n = 2.

JAIN ’ S FAIRNESS I NDEX (JFI). It is defined as the square of the cosine of the angle between
the data setxi and the hypothetical equal allocation (Figure 2.4). It is given by

JFI=
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(2.8)

A straightforward computation shows that the fairness measure JFI is a decreasing function of the
variability measure CoV:

JFI=
1

1 + CoV2 (2.9)

so that, by Eq.(2.3), we conclude that JFI ranges from1
n

(maximum unfairness) to1 (all xi are
equal).

L ORENZ CURVE The Lorenz Curve is defined as follows. A point(p, ℓ) on the curve, with
p, ℓ ∈ [0, 1], means that the bottom fractionp of the distribution contributes to a fractionℓ of the
total

∑n
i=1 xi.

More precisely, we are given a data setxi > 0, i = 1...n. We plot for all i = 1...n the points
(pi, ℓi) with

{

pi =
i
n

ℓi =
∑n

j=1 xj1{xj≤xi}
∑n

j=1 xj

(2.10)

See Figure 2.5 for examples. We can make the Lorenz curve a continuous mappingℓ = L(p) by
linear interpolation and by settingL(0) = 0. The resultingL() is a continuous mapping from[0, 1]
onto[0, 1], monotone non decreasing, convex, withL(0) = 0 andL(1) = 1.

The Lorenz curveℓ = L(p) can be interpreted as a global measure of fairness (or variability). If all
xis are equal (maximum fairness) thenL(p) = p andL() is the diagonal of the square[0, 1]× [0, 1]
(called the “line of perfect equality”). In the worst case, the Lorenz curve follows the bottom
and right edges of the square (called the “line of perfect inequality”) (Figure 2.6). In practice the
Lorenz curve is computed by sortingxi in increasing order (x(1) ≤ x(2) ≤ . . . ≤ x(n)) and letting

li =
x(1) + ...+ x(i)

nm
(2.11)
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wherem is the sample mean. It follows that0 ≤ li ≤ i
n
, i.e.

0 ≤ L(p) ≤ p

i.e. and the Lorenz curve is always between the lines of perfect equality and perfect inequality.

L OREZ CURVE GAP, AGAIN A measure of fairness is the largest euclidian distance (thegap)

from the Lorenz curve to the diagonal, rescaled by its maximum value
(

1√
2

)

. It is also equal to

the largest vertical distance,supu∈[0,1] (u− L(u)) (Figure 2.5). The gap can easily be computed
by observing that it is reached at indexi0 = max{i : x(i) ≤ m}, i.e. at a valuep0 = i0

n
such that

the bottom fractionp0 of the data have a a value less than the average. Thus

gap =
i0
n
− x(1) + ...+ x(i0)

mn
(2.12)

We have already introduced the gap in Eq.(2.6), so we need to show that the two definitions are
equivalent. This follows from

MAD =
1

n

n
∑

i=1

|xi −m| = 1

n

n
∑

i=1

∣

∣x(i) −m
∣

∣

=
1

n

(

i0
∑

i=1

(m− x(i)) +

n
∑

i0+1

(x(i) −m)

)

=
1

n

(

i0m−
i0
∑

i=1

x(i) + nm−
i0
∑

i=1

x(i) − (n− i0)m

)

= 2m gap

which is the same as Eq.(2.6).

The theoretical Lorenz curve is defined for a probability distribution with cumulative distribution function CDFF ()
and finite meanµ by

L(p) =
1

µ

∫ p

0

F−1(q)dq (2.13)

whereF−1 is the (right-continuous) pseudo-inverse

F−1(q) = sup{x : F (x) ≤ p} = inf{x : F (x) > q}

If the CDFF () is continuous and increasing, thenF−1 is the usual function inverse. In this case, the theoretical
Lorenz curve gap is then equal to

gapth = p0 − L(p0)

with p0 = F (µ).

The theoretical Lorenz curve is the limit of the Lorenz curvefor an iid data sample coming fromF (), whenn is large.

THE GINI COEFFICIENT Gini coefficient This is yet another fairness index, very widespread
in economy, and, by imitation, in computer and communication systems. Its definition is similar
to the Lorenz curve gap, with the mean average deviation replaced by theMean Difference:

MD =
1

n(n− 1)

∑

i,j

|xi − xj | (2.14)
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(a) Execution times in Figure 2.1, old code
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(b) Execution times in Figure 2.1, new code
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(c) Ethernet Byte Counts (xn is the byte length of the
nth packet of an Ethernet trace [64])

CoV JFI gap Gini Gini-approx

Figure 2.1, old code 0.779 0.622 0.321 0.434 0.430
Figure 2.1, new code 0.720 0.658 0.275 0.386 0.375
Ethernet Byte Counts 1.84 0.228 0.594 0.730 0.715

Figure 2.5:Lorenz curves for three data sets, with proportion of users p on x axis and proportion of total
sum ℓ on y axis. The diagonal is the line of perfect equality. The maximum distance (plain line) is equal
to 1√

2
times the maximum vertical deviation (dashed line), which is called the Lorenz curve gap. The Gini

coefficient is the area between the diagonal and the Lorenz curve, rescaled by its maximum value 1
2 . The

table gives the values of Coefficient of Variation, Jain’s Fairness Index, Lorenz Curve Gap, Gini coefficient
and the Gini coefficient approximation in Eq.(2.17).
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Figure 2.6: Lorenz curve (plain line). The line of perfect equality is OD, of perfect inequality OBD.
The Lorenz curve gap is the maximum distance to the line of perfect equality, re-scaled by

√
2. The Gini

coefficient is the area between the line of perfect equality and the Lorenz curve, re-scaled by 2.

The Gini coefficient is then defined as

Gini =
MD
2m

(2.15)

wherem is the empirical mean of the data set. It can be shown that it isequal to2× the area be-
tween the line of perfect equality and the Lorenz curve (the rescaling factor2 makes it lie between
0 and1). In practice the Gini coefficient can be computed by using Eq.(2.11), which gives

Gini =
2

mn2

n
∑

i=1

ix(i) − 1− 1

n
(2.16)

The theoretical Gini coefficient for a probability distribution with CDFF () is defined by

Ginith = 2

∫ 1

0

(q − L(q)) dq = 1− 2

∫ 1

0

L(q)dq

whereL() is the theoretical Lorenz curve defined in Eq.(2.13).

Since the Lorenz curve is convex, it is straightforward to bound the Gini coefficient by means
of the Lorenz curve gap. On Figure 2.6, we see that the area between the Lorenz curve and the
diagonal is lower bounded by the triangleOM0D and upper bounded by the trapezeOACD. It
follows from this and Eq.(2.16) that

0 ≤ gap ≤ Gini ≤ 1− 1

n
Gini ≤ gap(2− gap)

where the lower bound0 is reached at maximum fairness.

It follows that one can also approximate Gini by the arithmetic mean of the lower and upper
bounds:

Gini ≈ gap(1.5− 0.5 gap) (2.17)
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Jain’s Fairness Index Lorenz Curve Gap Gini Coefficient
(JFI) (gap) (Gini)

Definition 1

1+ CoV 2
MAD

2m
MD
2m

Eq.(2.2), Eq.(2.8) Eq.(2.6) Eq.(2.15)
Bounds 1

n
≤ JFI ≤ 1 (MF) (MF) 0 ≤ gap ≤ 1− 1

n
(MF) 0 ≤ Gini ≤ 1− 1

n

Relations 1
1+4 gap2 ≤ JFI gap ≤ Gini ≤ gap(2− gap)

Equality only at MF Gini ≈ gap(1.5− 0.5 gap)
Exp(λ), λ > 0 0.5 1

e
≈ 0.368 0.5

Unif(a, b) 1

1+
(b−a)2

3(b+a)2

b−a
4(a+b)

b−a
3(a+b)

0 ≤ a < b

Pareto (p, x0)
p(p−2)
(p−1)2

1
p

(

1− 1
p

)p−1
1

2p−1

x0 > 0, p > 1 for p > 2

Table 2.1: Relationships between different fairness indices of a data set with n samples and empirical
mean m (MF = value when fairness is maximum, i.e all data points are equal).

SUMMARY Since there are so many different variability and fairness indices, we give here a
summary with some recommendations.

First, since the Gini coefficient can be essentially predicted from the Lorenz curve gap, we do not
use it further in this book. However, it may be useful to know the relationship between the two
since you may find that it is used in some performance evaluation results.

Second, Jain’s fairness index and the Lorenz curve gap are fundamentally different and cannot be
mapped to each other. The former is essentially the same as the standard deviation or the coeffi-
cient of variation. If the data comes from a heavy tailed distribution, the theoretical coefficient of
variation is infinite, and CoV→ ∞ as the number of data points gets large. Comparing different
CoVs in such a case does not bring much information. In contrast, the Lorenz curve gap continues
to be defined, as long as the distribution has a finite mean. It should be preferred, if one has a
choice.

We recall the main inequalities and bounds in Table 2.1 on Page 31. See also Figure 2.5 for some
examples.

2.2 CONFIDENCE I NTERVALS

2.2.1 WHAT IS A CONFIDENCE I NTERVAL ?

When we display a number such as the median or the mean of a series of performance results, it is
important to quantify their accuracy (this is part of the scientific method, Chapter 1).Confidence
intervals quantify the uncertainty about a summarized data that is dueto the randomness of the
measurements.

EXAMPLE 2.2:COMPARISON OFTWO OPTIONS, CONTINUED. We wish to quantify the improvement
due to the new system. To this end, we measure the reduction in run time for the same sequence
of tasks as on Figure 2.1 (both data sets on Figure 2.1 come from the same transaction sequences
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Figure 2.7:Data for Example 2.2: reduction in run time (in ms). Right: Box plot with mean and confidence
interval for mean.

– statisticians say that this is a paired experiment). The differences are displayed in Figure 2.7.

The last panel shows confidence intervals for the mean (horizontal lines) and for the median
(notches in Box plot). For example, the mean of the reduction in run time is 26.1 ± 10.2.The
uncertainty margin is called the confidence interval for the mean. It is obtained by the method
explained in this section. Here, the mean reduction is non negligible, but the uncertainty about it
is large.

There is a confidence interval for every summarized quantity: median, mean, quartile, standard
deviation, fairness index, etc. In the rest of this section,we explainhow to compute confidence
intervals.

2.2.2 CONFIDENCE I NTERVAL FOR M EDIAN AND OTHER QUANTILES

We start with the median and other quantiles, as it is both simplest and most robust; this section
also serves as an illustration of the general method for computing confidence intervals.

The main idea (which underlies all classical statistics formulae) is to imagine that the data we have
measured was in fact generated by a simulator, whose programis unknown to us. More precisely,
we are given some datax1, ..., xn; we imagine that there is a well defined probability distribution
with CDFF () from which the data is sampled, i.e. we have received one sample from a sequence
of independent and identically distributed (iid) random variablesX1, ..., Xn, each with common
CDF F (). The assumption that the random variables are iid is capital; if it does not hold, the
confidence intervals are wrong. We defer to Section 2.3 a discussion of when we may or may not
make this assumption. For now we assume it holds.

The distributionF () is non-random but is unknown to us. It has a well defined medianm, de-
fined by : for everyi, P(Xi ≤ m) = 0.5. We can never knowm exactly, but weestimate it
by m̂(x1, ..., xn), equal to the sample median defined in Section 2.1. Note that the value of the
estimated median depends on the data, so it is random: for different measurements, we obtain
different estimated medians. The goal of a confidence interval is to bound this uncertainty. It is
defined relative to aconfidence level γ; typically γ = 0.95 or 0.99:

DEFINITION 2.2.1. A confidence intervalat levelγ for the fixed but unknown parameterm is an
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interval (u(X1, ..., Xn), v(X1, .., Xn)) such that

P (u(X1, ..., Xn) < m < v(X1, ..., Xn)) ≥ γ (2.18)

In other words, the interval is constructed from the data, such that with at least95% probability (for
γ = 0.95) the true value ofm falls in it. Note thatit is the confidence interval that is random,
not the unknown parameterm.

A confidence interval for the median or any other quantile is very simple to compute, as the next
theorem shows.

THEOREM 2.2.1 (Confidence Interval for Median and Other Quantiles).Let X1, ..., Xn ben iid
random variables, with a common CDFF (). Assume thatF () has a density, and for0 < p < 1 let
mp be ap-quantile ofF (), i.e.F (mp) = p.
LetX(1) ≤ X(2) ≤ ... ≤ X(n) be theorder statistic, i.e. the set of values ofXi sorted in increasing
order. LetBn,p be the CDF of the binomial distribution withn repetitions and probability of success
p. A confidence interval formp at levelγ is

[X(j), X(k)]

wherej andk satisfy
Bn,p(k − 1)− Bn,p(j − 1) ≥ γ

See the tables in Appendix A on Page 311 for practical values.For large n, we can use the
approximation

j ≈ ⌊np− η
√

np(1 − p)⌋
k ≈ ⌈np + η

√

np(1− p)⌉ + 1

whereη is defined byN0,1(η) =
1+γ
2

(e.g.η = 1.96 for γ = 0.95).

TheBinomial distribution Bn,p, with n repetitions and probability of successp, is the distribution
of Z =

∑n
i=1 Zi whereZi are iid random variables such thatZi = 0 or 1 andP(Zi = 1) = p, i.e. it

is the distribution of the number of successes in an experiment with n trials and individual success
probabilityp. (The random variablesZi are calledBernoulli random variables.N0,1 is the CDF of
the gaussian distribution with mean0 and variance1.)

For n = 10, the theorem and the table in Section A say that a95%-confidence interval for the
median (estimated as

X(5)+X(6)

2
) is
[

X(2), X(9)

]

. In other words, we obtain a confidence interval for
the median of 10 results by removing the smallest and the largest. Could it be simpler ?

Note that, for small values ofn, no confidence interval is possible at the levels0.95 or 0.99. This
is due to the probability that the true quantile is outside any of the observed data still being large.

For largen, the binomial distribution can be approximated by a gaussian distribution, which ex-
plains the approximation in the theorem.

The assumption that the distribution has a density (also called PDF, probability density function) is for simplicity
of exposition. IfF () does not have a density (e.g. because the numbersXi are integers) the theorem hold with the
modification that the confidence interval is[X(j), X(k)) (instead of[X(j), X(k)]).
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2.2.3 CONFIDENCE I NTERVAL FOR THE M EAN

Here too there is a widely used result, given in the next theorem. The proof is standard and can be
found in probability textbooks [38, 76].

THEOREM 2.2.2. LetX1, ..., Xn ben iid random variables, the common distribution of which is
assumed to have well defined meanµ and a varianceσ2. Let µ̂n ands2n by

µ̂n =
1

n

n
∑

i=1

Xi (2.19)

s2n =
1

n

n
∑

i=1

(Xi − µ̂n)
2 (2.20)

The distribution of
√
n µ̂n−µ

sn
converges to the normal distributionN0,1 whenn → +∞. An approx-

imate confidence interval for the mean at levelγ is

µ̂n ± η
sn√
n

(2.21)

whereη is the 1+γ
2

quantile of the normal distributionN0,1, i.e N0,1(η) = 1+γ
2

. For example,
η = 1.96 for γ = 0.95 andη = 2.58 for γ = 0.99.

Note that the amplitudes of the confidence interval decreases like 1√
n
.

Also note however that some caution may be required when using the theorem, as it makes 3
assumptions:

1. the data comes from an iid sequence
2. the common distribution has a finite variance
3. the number of samples is large

each of these assumptions is worth screening, as there are realistic cases where they do not hold.
Assumption 1 is the same as for all confidence intervals in this chapter, and is discussed in Sec-
tion 2.3. Assumption 2 is true unless the distribution is heavy tailed, see Section 3.5. Assumption
3 is usually true even for small values ofn, and can be verified using the method in Section 2.5.1.

NORMAL IID CASE

The following theorem is a slight variant of Theorem 2.2.2. It applies only to the cases where we
know a priori that the distribution of the measured data follows a common gaussian distribution
Nµ,σ2 , with µ andσ fixed but unknown. It gives practically the same result as Theorem 2.2.2 for
the confidence interval for the mean; in addition it gives a confidence interval for the standard
deviation. This result is often used in practice, perhaps not rightfully, as the gaussian assumptions
are not always satisfied.

THEOREM 2.2.3. LetX1, ..., Xn be a sequence of iid random variables with common distribution
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Nµ,σ2 . Let

µ̂n =
1

n

n
∑

i=1

Xi (2.22)

σ̂2
n =

1

n− 1

n
∑

i=1

(Xi − µ̂n)
2 (2.23)

Then

• The distribution of
√
n µ̂n−µ

σ̂n
is Student’stn−1; a confidence interval for the mean at levelγ

is

µ̂n ± η
σ̂n√
n

(2.24)

whereη is the
(

1+γ
2

)

quantile of the student distributiontn−1.

• The distribution of(n− 1) σ̂
2
n

σ2 is χ2
n−1.

A confidence interval at levelγ for the standard deviation is

[σ̂n

√

n− 1

ξ
, σ̂n

√

n− 1

ζ
] (2.25)

whereζ andξ are quantiles ofχ2
n−1: χ

2
n−1(ζ) =

1+γ
2

andχ2
n−1(ξ) =

1−γ
2

.

The distributionsχ2 andtn are defined as follows.Chi-Square (χ2
n) is the distribution of the sum

of the squares ofn independent random variables with distributionN0,1 (its expectation isn and
its variance2n). Student (tn) is the distribution of

Z =
X

√

Y/n

whereX ∼ N0,1, Y ∼ χ2
n andX andY are independent.

Unlike in Theorem 2.2.2, the magic numbersη, ζ, ξ depend on the confidence levelγ but also on
the sample sizen. For instance, withn = 100 and confidence level0.95, we haveη = 1.98,
ζ = 73.4, andξ = 128.4. This gives the confidence intervals for mean and standard deviation:
[µ̂n − 0.198σ̂n, µ̂n + 0.198σ̂n] and[0.86σ̂n, 1.14σ̂n].

QUESTION 2.2.1. Does the confidence interval for the mean in Theorem 2.2.3 depend on the
estimator of the variance ? Conversely ?3

We can compare the confidence interval for the mean given by this theorem in Eq.(2.24) and by
Theorem 2.2.2 in Eq.(2.21). The latter is only approximately true, so we may expect some small
difference, vanishing withn. Indeed, the two formulas differ by two terms.

1. The estimators of the variancêσ2
n = 1

n−1

∑n
i=1 (Xi − µ̂n)

2 ands2n = 1
n

∑n
i=1 (Xi − µ̂n)

2

differ by the factor1
n

versus 1
n−1

. The factor 1
n−1

may seem unnatural, but it is required for
Theorem 2.2.3 to hold exactly. The factor1

n
appears naturally from the theory of maximum

likelihood estimation (Section B.1). In practice, it is notrequired to have an extreme accu-
racy for the estimator ofσ2 (since it is a second order parameter); thus using1

n−1
or 1

n
makes

little difference. Botĥσn andsn are calledsample standard deviation.

3Yes; No
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Figure 2.8:Confidence intervals for both compiler options of Example 2.1 computed with three different
methods: assuming data would be normal (Theorem 2.2.3) (left); the general method in and with the
bootstrap method (right).

2. η in Eq.(2.24) is defined by the student distribution, and by the normal distribution in
Eq.(2.21). For largen, the student distribution is close to normal; for example, with γ = 0.95
andn = 100, we haveη = 1.98 in Eq.(2.24) andη = 1.96 in Eq.(2.21).

See Figure 2.8 for an illustration.

2.2.4 CONFIDENCE I NTERVALS FOR FAIRNESS I NDICES AND THE BOOT-
STRAP

There is no analytical general method, even whenn is large (but see [102] for some special cases,
if the data is i.i.d normal or log-normal). Instead, we use a generic, computational method, called
the bootstrap. It is general and can be used for any estimator, not just to fairness indices. It applies
to all cases where data is iid.

THE BOOTSTRAP Consider a sample~x = (x1, ..., xn), which we assume to be a realization of
an iid sequenceX1, ..., Xn. We know nothing about the common distributionF () of theXis. We
are interested in some quantityt(~x) derived from the data, for which we want to find a confidence
interval (in this contextt(~x) is called astatistic). For example, if the statistic of interest is the
Lorenz curve gap, then by Section 2.1.3:

t(~x) =
1

2
∑n

i=1 xi

n
∑

j=1

∣

∣

∣

∣

∣

xj −
1

n

n
∑

i=1

xi

∣

∣

∣

∣

∣

Thebootstrap method uses the sample~x = (x1, ..., xn) as an approximation of the true, unknown
distribution. It is justified by the Glivenko-Cantelli theorem which says that the ECDF converges
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with probability 1 to the true CDFF () whenn gets large.

The method is described formally in Algorithm 1. The loop createsR bootstrap replicates ~Xr,

Algorithm 1 The Bootstrap, for computation of confidence interval at level γ for the statistic t(~x). The data
set ~x = (x1, ..., xn) is assumed to be a sample from an iid sequence, with unknown distribution. r0 is the
algorithm’s accuracy parameter.

1: R = ⌈2 r0/(1− γ)⌉ − 1 ⊲ For exampler0 = 25, γ = 0.95, R = 999
2: for r = 1 : R do
3: drawn numbers with replacement from the list(x1, ..., xn) and call themXr

1 , ..., X
r
n

4: let T r = t( ~Xr)
5: end for
6:
(

T(1), ..., T(R)

)

= sort
(

T 1, ..., TR
)

7: Prediction interval is[T(r0) ; T(R+1−r0)]

r = 1, ..., R. Each bootstrap replicate~Xr = (Xr
1 , ..., X

r
n) is a random vector of sizen, like the

original data. AllXr
i are independent copies of the same random variable, obtained by drawing

from the list(x1, ..., xn) with replacement. For example, if allxk are distinct, we haveP(Xr
i =

xk) =
1
n
, k = 1, ..., n.

For eachr, line 4 computes the value of the statistic obtained with therth “replayed” experiment.
The confidence interval in line 7 is thepercentile bootstrap estimate at levelγ. It is based on
the order statistic(T(r))r=1,...,R of (T r)r=1,...,R.

The value ofR in line 1 needs to be chosen such that there are sufficiently many points outside the
interval, and depends on the confidence level. A good value isR = 50

1−γ
− 1. For example, with

γ = 0.95, takeR = 999 and the confidence interval in line 7 is
[

T(25);T(975)

]

.

EXAMPLE 2.3:CONFIDENCE INTERVALS FOR FAIRNESS INDICES. The confidence intervals for the
left two cases on Figure 2.5 were obtained with the Bootstrap, with a confidence level of 0.99,
i.e. with R = 4999 bootstrap replicates (left and right: confidence interval; center: value of index
computed in Figure 2.5).

Jain’s Fairness Index Lorenz Curve Gap

Old Code 0.5385 0.6223 0.7057 0.2631 0.3209 0.3809
New Code 0.5673 0.6584 0.7530 0.2222 0.2754 0.3311

For the third example, the bootstrap cannot be applied directly, as the data set is not iid and the
bootstrap requires i.i.d data. Subsampling does not work as the data set is long range dependent.
A possible method is to fit a long range dependent model, such as fractional arima, then apply the
bootstrap to the residuals.

The bootstrap may be used for any metric, not just for fairness indices. Figure 2.8 gives a compari-
son of confidence intervalsfor the meanobtained with the bootstrap and with the classical methods
(heret(~x) = 1

n

∑n
i=1 xi).

In general, the percentile estimate is an approximation that tends to be slightly too small. For a
theoretical analysis of the bootstrap method, and other applications, see [33].
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2.2.5 CONFIDENCE I NTERVAL FOR SUCCESSPROBABILITY

This is the frequent case where we don independent experiments and are interested in a binary
outcome (success or failure). Assume we observez successes (with0 ≤ z ≤ n). We would like to
find a confidence interval for the probabilityp of success, in particular whenp is small.

Mathematically, we can describe the situation as follows. We have a sequenceX1, ..., Xn of inde-
pendent Bernoulli random variables such thatP(Xk = 0) = 1 − p andP(Xk = 1) = p, and we
observeZ =

∑n
i=1Xi. The numbern of experiments is known, but not the success probability

p, which we want to estimate. A natural estimator ofp is 1
n

∑n
k=1Xi, i.e. the mean of the out-

comes (this is the maximum likelihood estimator, see Section B.1). Therefore, we can apply the
method for confidence intervals for the mean in Theorem 2.2.2; however, this method is valid only
asymptotically, and does not work whenz is very small compared ton. A frequent case of interest
is when we observe no success (z = 0) out of n experiments; here, Theorem 2.2.2 gives[0; 0] as
confidence interval forp, which is not correct. We can use instead the following result.

THEOREM 2.2.4. [43, p. 110] Assume we observez successes out ofn independent experiments.
A confidence interval at levelγ for the success probabilityp is [L(z);U(z)] with







L(0) = 0
L(z) = φn,z−1

(

1+γ
2

)

, z = 1, ..., n
U(z) = 1− L(n− z)

(2.26)

whereφn,z(α) is defined forn = 2, 3, ..., z ∈ {0, 1, ..., n} andα ∈ (0; 1) by

{

φn,z(α) =
n1f

n2+n1f

n1 = 2(z + 1), n2 = 2(n− z), 1− α = Fn1,n2(f)
(2.27)

(Fn1,n2() is the CDF of the Fisher distribution withn1, n2 degrees of freedom). In particular, the
confidence interval forp when we observez = 0 successes is[0; p0(n)] with

p0(n) = 1−
(

1− γ

2

)
1
n

=
1

n
log

(

2

1− γ

)

+ o

(

1

n

)

for largen (2.28)

Wheneverz ≥ 6 andn− z ≥ 6, the normal approximation






L(z) ≈ z
n
− η

n

√

z
(

1− z
n

)

U(z) ≈ z
n
+ η

n

√

z
(

1− z
n

)

(2.29)

can be used instead, withN0,1(η) =
1+γ
2

.

The confidence interval in the theorem is not the best one, butit is perhaps the simplest. It is based
on a symmetric coverage interval, i.e. the probability of being above (or below) is< 1−γ

2
and it

is the smallest interval with this property. Other, non symmetric intervals can be derived and are
slightly smaller [12].

Note that the functionφn,z() is the reverse mapping ofp 7→ Bn,p(z) whereBn,p() is the CDF of
the binomial distribution (this explains Eq.(2.28)). Eq.(2.27) is used in numerical implementations
[43].
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For γ = 0.95, Eq.(2.28) givesp0(n) ≈ 3.689
n

and this is accurate with less than10% relative error
for n ≥ 20 already.

The confidence interval in Eq.(2.29) is obtained by application of the asymptotic confidence inter-
val for the mean; indeed, a direct application of Theorem 2.2.2 givesµ̂n = z

n
ands2n = z(n−z)

n
.

EXAMPLE: SENSOR LOSSRATIO . We measure environmental data with a sensor network. There
is reliable error detection, i.e. there is a coding system which declares whether a measurement is
correct or not. In a calibration experiment with 10 independent replications, the system declares
that all measurements are correct. What can we say about the probability p of finding an incorrect
measurement ?

Apply Eq.(2.28): we can say, with 95% confidence, that p ≤ 30.8%.

Later, in field experiments, we find that 32 out of 145 readings are declared incorrect. Assuming
the measurements are independent, what can we say about p ?

Apply Eq.(2.29) with z = 32, n = 145: with 95% confidence we can say that L ≤ p ≤ U with







L ≈ z
n − 1.96

n

√

z
(

1− z
n

)

= 15.3%

U ≈ z
n + 1.96

n

√

z
(

1− z
n

)

= 28.8%

Instead of the normal approximation in Eq.(2.29), we could have used the exact formula in Eq.(2.26),
which would give L = 15.6%, U = 29.7%.

Theorem 2.2.4 is frequently used in conjunction with Monte Carlo estimation of thep-value of a
test, see Example 6.7 on Page 175.

2.3 THE I NDEPENDENCE ASSUMPTION

All results in the previous and the next section assume the data is a sample of a sequence of inde-
pendent and identically distributed (iid) random variables. We discuss here in detail the meaning
of this assumption (in Section 2.4.3 we also discuss the gaussian assumption, required by Theo-
rems 2.2.2 and 2.2.3).

2.3.1 WHAT DOES IID MEAN ?

Iid-ness is a property of a stochastic model, not of the data.When we say, by an abuse of language,
that the collected data set is iid, we mean that we can do as if the collected datax1, ..., xn is a
sample (i.e. a simulation output) for a sequence of random variablesX1, ..., Xn, whereX1, ..., Xn

are independent and all have the same (usually unknown) distribution with CDFF ().

To generate such as sample, we draw a random number from the distributionF (), using a random
number generator (see Section 6.6). Independence means that the random numbers generated at
every stepi are discarded and not re-used in the future stepsi + 1, .... Another way to think of
independence is with conditional probabilities: for any set of real numbersA

P(Xi ∈ A | X1 = x1, ..., Xi−1 = xi−1) = P(Xi ∈ A) (2.30)
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i.e. if we know the distribution F (x), observingX1, ..., Xi−1 does not give more information
aboutXi.

Note the importance of the “if” statement in the last sentence: remove it and the sentence is no
longer true. To understand why, consider a samplex1, ..., xn for which we assume to know that
it is generated from a sequence of iid random variablesX1, ..., Xn with normal distribution but
with unknown parameter(µ, σ2). If we observe for example that the average ofx1, ..., xn−1 is 100
and all values are between 0 and 200, then we can think that it is very likely thatxn is also in the
interval [0, 200] and that it is unlikely thatxn exceeds1000. Though the sequence is iid, we did
gain information about the next element of the sequence having observed the past. There is no
contradiction: if we know that the parameters of the random generator areµ = 100 andσ2 = 10
then observingx1, ..., xn−1 gives us no information aboutxn.

2.3.2 HOW DO I KNOW IN PRACTICE IF THE IID ASSUMPTION IS VALID ?

If your performance data comes from adesigned experiment, i.e. a set of simulation or tests that
is entirely under your control, then it is up to you to design things in such a way that the collected
data are iid. This is done as follows.

Every experiment has a number of factors, i.e., parameters that are likely to influence the outcome.
Most of the factors are not really interesting, but you have to account for them in order to avoid
hidden factor errors (see Section 1.2 for details). The experiment generates iid data if the values
of the factors are chosen in an iid way, i.e., according to a random procedure that is the same for
every measured point, and is memoriless. Consider Example 2.1, where the run time for a number
of transactions was measured. One factor is the choice of thetransaction. The data is made iid
if, for every measurement, we choose one transactionsrandomly with replacement in a list of
transactions.

A special case of designed experiment is simulation. Here, the method is to generatereplications
without resetting the random number generator, as explained in Section 6.3.

Else (i.e. your data does not come from a designed experimentbut from measurements on a
running system) there is little chance that the complete sequence of measured data is iid. A simple
fix is to randomize the measurements, in such a way that from one measurement point to the
other there is little dependence. For example, assume you are measuring the response time of an
operational web server by data mining the log file. The response time to consecutive requests is
highly correlated at the time scale of the minute (due to protocols like TCP); one common solution
is to choose requests at random, for example by selecting onerequest in average every two minutes.

If there is some doubt, the following methods can be used to verify iid-ness:

1. (Autocorrelation Plot): If the data appears to be stationary (no trend, no seasonal compo-
nent), then we can plot the sample autocorrelation coefficients, which are an estimate of the
true autocorrelation coefficientsρk (defined on Page 143). If the data is iid, thenρk = 0 for
k ≥ 1, and the sample autocorrelation coefficients fall within the values±1.96/

√
n (where

n is the sample size) with95% probability. An autocorrelation plot displays these bounds
as well. A visual inspection can determine if this assumption is valid. For example, on
Figure 2.9 we see that there some autocorrelation in the firstsix diagrams but not in the
last two. If visual inspection is not possible, a formal testcan be used (the Ljung-Box test,
Section 5.5.1). If the data is iid, any point transformationof the data (such as the Box Cox
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Figure 2.9:Execution times for n = 7632 requests (top left) and autocorrelation function (bottom left), and
for the data sub-sampled with probability p = 1/2 to 1/27 = 1/128. The data appears stationary and roughly
normal so the auto-correlation function can be used to test independence. The original data is positively
correlated, but the sub-sampled data looses correlation when the sampling probability is p = 1/64. The
turning point test for the subsampled data with p = 1/64 has a p-value of 0.52648, thus at confidence
level 0.95 we accept the null hypothesis, namely, the data is iid. The sub-sampled data has 116 points,
and the confidence interval obtained from this for the median of the sub-sampled data is [66.7, 75.2] (using
Theorem 2.2.1). Compare with the confidence interval that would be obtained if we would (wrongly) assume
the data to be iid : [69.0, 69.8]. The iid assumption underestimates the confidence interval because the data
is positively correlated.

transformation for any exponents, Section 2.4.3) should appear to be non correlated as well.

2. (Lag-Plot): We can also plot the value of the data at timet versus at timet+ h, for different
values ofh (lag plots). If the data is iid, the lag plots do not show any trend. On Figure 2.10
we see that there is a negative trend at lag 1.

3. (Turning Point Test): A test provides an automated answer, but is sometimes less sure than a
visual inspection. A test usually has a null hypothesis and returns a so called “p-value” (see
Chapter 4 for an explanation). If thep-value is smaller thanα = 1 − γ, then the test rejects
the null hypothesis at the confidence levelγ. See Section 4.5.2 for details.

2.3.3 WHAT HAPPENS I F THE IID A SSUMPTION DOES NOT HOLD ?

If we compute a confidence interval (using a method that assumes iid data) whereas the iid assump-
tion does not hold, then we introduce some bias. Data arisingfrom high resolution measurements
are frequently positively correlated. In such cases, the confidence interval is too small: there is not
as much information in the data as one would have if they wouldbe iid (since the data tends to
repeat itself); see Figure 2.9 for an example.
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It may still be possible to obtain confidence intervals when the data does not appear to be iid. Two
possible methods are:

Sub-sampling This means select a fractionp of the measured data, and verify that the iid assump-
tion can be made for the selected data. The hope is that correlation disappears between data
samples that are far apart.

A simple way would be to keep everypn data sample, wheren is the total number of points,
but this is not recommended as such a strict periodic sampling may introduce unwanted
anomalies (called aliasing). A better method is to decide independently for each data point,
with probabilityp, whether it is sub-sampled or not.

For example, on Figure 2.9, sub-sampling works forp ≤ 1/64; the confidence interval for
the median is much larger than if we would (wrongly) assume the original data to be iid.

Sub-sampling is very simple and efficient. It does not alwayswork, though: it does not work
if the data set is small, nor for some large data sets, which remain correlated after repeated
sub-sampling (such data sets are called long range dependent).

Modelling is more complex but applies when sub sampling does not. It consists in fitting a para-
metric model appropriate to the type of data, and computing confidence intervals for the
model parameters (for example using Section B.1). We illustrate the method on the next
example.

EXAMPLE 2.4:JOE’ S BALANCE DATA . Joe’s shop sells online access to visitors who download
electronic content on their smartphones. At the end of day t − 1, Joe’s employee counts the
amount of cash ct−1 present in the cash register and puts it into the safe. In the morning of day t,
the cash amount ct−1 is returned to the cash register. The total amount of service sold (according
to bookkeeping data) during day t is st. During the day, some amount of money bt is sent to the
bank. At the end of day t, we should have ct = ct−1 + st − bt. However, there are always small
errors in counting the coins, in bookkeeping and in returning change. Joe computes the balance
Yt = ct − ct−1 − st + bt and would like to know whether there is a systematic source of errors (i.e.
Joe’s employee is losing money, maybe because he is not honest, or because some customers
are not paying for what they take). The data for Yt is shown on Figure 2.10. The sample mean is
µ = −13.95, which is negative. However, we need a confidence interval for µ before risking any
conclusion.

If we would assume that the errors Yt are iid, then a confidence interval would be given by Theo-
rem 2.2.2 and we find approximately [−43, 15]. Thus, with the iid model, we cannot conclude that
there is a fraud.

However, the iid assumption is not valid, as Figure 2.10 shows (there is a strong correlation at
lag 1; this is confirmed by the lag plot). We use a modelling approach. A similar problem is
discussed in [18, Example 3.2.8], with oil rather than money leakage; the authors in [18] conclude
that a moving average model can be used. We apply the same approach here. First note that Yt
appears to be reasonably gaussian (also see Section 2.4.3), and has correlation only at lag 1. We
study such processes in Chapter 5; a gaussian process that has correlation only at lag 1 is the
moving average process, which satisfies

Yt − µ = ǫt + αǫt−1

where ǫt is iid N0,σ2 . This is a parametric model, with parameter (µ, α, σ). We can fit it using a
numerical package or the methods in Chapter 5. A confidence interval for µ can be obtained using
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Figure 2.10:Daily balance at Joe’s wireless access shop over 93 days. The lag plots show y(t) versus
y(t+ h) where y(t) is the time series in (a). The data appears to have some correlation at lag 1 and is thus
clearly not iid.
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Theorem B.3.1 and Theorem D.5.1. Here, it is plausible that the sample size is large enough. For
any fixed µ, we compute the profile log-likelihood. It is obtained by fitting an MA(1) process to
Wt := Yt − µ. Good statistical packages give not only the MLE fit, but also the log-likelihood of
the fitted model, which is exactly the profile log-likelihood pl(µ). The MLE µ̂ is the value of µ that
maximizes pl(µ), and −2(pl(µ̂)− pl(µ)) is approximately χ2

1. Figure 2.11 shows a plot of pl(µ).

It follows that µ̂ = −13.2 and an approximate 95%-confidence interval is [−14.1,−12.2]. Contrary
to the iid model, this suggests that there is a loss of money, in average 13=C per day.

−14.5 −14 −13.5 −13 −12.5 −12
−562

−561.5
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Figure 2.11:Profile Log Likelihood for the Moving Average model of Joe’s balance data. The horizontal
line is at a value η/2 = 1.92 below the maximum, with χ2

1(η) = 0.95; it gives an approximate confidence
interval for the mean of the data on the x axis.

QUESTION 2.3.1. Give an example of identically distributed but dependent random variables.4

2.4 PREDICTION I NTERVAL

The confidence intervals studied before quantify the accuracy of a mean or median; this is useful
for diagnostic purposes, for example we can assert from the confidence intervals on Figure 2.7 that
the new option does reduce the run time, because the confidence intervals for the mean (or the
median) are in the positive numbers.

Sometimes we are interested in a different viewpoint and would like to characterize thevariability
of the data: for example we would like to summarize which run time can be expected for an
arbitrary future (non observed) transaction. Clearly, this run time is random. Aprediction interval
at levelγ is an interval that we can compute by observing a realizationof X1, ..., Xn and such that,
with probability γ, a future transaction will have a run time in this interval. Intuitively, if the
common CDF of allXis would be known, then a prediction interval would simply be an inter-
quantile interval, for example[mα/2, m1−α/2], with α = 1 − γ. For example, if the distribution is
normal with known parameters, a prediction interval at level 0.95 would beµ ± 1.96σ. However,
there is some additional uncertainty, due to the fact that wedo not know the distribution, or its
parameters a priori, and we need to estimate it. The prediction interval capture both uncertainties.
Formally, the definition is as follows.

4Here is a simple one: assumeX1, X3, X5, ... are iid with CDFF () and letX2 = X1, X4 = X3 etc. The
distribution ofXi is F () but the distribution ofX2 conditional toX1 = x1 is a dirac atx1, thus depends onx1. The
random choices taken forX1 influence (here deterministically) the value ofX2.
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DEFINITION 2.4.1. LetX1, ..., Xn, Xn+1 be a sequence of random variables. A prediction interval
at levelγ is an interval of the form[u(X1, ..., Xn), v(X1, ..., Xn)] such that

P (u(X1, ..., Xn) ≤ Xn+1 ≤ v(X1, ..., Xn)) ≥ γ (2.31)

Note that the definition does not assume thatXi is iid, however we focus in this chapter on the iid
case. The trick is now to find functionsu andv that are pivots, i.e. their distribution is known even
if the common distribution of theXis is not (or is not entirely known).

There is one general result, which applies in practice to sample sizes that are not too small (n ≥
39), which we give next.

2.4.1 PREDICTION FOR AN IID S AMPLE BASED ON ORDER STATISTIC

THEOREM 2.4.1 (General IID Case).Let X1, ..., Xn, Xn+1 be an iid sequence and assume that
the common distribution has a density. LetXn

(1), ..., X
n
(n) be the order statistic ofX1, ..., Xn. For

1 ≤ j ≤ k ≤ n:

P
(

Xn
(j) ≤ Xn+1 ≤ Xn

(k)

)

=
k − j

n + 1
(2.32)

thus forα ≥ 2
n+1

, [Xn
(⌊(n+1)α

2
⌋), X

n
(⌈(n+1)(1−α

2 )⌉)
] is a prediction interval at level at leastγ = 1−α.

For example, withn = 999, a prediction interval at level0.95 (α = 0.05) is [X(25), X(975)]. This
theorem is similar to the bootstrap result in Section 2.2.4,but is exact and much simpler.

QUESTION 2.4.1. We have obtainedn simulation results and use the prediction interval[m,M ]
wherem is the smallest result andM the largest. For which values ofn is this a prediction interval
at level at least95% ? 5

For very smalln, this result gives poor prediction intervals with values ofγ that maybe far from
100%. For example, withn = 10, the best prediction we can do is[xmin, xmax], at levelγ = 81%.
If we can assume that the data is normal, we have a stronger result, shown next.

5The interval is[X(1), X(n)] thus the level isn−1
n+1 . It is ≥ 0.95 for n ≥ 39. We need at least 39 samples to provide

a 95% prediction interval.
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2.4.2 PREDICTION FOR A NORMAL IID S AMPLE

THEOREM 2.4.2 (Normal IID Case).LetX1, ..., Xn, Xn+1 be an iid sequence with common distri-
butionNµ,σ2 . Letµ̂n andσ̂2

n be as in Theorem 2.2.3. The distribution of
√

n
n+1

Xn+1−µ̂n

σ̂n
is Student’s

tn−1; a prediction interval at level1− α is

µ̂n ± η′
√

1 +
1

n
σ̂n (2.33)

whereη′ is the
(

1− α
2

)

quantile of the student distributiontn−1.
For largen, an approximate prediction interval is

µ̂n ± ησ̂n (2.34)

whereη is the
(

1− α
2

)

quantile of the normal distributionN0,1.

For example, forn = 100 andα = 0.05 we obtain the prediction interval (we drop the indexn):
[µ̂ − 1.99σ̂, µ̂+ 1.99σ̂]. Compare to the confidence interval for the mean given by Theorem 2.2.3
where the width of the interval is≈ 10 =

√
n times smaller. For a largen, the prediction interval is

approximately equal tôµn± ησ̂n, which is the interval we would have if we ignore the uncertainty
due to the fact that the parametersµ andσ are estimated from the data. Forn as small as26, the
difference between the two is7% and can be neglected in most cases.

The normal case is also convenient in that it requires the knowledge of only two statistics, the mean
µ̂n and the mean of squares (from whichσ̂n is derived).

Comment Compare the prediction interval in Eq.(2.34) to the confidence interval for the mean
in Eq.(2.24): there is a difference of1√

n
; the confusion between both is frequently done: when

comparing confidence interval, check if the standard deviation is indeed divided by
√
n !

EXAMPLE 2.5:FILE TRANSFER TIMES. Figure 2.12 shows the file transfer times obtained in
100 independent simulation runs, displayed in natural and log scales. The last panel shows 95%-
prediction intervals. The left interval is obtained with the method of order statistic (Theorem 2.4.1);
the middle one by (wrongly) assuming that the distribution is normal and applying Theorem 2.4.1
– it differs largely.

The right interval is obtained with a log transformation. First, a prediction interval [u(Y1, ..., Yn), v(Y1, ...Yn)]
is computed for the transformed data Yi = ln(Xi); the prediction interval is mapped back to the
original scale to obtain the prediction interval [exp(u(ln(X1, ..., ln(Xn))), exp(v(ln(X1, ..., ln(Xn)))].
We leave it to the alert reader to verify that this reverse mapping is indeed valid. The left and right
intervals are in good agreement, but the middle one is obviously wrong.

The prediction intervals also show the central values (with small circles). For the first one, it is the
median. For the second one, the mean. For the last one, exp

(∑n
i=1 Yi

n

)

, i.e. the back transformed

of the mean of the transformed data (here, the geometric mean).

QUESTION 2.4.2. The prediction intervals in Figure 2.12 are not all symmetric around the central
values. Explain why.6

6First interval: the distribution of the data is obviously not symmetric, so the median has no reason to be in the



2.4. PREDICTION INTERVAL 47

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

(a) (Data)

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

(b) (Log of data)

1 2 3
−300

−200

−100

0

100

200

300

400

Method

P
re

di
ct

io
n 

In
te

rv
al

(c) (Prediction Intervals)

Figure 2.12:File transfer times for 100 independent simulation runs, with prediction intervals computed
with the order statistic (1), assuming the data is normal (2) and assuming the log of data is normal (3).

There is no “largen” result for a prediction interval, like there is in Theorem 2.2.2: a prediction
interval depends on the original distribution of theXis, unlike confidence intervals for the mean,
which depend only on first and second moments thanks to the central limit theorem. Theorem 2.4.2
justifies the common practice of using the standard deviation as a measure of dispersion; however
it provides useful prediction intervals only if the data appears to be iidand normal. In the next
section discuss how to verify normality.

2.4.3 THE NORMAL ASSUMPTION

QQPLOTS

This is a simple method for verifying the normal assumption,based on visual inspection. Aprob-
ability plot, also calledqq-plot, compares two samplesXi, Yi, i = 1, ..., n in order to determine
whether they come from the same distribution. CallX(i) theorder statistic, obtained by sorting
Xi in increasing order. ThusX(1) ≤ X(2) ≤ .... The qq-plot displays the points(X(i), Y(i)). If the
points are approximately along a straight line, then the distributions ofXi andYi can be assumed
to be the same, modulo a change of scale and location.

Most often, we use qqplots to check the distribution ofYi against a probability distributionF .
To do so, we plot(xi, Y(i)), wherexi is an estimation of the expected value ofE(Y(i)), assuming
the marginal ofYi is F . The exact value ofE(Y(i)) is hard to obtain, but a simple approximation
(assuming thatF is strictly increasing) is [32]:

xi := F−1

(

i

n+ 1

)

A normal qqplots, is a qqplot such thatF = N0,1, and is often used to visually test for normality
(Figure 2.13). More formal tests are the Jarque Bera test (Section 4.5.1) and the goodness of fit
tests in Section 4.4.

middle of the extreme quantiles. Second interval: by nature, it is strictly symmetric. Third interval: it is the exponential
of a symmetric interval; exponential is not an affine transformation, so we should not expect the transformed interval
to be symmetric.
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(b) (QQ-plot of log of data)
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Figure 2.13:Normal qqplots of file transfer times in Figure 2.12 and of an artificially generated sample
from the normal distribution with the same number of points. The former plot shows large deviation from
normality, the second does not.

RESCALING , HARMONIC , GEOMETRIC AND OTHER M EANS

Figure 2.12 illustrates that the use of standard deviation as a basis for a prediction interval may
be better if we re-scale the data, using a point tranformation. TheBox-Cox transformation is
commonly used for that. It has one shape parameters and is given by

bs(x) =

{

xs−1
s

, s 6= 0
ln x , s = 0

(2.35)

Commonly used parameters ares = 0 (log tranformation),s = −1 (inverse),s = 0.5 ands = 2.
The reason for this specific form is to be continuous ins.

It is easy to see (as in Example 2.5) that aprediction interval for the original data can be obtained
by reverse-transforming a prediction interval for the transformed data. In contrast, this does not
hold forconfidence intervals. Indeed, by reverse-transforming a confidence interval forthe mean
of the transformed data, we obtain a confidence interval for another type of mean (harmonic, etc.).
More precisely, assume we transform a data setx1, ..., xn by an invertible (thus strictly monotonic)
mappingb() into y1, ...yn, i.e. yi = b(xi) andxi = b−1(yi) for i = 1, ..., n. We calledtransformed
sample mean the quantityb−1( 1

n

∑n
i=1 yi), i.e. the back-transform of the mean of the transformed

data. Similarly, thetransformed distribution mean of the distribution of a random variableX
is b−1(E(b(X)). Whenb() is a Box-Cox transformation with indexs = −1, 0 or 2 we obtain the
classical following definitions, valid for a positive data setxi, i = 1..., n or a random variableX:

Transformation Transformed Sample MeanTransformed Distribution Mean
Harmonic b(x) = 1/x 1

1
n

∑n
i=1

1
xi

1
E( 1

X
)

Geometric b(x) = ln(x) (
∏n

i=1 xi)
1
n eE(lnX)

Quadratic b(x) = x2
√

1
n

∑n
i=1 x

2
i

√

E(X2)

THEOREM 2.4.3. A confidence interval for a transformed mean is obtained by the inverse trans-
formation of a confidence interval for the mean of the transformed data.
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For example, a confidence interval for the geometric mean is the exponential of a confidence inter-
val for the mean of the logarithms of the data.

2.5 WHICH SUMMARIZATION TO USE ?

In the previous sections we have seen various summarizationmethods. In this section we discuss
the use of these different methods.

The methods differ in their objectives:confidence interval for central value versusprediction
intervals. The former quantify the accuracy of the estimated central value, the latter reflects how
variable the data is. Both aspects are related (the more variable the data is, the less accurate the
estimated central value is) but they are not the same.

The methods differ in the techniques used, and overlap to a large extend. They fall in two cate-
gories: methods based on the order statistic (confidence interval for median or or other quantiles,
Theorem 2.2.1; prediction interval computed with order statistic, Theorem 2.4.1) or based on mean
and standard deviation (Theorems 2.2.3, 2.2.2, 2.4.2). Thetwo types of methods differ in theirro-
bustness versus compactness.

2.5.1 ROBUSTNESS

WRONG DISTRIBUTIONAL HYPOTHESES

The confidence interval for the mean given by Theorem 2.2.2 requires that the central limit theorem
applies i.e. (1) the common distribution has a finite variance and (2) the sample sizen is large
enough. While these two assumptions very often hold, it is important to detect cases where they
do not.

Ideally, we would like to test whether the distribution ofT =
∑n

i=1Xi is normal or not, but we
cannot do this directly, since we have only one value ofT . The bootstrap method can be used to
solve this problem, as explained in the next example.

EXAMPLE 2.6:PARETO DISTRIBUTION. This is a toy example where we generate artificial data,
iid, from a Pareto distribution on [1,+∞). It is defined by its cdf equal to F (c) := P(X > c) = 1

cp

with p = 1.25; its mean is = 5, its variance is infinite (i.e. it is heavy tailed) and its median is 1.74.

Assume we would not know that it comes from a heavy tailed distribution and would like to use the
asymptotic result in Theorem 2.2.2 to compute a confidence interval for the mean.

We use the bootstrap method to verify convergence to the normal distribution, as follows. We are
given a data sample x1, ..., xn from the Pareto distribution. We generate R replay experiments:
for each r between 1 and R, we draw n samples Xr

i i = 1, ..., n with replacement from the list
(x1, ..., xn) and let T r = i=1

n Xr
i . T r is the rth bootstrap replicate of T ; we do a qqplot of the

T r, r = 1, ..., R. If the distribution of T is normal, the qqplot should look normal as well.

We see that the qqplots do not appear normal, which is an indication that the central limit theorem
might not hold. Indeed, the confidence interval for the mean is not very good.

The previous example shows a case where the confidence interval for the mean is not good, because
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Figure 2.14:(a) Left: Artificially generated sample of 100 values from a Pareto distribution with exponent
p = 1.25. Center: confidence intervals for the mean computed from Theorem 2.2.2 (left) and the bootstrap
percentile estimate (center), and confidence interval for the median (right). Right: qqplot of 999 bootstrap
replicates of the mean. The qqplot shows deviation from normality, thus the confidence interval given by
Theorem 2.2.2 is not correct. Note that in this case the bootstrap percentile interval is not very good either,
since it fails to capture the true value of the mean (= 5). In contrast, the confidence interval for the median
does capture the true value (= 1.74). (b) Same with 10000 samples. The true mean is now within the
confidence interval, but there is still no convergence to normality.
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Figure 2.15:File transfer times for 100 independent simulation runs with outlier removed. Confidence
intervals are without (left) and with (right) outlier, and with method (1) median (2) mean and (3) geometric
mean. Prediction intervals are without (left) and with (right) outlier, computed with the three alternative
methods discussed in Example 2.7: (1) order statistics (2) based on mean and standard deviation (3)
based on mean and standard deviation after re-scaling.

a distributional assumption was made, which is not correct.In contrast, the confidence interval for
the medianis correct (Figure 2.14), as it does not require any distributional assumption (other than
the iid hypothesis).

OUTLIERS

Methods based on the order statistic are more robust to outliers. Anoutlier is a value that signifi-
cantly differs from the average. The median and the prediction interval based on order statistic are
not affected by a few outliers, contrary to the mean and the prediction interval based on mean and
standard deviation, as illustrated by the following example.

EXAMPLE 2.7:FILE TRANSFER WITH ONE OUTLIER. In fact in the data of Example 2.7 there is
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Index Lower Bound, CI Index Upper Bound, CI

Without Outlier JFI 0.1012 0.1477 0.3079
gap 0.4681 0.5930 0.6903

With Outlier JFI 0.0293 0.0462 0.3419
gap 0.4691 0.6858 0.8116

Table 2.2:Fairness indices with and without outlier.

one very large value, 5 times larger than the next largest value. One might be tempted to remove
it, on the basis that such a large value might be due to measurement error. A qqplot of the data
without this “outlier” is shown on Figure 2.15, compare to the corresponding qq-plot with the outlier
in Figure 2.13 (a,b). The prediction intervals based on order statistics are not affected, but the one
based on mean and standard deviation is completely different.

Table 2.2 shows the values of Jain’s fairness index and the Lorenz curve gap is very sensitive to
the presence of one outlier, which is consistent with the previous observation since Jain’s fairness
index is defined by the ratio of standard deviation to mean (coefficient of variation). The Lorenz
curve gap is less sensitive.

The outlier is less of an outlier on the re-scaled data (with the log transformation). The qqplot
of the rescaled data is not affected very much, neither is the prediction interval based on mean
and standard deviation of the rescaled data. Similarly, the confidence intervals for median and
geometric mean are not affected, whereas that for the mean is. We do not show fairness indices
for the re-scaled data since re-scaling changes the meaning of these indices.

Care should be taken to screen the data collection procedurefor true outliers, namely values that
are wrong because of measurement errors or problems. In the previous example, we should not
remove the outlier. In practice it may be difficult to differentiate between true and spurious outliers.
The example illustrates the following facts:

• Outliers may affect the prediction and confidence intervalsbased on mean and standard
deviation, as well as the values of fairness indices. Jain’sfairness index is more sensitive
than the Lorenz curve gap.

• This may go away if the data is properly rescaled. An outlier in some scale may not be an
outlier in some other scale.

• In contrast, confidence intervals for the median and prediction intervals based on order statis-
tics are more robust to outliers. They are not affected by re-scaling.

2.5.2 COMPACTNESS

Assume we wish to obtain both a central value with confidence interval and a prediction interval for
a given data set. If we use methods based on order statistics,we will obtain a confidence interval
for the median, and, say, a prediction interval at level95%. Variability and accuracy are given by
different sample quantiles, and cannot be deduced from one another. Furthermore, if we later are
interested in99% prediction intervals rather than 95%, we need to recompute new estimates of
the quantiles. The same argument speaks in favour of quantifying the variability by means of the
Lorenz curve gap.
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In contrast, if we use methods based on mean and standard deviation, we obtain both confidence
intervals and prediction intervals at any level with just 2 parameters (the sample mean and the
sample standard deviation). In particular, the sample standard deviation gives indication on both
accuracy of the estimator and variability of the data. However, as we saw earlier, these estimators
are meaningful only in a scale where the data is roughly normal, if there is any.

Also, mean and standard deviation are less complex to compute than estimators based on order
statistics, which require sorting the data. In particular,mean and standard deviation can be com-
puted incrementally online, by keeping only 2 counters (sumof values and sum of squares). This
reason is less valid today than some years ago, since there are sorting algorithms with complexity
n ln(n).

2.6 OTHER ASPECTS OFCONFIDENCE /PREDICTION I NTER-
VALS

2.6.1 INTERSECTION OF CONFIDENCE /PREDICTION I NTERVALS

In some cases we have several confidence or prediction intervals for the same quantity of interest.
For example, we can have a prediction intervalI based on mean and standard deviation orI ′

based on order statistics. A natural deduction is to consider that the intersectionI ∩ I ′ is a better
confidence interval. This is almost true:

THEOREM 2.6.1. If the random intervalsI, I ′ are some confidence intervals at levelγ = 1 − α,
γ′ = 1 − α′ then the intersectionI ∩ I ′ is a confidence interval at level at least1 − α − α′. The
same holds for prediction intervals.

EXAMPLE 2.8:FILE TRANSFERTIMES. (Continuation of Example 2.7). We can compute two predic-
tion intervals at level 0.975, using the order statistic method and the mean and standard deviation
after rescaling (the prediction obtained without rescaling is not valid since the data is not normal).
We obtain [0.0394, 336.9] and [0.0464, 392.7]. We can conclude that a prediction interval at level
0.95 is [0.0464, 336.9], which is better than the two.

Compare this interval to the prediction intervals at level 95% for each of the two methods; they are
[0.0624, 205.6] and [0.0828, 219.9]. Both are better.

Thus, for example if we combine two confidence intervals at level 97.5% we obtain a confidence
interval at level95%. As the example shows, this may be less good than an original confidence
interval at level95%.

2.6.2 THE M EANING OF CONFIDENCE

When we say that an intervalI is a confidence interval at level 0.95 for some parameterθ, we
mean the following. If we could repeat the experiment many times, in about 95% of the cases, the
intervalI would indeed contain the true valueθ.

QUESTION 2.6.1. Assume1000 students independently perform a simulation of an M/M/1 queue



54 CHAPTER 2. SUMMARIZING PERFORMANCE DATA, CONFIDENCE INTERVALS

with load factorρ = 0.9 and find a95% confidence interval for the result. The true result, unknown
to these (unsophisticated) students is9. The students are unsophisticated but conscientious, and all
did correct simulations. How many of the 1000 students do youexpect to find a wrong confidence
interval, namely one that doesnotcontain the true value ?7

2.7 PROOFS

THEOREM 2.2.1 Let Z =
∑n

k=1 1{Xk≤mp} be the number of samples that lie below or atmp. The CDF ofZ
isBn,p since the events{Xk ≤ mp} are independent andP (Xk ≤ mp) = p by definition of the quantilemp. Further:

j ≤ Z ⇔ X(j) ≤ mp

k ≥ Z + 1 ⇔ X(k) > mp

thus we have the event equalities
{

X(j) ≤ mp < X(k)

}

= {j ≤ Z ≤ k − 1} = {j − 1 < Z ≤ k − 1}

and
P
(

X(j) ≤ mp < X(k)

)

= Bn,p(k − 1)−Bn,p(j − 1)

It follows that[X(j), X(k)) is a confidence interval formp at levelγ as soon asBn,p(k − 1)−Bn,p(j − 1) ≥ γ.

The distribution of theXis has a density, thus(X(j), X(k)) as well andP
(

X(j) < mp ≤ X(k)

)

= P
(

X(j) < mp < X(k)

)

,
thus[X(j), X(k)] is also a confidence interval at the same level.

For largen, we approximate the binomial CDF byNµ,σ2 with µ = np andσ2 = np(1− p), as follows:

P (j − 1 < Z ≤ k − 1) = P (j ≤ Z ≤ k − 1) ≈ Nµ,σ2(k − 1)−Nµ,σ2(j)

and we pickj andk such that

Nµ,σ2(k − 1) ≥ 0.5 +
γ

2

Nµ,σ2(j) ≤ 0.5− γ

2

which guarantees thatNµ,σ2(k − 1)−Nµ,σ2(j) ≥ γ. It follows that we need to have

k − 1 ≥ ησ + µ

j ≤ −ησ + µ

We take the smallestk and the largestj which satisfy these constraints, which gives the formulas in the theorem.

THEOREM 2.4.1 TransformXi into Ui = F (Xi) which is iid uniform. For uniform RVs, use the fact that
E(U(j)) =

j
n+1 . Then

P

(

Un
(j) ≤ Un+1 ≤ Un

(k)|Un
(1) = u(1), ..., U

n
(n) = u(n)

)

= P
(

u(j) ≤ Un+1 ≤ u(k)
)

= u(k) − u(j)

The former is sinceUn+1 is independent of(U1, ..., Un) and the latter sinceUn+1 has a uniform distribution on[0, 1].
Thus

P

(

Un
(j) ≤ Un+1 ≤ Un

(k)

)

= E

(

Un
(k) − Un

(j)

)

=
k − j

n+ 1

7Approximately 50 students should find a wrong interval.
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THEOREM 2.4.2 First note thatXn+1 is independent of̂µn, σ̂n. ThusXn+1 − µ̂n is normal with mean0 and
variance

var(Xn+1) + var(µ̂n) = σ2 +
1

n
σ2

Further,(n − 1)σ̂2
n/σ

2 has aχ2
n−1 distribution and is independent ofXn+1 − µ̂n. By definition of Student’st, the

theorem follows.

THEOREM 2.4.3 Let m′ be the distribution mean ofb(X). By definition of a confidence interval, we have
P(u(Y1, ..., Yn) < m′ < v(Y1, ..., Yn)) ≥ γ where the confidence interval is[u, v]. If b() is increasing (like the Box-
Cox transformation withs ≥ 0) then so isb−1() and this is equivalent toP

(

b−1(u(Y1, ..., Yn)) < b−1(m′) < b−1(v(Y1, ..., Yn))
)

≥
γ. Now b−1(m′) is the transformed mean, which shows the statement in this case. Ifb() is decreasing (like the Box-
Cox transformation withs < 0) then the result is similar with inversion ofu andv.

THEOREM 2.6.1 We do the proof for a confidence interval for some quantityθ, the proof is the same for a
prediction interval. By definitionP(θ 6∈ I) ≤ α andP(θ 6∈ I ′) ≤ α′. Thus

P(θ 6∈ I ∩ I ′) = P ((θ 6∈ I) or (θ 6∈ I ′)) ≤ P (θ 6∈ I) + P (θ 6∈ I ′)) ≤ α+ α′

2.8 REVIEW

2.8.1 SUMMARY

1. A confidenceinterval is used to quantify theaccuracy of a parameter estimated from the
data.

2. For computing the central value of a data set, you can use either mean or median. Unless
you have special reasons (see below) for not doing so, the median is a preferred choice as it
is more robust. You should compute not only the median but also a confidence interval for
it, using Table A.1 on Page 313.

3. A prediction interval reflects thevariability of the data. For small data sets (n < 38) it is
not meaningful. For larger data sets, it can be obtained by Theorem 2.4.1. The Lorenz curve
gap also gives a scale free representation of the variability of the data.

4. Fairness indices are essentially the same as indices of variability. Jain’ Fairness index is
based on standard deviation, and is less robust than the Lorenz Curve gap, which should be
preferred.

5. A confidence interval for the mean characterizes both thevariability of the data and the
accuracy of the measured average. In contrast, a confidence interval for the median does
not reflect well the variability of the data, therefore if we use the median we need both a
confidence interval for the median and some measure of variability (the quantiles, as on a
Box Plot). Mean and standard deviation give an accurate ideaof thevariability of the data,
but only if the data is roughly normal. If it is not, it should be re-scaled using for example a
Box-Cox transformation. Normality can be verified with a qq-plot.

6. The standard deviation gives an accurate idea of theaccuracy of the mean if the data is
normal, but also if the data set is large. The latter can be verified with a bootstrap method.
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7. The geometric [resp. harmonic] mean is meaningful if the data is roughly normal in log
[resp.1/x] scale. A confidence interval for the geometric [resp. harmonic] mean is obtained
as the exponential [resp. inverse] of the mean in log [resp.1/x] scale.

8. All estimators in this chapter are valid only if the data points are independent (non cor-
related). This assumption must be verified, either by designing the experiments in a ran-
domized way, (as is the case with independent simulation runs), or by formal correlation
analysis.

9. If you have a choice, use median and quantiles rather than mean and standard deviation, as
they are robust to distributional hypotheses and to outliers. Use prediction intervals based
on order statistic rather than the classical mean and standard deviation.

2.8.2 REVIEW QUESTIONS

QUESTION 2.8.1.Compare (1) the confidence interval for the median of a sampleofn data values,
at level95% and (2) a prediction interval at level at least95%, for n = 9, 39, 99. 8

QUESTION 2.8.2. Call L = min{X1, X2} andU = max{X1, X2}. We do an experiment and
findL = 7.4, U = 8.0. Say which of the following statements is correct: (θ is the median of the
distribution). (1) the probability of the event{L ≤ θ ≤ U} is 0.5 (2) the probability of the event
{7.4 ≤ θ ≤ 8.0} is 0.5 9

QUESTION 2.8.3. How do we expect a90% confidence interval to compare to a95% one ? Check
this on the tables in Section A.10

QUESTION 2.8.4. A data set has 70 points. Give the formulae for confidence intervals at level
0.95 for the median and the mean11

QUESTION 2.8.5. A data set has 70 points. Give formulae for a prediction intervals at level 95%
12

QUESTION 2.8.6. A data setx1, ...xn is such thatyi = ln xi looks normal. We obtain a confidence
interval [ℓ, u] for the mean ofyi. Can we obtain a confidence interval for the mean ofxi by a
transformation of[ℓ, u] ? 13

8From the tables in Chapter A and Theorem 2.4.1 we obtain: (confidence interval for median, prediction interval):
n = 9: [x(2), x(9)], impossible;n = 39: [x(13), x(27)], [x(1), x(39)]; n = 99: [x(39), x(61)], [x(2), x(97)]. The
confidence interval is always smaller than the prediction interval.

9In the classical (non-Bayesian) framework, (1) is correct and (2) is wrong. There is nothing random in the event
{7.4 ≤ θ ≤ 8.0}, sinceθ is a fixed (though unknown) parameter. The probability of this event is either0 or 1, here it
happens to be1. Be careful with the ambiguity of a statement such as “the probability thatθ lies betweenL andU is
0.5”. In case of doubt, come back to the roots: the probability ofan event can be interpreted as the ideal proportion of
simulations that would produce the event.

10It should be smaller. If we take more risk we can accept a smaller interval. We can check that the values ofj [resp.
k] in the tables confidence intervals at levelγ = 0.95 are larger [resp. smaller] than at confidence levelγ = 0.99.

11Median: from the table in Section A[x(27), x(44)]. Mean: from Theorem 2.2.2:̂µ ± 0.2343S whereµ̂ is the
sample mean andS the sample standard deviation. The latter is assuming the normal approximation holds, and should
be verified by either a qqplot or the bootstrap.

12From Theorem 2.4.1:[mini xi,maxi xi].
13No, we know that[eℓ, eu] is a confidence interval for the geometric mean, not the mean of xi. In factxi comes

from a log-normal distribution, whose mean iseµ+
σ2

2 whereµ is the mean of the distribution ofyi, andσ2 its variance.
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QUESTION 2.8.7. Assume a set of measurements is corrupted by an error term that is normal,
but positively correlated. If we would compute a confidence interval for the mean using the iid
hypothesis, would the confidence interval be too small or toolarge ? 14

QUESTION 2.8.8. We estimate the mean of an iid data set by two different methods and obtain 2
confidence intervals at level95%: I1 = [2.01, 3.87], I2 = [2.45, 2.47]. Since the second interval is
smaller, we discard the first and keep only the second. Is thisa correct95% confidence interval ?
15

14Too small: we underestimate the error. This phenomenon is known in physics under the termpersonal equation:
if the errors are linked to the experimenter, they are positively correlated.

15No, by doing so we keep the intervalI = I1 ∩ I2, which is a90% confidence interval, not a95% confidence
interval.
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CHAPTER 3

MODEL FITTING

In this chapter we study how to
derive a model from data, for ex-
ample, by fitting a curve to a se-
ries of measurements. The method
of least squares is widely used,
and gives simple, often linear al-
gorithms. However, it should
be used with care, as it makes
the hidden assumption that error
terms are gaussian with same vari-
ance. We also discussed the less
known alternative calledℓ1 norm
minimization, which implicitly as-
sumes that error terms have a
Laplace instead of gaussian distri-
bution.
The resulting algorithms may be less simple, but are often tractable, as they correspond to convex
(rather than linear) optimization, and the method is more robust to outliers or wrong distributional
assumptions.

We discuss in detail the so-called “linear models”; what is linear here is the dependence on the hid-
den parameters, not the model itself. This is a very rich family of models with wide applicability.
We discuss both least square andℓ1 norm minimization in this context.

59
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Then we discuss the issue of fitting a distribution to a data set; we describe commonly used
features that are helpful to pick an appropriate distribution: distribution shape, power laws, fat tail
and heavy tail. The latter property is often encountered in practice and is often interesting or
annoying. We address the practical issues of fitting censored data (i.e. when we could observe
only values smaller than some unknown threshold) and how to separately fit the body and the tail
of a distribution. We illustrate how the concepts and techniques could be used to build a load
generation tool.
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3.1 MODEL FITTING CRITERIA

3.1.1 WHAT IS M ODEL FITTING ?

We start with a simple example.
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EXAMPLE 3.1:V IRUS SPREAD DATA . The number of hosts infected by a virus is plotted versus
time in hours.
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The plot suggests an exponential growth, therefore we are inclined to fit these data to a model of
the form

Y (t) = aeαt (3.1)

where Y (t) is the number of infected hosts at time t. We are particulary interested in the parameter
α, which can be interpreted as the growth rate; the doubling time (time for the number of infected
hosts to double) is ln 2

α . On the plot, the dashed line is the curve fitted by the method of least
squares explained later. We find α = 0.4837 per hour and the doubling time is 1.43 hour. We can
use the model to predict that, 6 hours after the end of the measurement period, the number of
infected hosts would be ca. 82’000.

In general,model fitting can be defined as the problem of finding anexplanatory model for the
data, i.e. a mathematical relation of the form

yi = fi(~β) (3.2)

that “explains the data well”, in some sense. Hereyi is the collection of measured data,i is the
index of a measurement,fi is an array of functions, and~β is the parameter that we would like to
obtain. In the previous example, the parameter is~β = (a, α) andfi(~β) = fi(a, α) = aeαti where
ti is the time of theith measurement, assumed here to be known.

What does it mean to “explain the data well” ? It is generally not possible to require that Eq.(3.2)
holdsexactlyfor all data points. Therefore, a common answer is to requirethat the model mini-
mizes some metric of the discrepancy between the explanatory model and the data. A very com-

mon metric is the mean square distance
∑

i

(

yi − fi(~β)
)2

. The value of the growth rateα in

the previous example was obtained in this way, namely, we computeda andα that minimize
∑

i(yi − aeαti)2.

But this raises another question. What metric should one use? What is so magical about least

squares ? Why not use other measures of discrepancy, for example
∑

i |yi−fi(~β)| or
∑

i

(

ln(yi)− ln(fi(~β))
)2

?

The following example shows the importance of the issue.

EXAMPLE 3.2:V IRUS SPREAD DATA , CONTINUED. AMBIGUITY IN THE OPTIMIZATION CRITERION.
We also plotted the number of infected hosts in log scale:
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and computed the least square fit of Eq.(3.2) in log scale (plain line). Namely, we computed a and
α that minimize

∑

i (ln(yi)− ln(a)− αti)
2. We found for α the value 0.39 per hour, which gives a

doubling time of 1.77 hour and a prediction at time +6 hours equal to ca. 39′000 infected hosts
(instead of previously 82′000).

The two different models are compared below (in linear and log scales).
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Both figures show that what visually appears to be a good fit in one scale is not so in the other.
Which one should we use ?

An answer to the issue comes from statistics. The idea is to add to the explanatory model a
description of the “noise” (informally defined as the deviation between the explanatory model and
the data), and obtain astatistical model. We can also think of the statistical model as a description
of a simulator that was used to produce the data we have. Its parameters are well defined, but not
known to us.

The statistical model usually has a few more parameters thanthe explanatory model. The param-
eters of the statistical model are estimated using the classical approach of maximum likelihood. If
we believe in the statistical model, this answers the previous issue by saying that the criterion to
be optimized is the likelihood. The belief in the model can bechecked by examining residuals.

EXAMPLE 3.3:V IRUS SPREAD DATA , CONTINUED. A STATISTICAL MODEL. One statistical model
for the virus spread data is

Yi = aeαti + ǫi with ǫi iid ∼ N0,σ2 (3.3)

in other words, we assume that the measured data yi is equal to the ideal value given by the
explanatory model, plus a noise term ǫi. Further, we assume that all noises are independent,
gaussian, and with same variance. The parameter is θ = (a, α, σ).
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In Eq.(3.3), we write Yi instead of yi to express that Yi is a random variable. We think of our data
yi as being one sample produced by a simulator that implements Eq.(3.3).

We will see in Section 3.1.2 that the maximum likelihood estimator for this model is the one that
minimizes the mean square distance. Thus, with this model, we obtain for α the value in Exam-
ple 3.1.

A second statistical model could be:

ln(Yi) = ln
(

aeαti
)

+ ǫi with ǫi iid ∼ N0,σ2 (3.4)

Now, we would be assuming that the noise terms in log-scale have the same variance, in other
words, the noise is proportional to the measured value. Here too, the maximum likelihood es-
timator is obtained by minimizing the least square distance, thus we obtain for α the value in
Example 3.2.

We can validate either model by plotting the residuals:
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We see clearly that the residual for the former model do not appear to be normally distributed,
and the converse is true for the former model, which is the one we should adopt. Therefore, an
acceptable fitting is obtained by minimizing least squares in log-scale.

We summarize what we have learnt so far as follows.

FITTING A M ODEL TO DATA

1. Define a statistical model that containsboth the deterministic part (the one we are interested
in) and a model of the noise.

2. Estimate the parameters of the statistical model using maximum likelihood. If the number
of data points is small, use a brute force approach (e.g usefminsearch). If the number of
data points is large, you may need to look in the literature for efficient, possibly heuristic,
optimization methods.

3. Validate the model fit by screening the residuals, either visually, or using tests (Chapter 4).
In practice, you will seldom obtain a perfect fit; however, large deviations indicate that the
model might not be appropriate.
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3.1.2 LEAST SQUARES CORRESPOND TO GAUSSIAN, SAME VARIANCE

A very frequent case is when the statistical model has the form

Yi = fi(~β) + ǫi for i = 1, . . . , I with ǫi iid ∼ N0,σ2 (3.5)

as in the examples before (Models in Equations (3.3) and (3.4)). Namely, the discrepancy between
the explanatory model and the data is assumed to be gaussian with same variance. In some
literature, the “same variance” assumption is calledhomoscedasticity.

The next theorem explains what we do when we fit the explanatory modelyi = fi(~β) to our data
using least squares: we implicitly assume that the error terms in our data are independent, gaussian,
and of same amplitude. We have seen in the examples above thatcare must be taken to validate
this assumption, in particular, some rescaling may be needed for a better validation.

THEOREM 3.1.1 (Least Squares).For the model in Eq.(3.5),

1. the maximum likelihood estimator of the parameter(~β, σ) is given by:

(a) β̂ = argmin~β

∑

i

(

yi − fi(~β)
)2

(b) σ̂2 = 1
I

∑

i

(

yi − fi(β̂)
)2

2. LetK be the square matrix of second derivatives (assumed to exist), defined by

Kj,k =
1

σ2

∑

i

∂fi
∂βj

∂fi
∂βk

If K is invertible and if the numberI of data points is large,̂β− ~β is approximately gaussian
with 0 mean and covariance matrixK−1.

Alternatively, for largeI, an approximate confidence set at levelγ for thejth componentβj

of ~β is implicitly defined by

−2I ln (σ̂) + 2I ln
(

σ̂(β̂1, ..., β̂j−1, βj, β̂j+1...β̂p)
)

≥ ξ1

whereσ̂2(~β) = 1
I

∑

i

(

yi − fi(~β)
)2

and ξ1 is theγ quantile of theχ2 distribution with 1

degree of freedom (for example, forγ = 0.95, ξ1 = 3.92).

The set of points inRI that have coordinates of the formfi(~β) constitue a “manifold” (forp = 2,
it is a surface). Item 1 (a) says that~β is the parameter of the point̂y on this manifold that is the
nearest to the data point~y, in euclidian distance. The pointŷ is called thepredicted response; it
is an estimate of the value that~y would take if there would be no noise. It is equal to the orthogonal
projection of the data~y onto the manifold.

The rest of the theorem can be used to obtain accuracy bounds for the estimation. A slight variant
of the theorem can be used to make predictions with accuracy bounds, see Theorem 5.2.1.
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3.1.3 ℓ1 NORM M INIMIZATION CORRESPONDS TOL APLACE NOISE

Although less traditional than least square, minimizationof the absolute deviation of the error is
also used. The absolute deviation is theℓ1 norm of the error1, so this method is also calledℓ1

norm minimization. Since it gives less weight to outliers, it is expected to be more robust. As
we see now, it corresponds to assuming that errors follow a Laplace distribution (i.e. bilateral
exponential).

TheLaplace distribution with 0 mean and rateλ is the two sided exponential distribution, or, in
other words,X ∼ Laplace(λ) if and only if |X| ∼ Exp(λ). It can be used to model error terms
that have a heavier tail than the normal distribution. Its PDF is defined forx ∈ R by

f(x) =
λ

2
e−λ|x| (3.6)

The next theorem explains what we do when we fit the explanatory modelyi = fi(~β) to our data
by minimizing theℓ1 norm of the error: we implicitly assume that the error terms in our data are
independent, Laplace with the same parameter, i.e., the datayyi is a sample generated by the model

Yi = fi(~β) + ǫi with ǫiiid ∼ Laplace(λ) (3.7)

THEOREM 3.1.2 (Least Deviation).For the model in Eq.(3.7), the maximum likelihood estimator
of the parameter(~β, λ) is given by:

1. β̂ = argmin~β

∑

i

∣

∣

∣
yi − fi(~β)

∣

∣

∣

2. 1

λ̂
= 1

I

∑

i

∣

∣

∣
yi − fi(β̂)

∣

∣

∣
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Figure 3.1: Fitting an exponential growth model to the data in Example 3.1, showing the fits obtained
with least square (plain) and with ℓ1 norm minimization (dashed) . First panel: original data; both fits are
the same; Second panel: data corrupted by one outlier; the fit with ℓ1 norm minimization is not affected,
whereas the least square fit is.

EXAMPLE 3.4:V IRUS PROPAGATION WITH ONE OUTLIER. Assume the data in the virus propagation
example (Example 3.1) is modified by changing the value of the second data point. Assume we

1Theℓ1 norm of a sequencez = (z1, ..., zn) is ‖z‖1 =
∑n

i=1 |zi|
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fit the data in log scale. The modified data is an outlier; perhaps one would be tempted to remove
it; an alternative is to fit the log of the data to Laplace noise instead of gaussian noise (i.e. do ℓ1

norm minimization instead of least squares), as this is known to be more robust. Figure 3.1.3, and
the table below shows the results (the prediction in the table is a 6-hours ahead point prediction).

Least Square ℓ1 norm minimization
rate prediction rate prediction

no outlier 0.3914 30300 0.3938 32300
with one outlier 0.3325 14500 0.3868 30500

We see that one single outlier completely modifies the result of least square fitting, whereas ℓ1

norm minimization fitting is not impacted much.

The following example is important to understand the difference between least square andℓ1 norm
minimization.

EXAMPLE 3.5:MEAN VERSUS MEDIAN . Assume we want to fit a data set yi, i = 1, ..., I against a
constant µ.

With least square fitting, we are looking for µ that minimizes
∑I

i=1 (yi − µ)2. The solution is easily
found to be µ = 1

I

∑I
i=1 yi, i.e. µ is the sample mean.

With ℓ1 norm minimization, we are looking for µ that minimizes
∑I

i=1 |yi − µ|. The solution is the
median of yi.

To see why, consider the mapping f : µ 7→ ∑I
i=1 |yi − µ|. Consider to simplify the case where all

values yi are distinct and written in increasing order (yi < yi+1). The derivative f ′ of f is defined
everywhere except at points yi, and for yi < µ < yi+1, f ′(µ) = i − (I − i) = 2 − I. If I is odd, f
decreases on (−∞, y(2I+1)/2] and increases on [y(2I+1)/2,+∞), thus is minimum for µ = y(2I+1)/2,
which is the sample median. If I is even, f is minimum at all values in the interval [yI/2, yI/2+1]

thus reaches the minimum at the sample median
yI/2,yI/2+1

2 .

In terms of computation,ℓ1 norm minimization is more complex than least squares, though both
are usually tractable. For example, if the dependency on theparameter is linear, least square
fitting consists in solving a linear system of equations whereasℓ1 norm minimization uses linear
programming (as shown in the next section).

3.2 LINEAR REGRESSION

This is a special case of least square fitting, where the explanatory model depends linearly on its
parameter~β. This is called thelinear regression model. The main fact here is that everything
can be computed easily, using linear algebra. Be careful that the term “linear regression” implicitly
assumes least square fitting. The popular fitting method called “ANOVA” is a special case of linear
regression.

Assume thus that thestatistical modelof our experiment has the form:
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DEFINITION 3.2.1 (Linear Regression Model).

Yi = (X~β)i + ǫi for i = 1, . . . , I with ǫi iid ∼ N0,σ2 (3.8)

where the unknown parameter~β is in R
p andX is a I × p matrix. The matrixX supposed to be

known exactly in advance. We also assume that

H X has rankp

AssumptionH means that different values of~β give different values of the explanatory modelX~β,
i.e. the explanatory model is identifiable.

The elements of the known matrixX are sometimes calledexplanatory variables, and then the
yis are called theresponse variables.

EXAMPLE 3.6:JOE’ S SHOP AGAIN, FIGURE 1.3(B). We assume that there is a threshold ξ beyond
which the throughput collapses (we take ξ = 70). The statistical model is

Yi = (a+ bxi)1xi≤ξ + (c+ dxi)1{xi>ξ} + ǫi (3.9)

where we impose
a+ bξ = c+ dξ (3.10)

In other words, we assume the throughput response curve to be piecewise linear. Eq.(3.10) ex-
presses that the curve is continuous. Recall that xi is the offered load and Yi is the actual through-
put.

Here we take ~β = (a, b, d) (we can derive c = a+ (b− d)ξ from Eq.(3.10)). The dependency of Yi
on ~β is indeed linear. Note that we assume that ξ is known; see in Example 3.8 how to estimate ξ.

Assume that we sort the xis in increasing order and let i∗ be the largest index i such that xi ≤ ξ.
Re-write Eq.(3.9) as

Yi = a+ bxi + ǫi for i = 1 . . . i∗

Yi = a+ bξ + d(xi − ξ) + ǫi for i = i∗ + 1 . . . I

thus the matrix X is given by:
























1 x1 0
1 x2 0
· · · · · · · · ·
1 xi∗ 0
1 ξ xi∗+1 − ξ
· · · · · · · · ·
1 ξ xI − ξ

























It is simple to see that a sufficient condition for H is that there are at least two distinct values of
xi ≤ ξ and at least one value > ξ.

QUESTION 3.2.1. Show this.2

2We need to show, if the condition is true, that the matrixX has rankp = 3. This is equivalent to saying that the
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A model as in this example is sometimes called Intervention Analysis.

With the linear regression model, the manifold mentioned inthe discussion after Theorem 3.1.1 is
a linear manifold (forp = 2, a plane). It is equal to the linear sub-space spanned by the columns of
matrixX. The nearest point is given by an orthogonal projection, which can be computed exactly.
The details are given in the following theorem which is a consequence of Eq.(C.3) on Page 329
and Theorem C.4.2; a complete proof is in [32, section 2.3].

THEOREM 3.2.1 (Linear Regression).Consider the model in Definition 3.2.1; let~y be theI × 1
column vector of the data.

1. Thep× p matrix (XTX) is invertible

2. (Estimation) The maximum likelihood estimator of~β is β̂ = K~y with K = (XTX)−1XT

3. (Standardized Residuals) Define theith residual asei =
(

~y −Xβ̂
)

i
. The residuals are

zero-mean gaussian but are correlated, with covariance matrix σ2(IdI − H), whereH =
X(XTX)−1XT .

Let s2 = 1
I−p

‖e‖2 = 1
I−p

∑

i e
2
i (rescaled sum of squared residuals).s2 is an unbiased

estimator ofσ2.

The standardized residuals defined byri :=
ei

s
√

1−Hi,i
have unit variance andri ∼ tI−p−1.

This can be used to test the model by checking thatri are approximately normal with unit
variance.

4. (Confidence Intervals) LetG =
(

XTX
)−1

= KKT ; the distribution ofβ̂ is gaussian with

mean~β and covariance matrixσ2G, andβ̂ is independent ofe.

In particular, assume we want a confidence interval for a (non-random) linear combi-
nation of the parametersγ =

∑p
j=1 ujβj; γ̂ =

∑

j ujβ̂j is our estimator ofγ. Let

g =
∑

j,k ujGj,kuk =
∑

k

(

∑

j ujKj,k

)2

(g is called thevariance bias). Thenγ̂−γ√
gs

∼ tI−p.

This can be used to obtain a confidence interval forγ.

Comments. Item 4 is often used as follows : if we ignore the uncertainty due to the estimation
of σ, the estimation error (in estimating~β) is approximately gaussian with covariance matrixG
(sometimes called the “variance-covariance matrix”).

Item 3 states that the residuals are (slightly) biased, and it is better to use standardized residuals.

The matrixH is the projection onto the subspace spanned by the columns ofX (Eq.(C.3) on
Page 329). The predicted response isŷ = Xβ̂. It is equal to the orthogonal projection of~y, and is

equation

X





a
b
d



 = 0

has only the solutiona = b = d = 0. Consider firsta andb. If there are two distinct values ofxi, i ≤ i∗, sayx1
andx2 thena + bx1 = a + bx2 = 0 thusa = b = 0. Since there is a valuexi > ξ, it follows thati∗ + 1 ≤ I and
d(xI − ξ) = 0 thusd = 0.
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given by

ŷ = H~y (3.11)

The scaled sum of squared residualss2 is also equal to 1
I−p

(

‖~y‖2 − ‖ŷ‖2
)

. Its distribution is
1

I−p
χ2
I−p. This can be used to compute a confidence interval forσ.

EXAMPLE 3.7:JOE’ S SHOP AGAIN. CONTINUATION OF EXAMPLE 3.6. We can thus apply matrix
computations given in Theorem 3.2.1; item 2 gives an estimate of (a, b, d) and thus of c. Item 4
gives confidence intervals. The values and the fitted linear regression model are shown in the
table and figure below.

a 0.978 ± 0.609
b 0.0915 ± 0.0137
c 15.8 ± 2.99
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We also computed the residuals ei (crosses) and standardized residuals ri (circles). There is
little difference between both types of residuals. They appear reasonably normal, but one might
criticize the model in that the variance appears smaller for smaller values of x. The normal qqplot
of the residuals also shows approximate normality (the qqplot of standardized residuals is similar
and is not shown).
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QUESTION 3.2.2. Can we conclude that there is congestion collapse ?3

3Yes, since the confidence interval ford is entirely positive [resp. negative].
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WHERE IS L INEARITY ? In the previous example, we see that thatyi is a linear function of~β,
butnot of xi. This is quite general, and you should avoid a widespread confusion: linear regression
is not restricted to models where the datayi is linear with the explanatory variablesxi.

EXAMPLE 3.8:JOE’ S SHOP - BEYOND THE L INEAR CASE - ESTIMATION OF ξ. In Example 3.6 we
assumed that the value ξ after which there is congestion collapse is known in advance. Now
we relax this assumption. Our model is now the same as Eq.(3.9), except that ξ is also now a
parameter to be estimated.

To do this, we apply maximum likelihood estimation. We have to maximize the log-likelihood
l~y(a, b, d, ξ, σ), where ~y, the data, is fixed. For a fixed ξ, we know the value of (a, b, d, σ) that
achieves the maximum, as we have a linear regression model. We plot the value of this maximum
versus ξ (Figure 3.2) and numerically find the maximum. It is for ξ = 77.

To find a confidence interval, we use the asymptotic result in Theorem B.3.1. It says that a 95%
confidence interval is obtained by solving l(ξ̂)− l(ξ) ≤ 1.9207, which gives ξ ∈ [73, 80].
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Figure 3.2:Log likelihood for Joes’ shop as a function of ξ.

3.3 LINEAR REGRESSION WITH ℓ1 NORM M INIMIZATION

This is a variant of the linear regression model, but with Laplace instead of Gaussian noise. The
theory is less simple, as we do not have explicit linear expressions. Nonetheless, it uses linear
programming and is thus often tractable, with the benefit of more robustness to outliers.

Thestatistical modelof our experiment has the form:

DEFINITION 3.3.1 (Linear Regression Model with Laplace Noise).

Yi = (X~β)i + ǫi for i = 1, . . . , I with ǫi iid ∼ Laplace(λ) (3.12)
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where the unknown parameter~β is in R
p andX is a I × p matrix. The matrixX supposed to be

known exactly in advance. As in Section 3.2, we assume thatX has rankp, otherwise the model is
non identifiable.

The following is an almost immediate consequence of Theorem3.1.2.

THEOREM 3.3.1. Consider the model in Definition 3.2.1; let~y be theI × 1 column vector of the
data. The maximum likelihood estimator of~β is obtained by solving the linear program:

minimize
I
∑

i=1

ui

over ~β ∈ R
p, u ∈ R

I

subject to the constraints ui ≥ yi −
(

X~β
)

i

ui ≥ −yi +
(

X~β
)

i

The maximum likelihood estimator of the noise parameterλ is
(

1
I

∑I
i=1

∣

∣

∣
yi −

(

X~β
)

i

∣

∣

∣

)−1

.

In view of Example 3.5, there is little hope to obtain nice closed form formulas for confidence
intervals, unlike what happens with the least square methodin Theorem 3.2.1, and indeed the
theorem does not give any. To compute confidence intervals, we can use the bootstrap, with re-
sampling from residuals, as described in Algorithm 2.

Algorithm 2 The Bootstrap with Re-Sampling From Residuals. The goal is to compute a confidence
interval for some function ϕ(~β) of the parameter of the model in Definition 3.2.1. r0 is the algorithm’s
accuracy parameter.

1: R = ⌈2 r0/(1− γ)⌉ − 1 ⊲ For exampler0 = 25, γ = 0.95, R = 999

2: estimate~β using Theorem 3.3.1; obtain̂β

3: compute the residualsei = yi −
(

Xβ̂
)

i
4: for r = 1 : R do ⊲ Re-sample from residuals
5: drawI numbers with replacement from the list(e1, ..., eI) and call themEr

1 , ..., E
r
I

6: generate the bootstrap replicateY r
1 , ..., Y

r
I from the estimated model:

7: Y r
i =

(

Xβ̂
)

i
+ Er

i for i = 1...I

8: re-estimate~β, usingY r
i as data, using Theorem 3.3.1; obtain~βr

9: end for
10:
(

ϕ(1), ..., ϕ(R)

)

= sort
(

ϕ(~β1), ..., ϕ(~βR)
)

11: confidence interval forϕ(~β) is [ϕ(r0) ; ϕ(R+1−r0)]

Note that the algorithm applies to any model fitting method, not just to models fitted with The-
orem 3.3.1. As always with the bootstrap, it provides approximate confidence intervals, with a
tendency to underestimate.

EXAMPLE 3.9:JOE’ S SHOP WITHℓ1 NORM MINIMIZATION . We revisit Example 3.6 and estimate a
piecewise linear throughput response (as in Eq.(3.9)) with ℓ1 norm minimization, i.e. assuming the
error terms ǫi come from a Laplace distribution.
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Figure 3.3: Modelling congestion collapse in Joe’s shop with a piecewise linear function and ℓ1 norm
minimization of the errors.

The problem is linear and has full rank if we take as parameter for example (a, b, c), but it is not
linear with respect to ξ. To overcome this issue, we first estimate the model, considering ξ as
fixed, using linear programming. Then we vary ξ and look for the value of ξ that maximizes the
likelihood.

In Figure 3.3(b) we plot ξ versus the score (ℓ1 norm of the error). By Theorem 3.1.2, maximizing
the likelihood is the same as minimizing the score. The optimal is for ξ = 69 (but notice that the
score curve is very flat, so any value around 70 would be just as good). For this value of ξ, the
estimated parameters are: â = 1.35, b̂ = 0.0841, ĉ = 13.1, d̂ = −0.0858. We compute the residuals
(Figure 3.3(c)) and do a Laplace qq-plot to verify the model assumption.

As explained in Section 2.4.3, a Laplace qq-plot of the residuals ri, i = 1...I is obtained by plotting
F−1( i

I+1 ) versus the residuals r(i) sorted in increasing order. Here F is the CDF of the Laplace
distribution with rate λ = 1. A direct computation gives

F−1(q) = ln (2q) if 0 ≤ q ≤ 0.5

= − ln (2(1 − q)) if 0.5 ≤ q ≤ 1

Figure 3.3(d) shows the Laplace qq-plot of the residuals; there is a better fit than with least squares
(Example 3.7).

We compute 95% confidence intervals for the parameters using the bootstrap (Algorithm 2) and
obtain:
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a 1.32± 0.675
b 0.0791 ± 0.0149
c 11.7 ± 3.24
d −0.0685 ± 0.0398

The parameter of interest is d, for which the confidence interval is entirely negative, thus there is
congestion collapse.

3.4 CHOOSING A DISTRIBUTION

Assume we are given a data set in the form of a sequence of numbers and would like to fit it to
a distribution. Often, the data set is iid, but not always. Inthis section and the next, we review a
number of simple guidelines that are useful for finding the right distribution. We illustrate in the
next section how this can be used to build a load generator (SURGE).

In this section and the next, a distribution means a probability distribution on the set of real num-
bers.

3.4.1 SHAPE

Perhaps the first attribute of interest is the shape of the distribution, or more precisely, of its PDF.
We say that two distributions onR, with CDFsF () andG(), have the samedistribution shape
if they differ by a change of scale and location, i.e., there exist somem ∈ R ands > 0 such that
G(sx+m) = F (x) for all x ∈ R. This is equivalent to saying that there are some random variables
X, Y with distribution functionsF (), G() respectively, and withY = sX +m.

For example, the normal distributionNµ,σ2 and the standard normal distributionN0,1 have the same
shape, in other words, all normal distributions are essentially the same.

When looking for a distribution, one may get a first feeling plotting a histogram, which is a coarse
estimate of the PDF. Since most plotting tools automatically adapt the scales and origins on both
axes, what one really gets is a coarse estimate of the distribution shape.

A distribution is usually defined with a number of parameters. When browsing a distribution
catalog (e.g. on Wikipedia) it is important to distinguish among those parameters that influence
the shape and those that are simply location and scale parameters. For example, with the normal
distributionNµ,σ2 , µ is a location parameter andσ a scale parameter; if a random variableX has
distributionNµ,σ2 , one can writeX = σZ + µ, whereZ ∼ N0,1.

In Tables 3.1 and 3.2 we give a small catalog of distributionsthat are often used in the context
of this book. For each distribution we give only the set of parameters that influence the shape.
Other distributions can be derived by a change of location and scale. The effect of this on various
formulas is straightforward but is indicated in the table aswell, for completeness.

The log-normal distribution with parametersµ, σ > 0 is defined as the distribution ofX = eZ

whereZ is gaussian with meanµ and varianceσ2. It is often used as a result of rescaling in log
scale, as we did in Eq.(3.2). Note that

X = eσZ0+µ = eµ
(

eZ0
)σ

with Z0 ∼ N0,1
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thusµ corresponds to a scale parameters = eµ. In contrast (unlike for the normal distribution),
σ is a shape parameter. Table 3.1 gives properties of the standard log-normal distribution (i.e.
for µ = 0; other values ofµ can be obtained by re-scaling). Figure 3.4 shows the shape ofthe
log-normal distribution for various values ofσ, rescaled such that the mean is constant equal to1.

QUESTION 3.4.1. What are the parametersµ, σ of the lognormal distributions in Figure 3.4?4
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Figure 3.4:Shape of the log-normal distribution for various values of σ. The shape is independent of µ. µ
is chosen such that the mean is 1 for all plots. γ2 is the Kurtosis index.

3.4.2 SKEWNESS AND K URTOSIS

These are indices which may be used to characterized a distribution shape. They are defined for a
distribution that has finite moments up to order 4. The definition uses thecumulant generating

4By Table 3.1 the mean ise
σ2

2 whenµ = 0; other values ofµ correspond to re-scaling byeµ therefore the mean is

e
σ2

2 +µ. In the figure we take the mean equal to1, thus we must haveµ = −σ2

2
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function of the distribution of a real random variableX: defined by

cgf(s) := lnE
(

esX
)

Assume thatE(es0|X|) < ∞ for somes0 so that the above is well defined for reals arounds = 0.
This also implies that all moments are finite. Then, by a Taylor expansion:

cgf(s) = κ1s+ κ2
s2

2
+ κ3

s3

3!
+ ...+ κk

sk

k!
+ ...

whereκk = dk

dsk
cgf(0) is called thecumulant of order k . The first four cumulants are :















κ1 = E(X)

κ2 = E (X − E(X))2 = var(X)

κ3 = E (X − E(X))3

κ4 = E (X − E(X))4 − 3var(X)2

(3.13)

For the normal distributionNµ,σ2 , cgf(s) = µs+ σ2

2
s2 thus all cumulants of orderk ≥ 3 are0.

QUESTION 3.4.2. Show that thekth cumulant of the convolution ofn distributions is the sum of
thekth cumulants5

SKEWNESS I NDEX κ3 is calledskewness. Theskewness index (sometimes also called skew-
ness) is

γ1 := κ3/κ
3/2
2 = κ3/σ

3

The skewness index is insensitive to changes in scale (by a positive factor) or location. For a
density which is symmetric around its mean,κ2k+1 = 0; γ1 can be taken as a measure of asymmetry
of the distribution. Whenγ1 > 0 the distribution is right-skewed, and vice-versa. Ifφ is convex,
thenφ(X) has greater skewness index thanX.

K URTOSIS I NDEX κ4 is called Kurtosis. Thekurtosis index, also calledexcess kurtosis, is

γ2 := κ4/κ
2
2 = κ4/σ

4

The Kurtosis index is insensitive to changes in scale or location. It is used to measure departure
from the normal distribution. Whenγ2 > 0, the distribution has a sharper peak around the mean
and heavier tail; whenγ2 < 0, it has a flatter top and decays more abruptly. Note thatγ2 ≥ −2,
with equality only if the distribution is degenerate, i.e. equal to a constant.

The kurtosis index gives some information about the distribution tail. When large and positive it
indicates that the contribution of the tail is large. We see for example in Figure 3.4 and in Table 3.1
that the log-normal distribution has larger tail for largerσ.

5By independence:lnE
(

es(X1+...+Xn)
)

=
∑

i lnE
(

esXi
)

.
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3.4.3 POWER L AWS, PARETO DISTRIBUTION AND Z IPF ’ S L AW

Power laws are often invoked in the context of workload generation. Generally speaking, a power
law is any relation of the formy = axb between variablesx andy, wherea andb are constants.
In log scales, this gives a linear relationship:ln y = b ln x+ ln a. Power laws were often found to
hold, at least approximately, for thecomplementary CDFs6 of some variables such as file sizes
or popularity of objects. They are discovered by plotting the empirical complementary CDF in
log-log scales and seeing if a linear relationship exists. Depending on whether the distribution is
continuous or discrete, we obtain the Pareto and Zeta distributions.

The standardPareto distribution with indexp > 0 has CDF and PDF

F (x) =

(

1− 1

xp

)

1{x≥1}

f(x) =
p

xp+1
1{x≥1}

i.e. the complementary CDF and the PDF follow a power law forx ≥ 1 (see Table 3.2). The
general Pareto distribution is derived by a change of scale and has CDF

(

1− sp

xp

)

1{x≥s} and PDF
psp

xp+11{x≥s} for somes > 0.

The Zeta distribution is the integer analog of Pareto. It is defined for n ∈ N by P(X = n) =
1

np+1ζ(p+1)
, whereζ(p+ 1) is a normalizing constant (Riemann’s zeta function).

For p < 2 the Pareto distribution has infinite variance and forp < 1 infinite mean. The kurtosis
index is not defined unlessp > 4 and tends to∞ whenp → 4: its tail is called “heavy”, (see
Section 3.5). Figure 3.4.3 shows the CDF of a Pareto distribution together with normal and log-
normal distributions.
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Figure 3.5:P (X > x) versus x on log-log scales, when X is normal (dots), log-normal (solid) or Pareto
(dashs). The three distributions have same mean and 99%-quantile.

6The complementary CDF is1− F () whereF () is the CDF.
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Zipf’s law is not a probability distribution, but is related to the Pareto distribution. It states that the
popularity of objects is inversely proportional to rank, ormore generally, to a power of rank. This
can be interpreted as follows.

We have a collection ofN objects. We choose an object from the collection at random, according
to some stationary process. Callθj the probability that objectj is chosen; this is our interpretation
of the popularity of objectj.

Let θ(1) ≥ θ(2) ≥ ... be the collection ofθs in decreasing order. Zipf’s law means

θ(j) ≈
C

jα

whereC is some constant andα > 0. In Zipf’s original formulation,α = 1.

Now we show the relation to a Pareto distribution. Assume that we draw theθs at random (as
we do in a load generator) by obtaining some random valueXi for object i, and lettingθi =
Xi/(

∑N
i=1Xi). Assume that the number of objects is large andXi’s marginal distribution is some

fixed distribution onR+, with complementary distribution functionG(x). LetX(n) be the reverse
order statistic, i.e.X(1) ≥ X(2) ≥ .... We would like to follow Zip’s law, i.e., for some constantC:

X(j) ≈
C

jα
(3.14)

Now let us look at the empirical complementary distributionĜ; it is obtained by putting a point at
eachXi, with probability1/N , whereN is the number of objects. More precisely:

Ĝ(x) =
1

N

N
∑

i=1

1{Xi≥x}

Thus Ĝ(X(j)) = j/N . Combine with Eq.(3.14): we find that, wheneverx = X(j), we have
Ĝ(x) ≈ K

xp , with p = 1
α

andK = cp/N . If we take the empirical complementaty CDF as
approximation of the true complementary CDF, this means that the distribution ofXi is Pareto
with indexp = 1

α
.

In other words, Zipf’s law can be interpreted as follows. Theprobability of choosing objecti is
itself a random variable, obtained by drawing from a Pareto distribution with tail indexp = 1

α
,

then re-scaling to make the probabilities sum to 1.

3.4.4 HAZARD RATE

The hazard rate provides another means of deciding whether adistribution is well suited. Consider
a distribution with support that includes[a,+∞) for somea, with a PDFf() and with CDFF ().
Thehazard rate is defined forx > a by

λ(x) =
f(x)

1− F (x)

It can be interpreted as follows. LetX be a random variable with distributionF (). Then, forx > a

λ(x) = lim
dx→0

1

dx
P (X ≤ x+ dx |X > x)
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If X is interpreted as a flow duration or a file size,λ(x)dx is the probability that the flow ends in
the nextdx time units given that it survived until now. See Tables 3.1 and 3.2 for the hazard rates
of several distributions.

The behaviour of the hazard rateλ(x) whenx is large can be used as a characteristic of a distribu-
tion. Qualitatively, one may distinguish the following three types of behaviour:

1. (Aging Property)limx→∞ λ(x) = ∞: the hazard rate becomes large for largex. This is
very often expected, e.g. when one has reasons to believe that a file or flow is unlikely to
be arbitrarily large. IfX is interpreted as system lifetime, this is the property of aging. The
gaussian distribution is in this case.

2. (Memoriless Property)limx→∞ λ(x) = c > 0: the hazard rate tends to become constant for
largex. This is in particular true if the system is memoriless, i.e.whenλ(x) is a constant.
The exponential distribution is in this case (as is the Laplace distribution).

3. (Fat Tail) limx→∞ λ(x) = 0 : the hazard rate vanishes for largex. This may appear sur-
prising: for a flow duration, it means that, given that you waited a large time for completion
of the flow, you are likely to continue waiting for a very long time. The Pareto distribution
with indexp is in this case for all values ofp, as are all lognormal distributions. We may,
informally, call this property a “fat tail”. Heavy tail distributions (defined in Section 3.5) are
in this case, but there are also some non heavy tail distributions as well.

The Weibull distribution is often used in this context, as it spans the three cases, depending on
its parameters. The standard Weibull distribution with exponentc has support on[0,∞) and is
defined by its CDF equal to1 − e(x

c). The general Weibull distribution is derived by a change of
scale and location; also see Tables 3.1 and 3.2. Forc = 1 it is the exponential distribution; for
c > 1 it has the aging property and forc < 1 it is fat tailed. Figure 3.6 shows the shape of the
Weibull distributions. The Kurtosis is minimum atc ≈ 3.360128 and goes to∞ asc → 0 [87].

3.4.5 FITTING A D ISTRIBUTION

Fitting a distribution to a dataset is often a two step process. First, a qualitative analysis is per-
formed, where one attempts to get a feeling for the distribution shape. Here, one tries to make
statements about the distribution shape, the hazard rate orthe existence of power laws. These are
obtained by appropriate plots (histograms, qq-plots, empirical CDFs, etc). One can also try to
determine whether a heavy tailed distribution is the right model, using for example theaest tool
described in Section 3.5. The goal is to obtain a set of candidate families of distributions.

The second step is to fit the parameters of the distribution. If the data set can be assumed to
come from an iid sequence, the method of choice is maximum likelihood estimation (MLE), as
explained in Section B.1.2, and illustrated in the next example. In particular, MLE is invariant by
re-parametrization and change of scale.

If, as is frequent in practice, the data set may not be assumedto come from an iid sequence,
then there is no simple method; maximum likelihood estimation is often used in practice (but no
confidence interval for the estimated parameters can be obtained).
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Figure 3.6: Shape of the Weibull distribution for various values of the exponent c. The distribution is
re-scaled to have mean = 1. γ2 is the Kurtosis index.
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3.4.6 CENSORED DATA

When fitting the distribution parameters, it may be important to account for the fact that some very
large or very small data values are not present, due to impossibilities of the measurement system
(for example, flow size durations may not measure very long flows). This is calledcensoring in
statistics.

A technique for accounting for censoring is as follows. Assume we know that the data is truncated
to some maximum, calleda. The distribution for the data can be described by the PDF

fX(x) =
1

F0(a)
f0(x)1{x≤a} (3.15)

wheref0 [resp. F0] is the PDF [resp. CDF] of the non truncated distribution. The reason for
Eq.(3.15) lies in the theory of rejection sampling (Section6.6.2) which says that when one rejects
the data samples that do not satisfy a condition (hereX ≤ a) one obtains a random variable with
PDF proportional to the non censored PDF, restricted to the set of values given by the condition.
The term 1

F0(a)
is the normalizing constant.

Assume that the non truncated distributionF0 depends on some parameterθ. The log likelihood
of the datax1, ..., xn is

ℓ(θ, a) =

n
∑

i=1

log f0(xi|θ)− n logF0(a|θ) (3.16)

We obtain an estimate ofθ anda by maximizing Eq.(3.16). Note that we must havea ≥ maxi xi

and for anyθ, the likelihood is nonincreasing witha. Thus the optimal is for̂a = maxi xi.

It remains to maximizeℓ(θ, â) overθ. This can be done by brute force when the dimensionality of
the parameterθ is small, or using other methods, as illustrated in the next example.

EXAMPLE 3.10:CENSORED LOG-NORMAL DISTRIBUTION. Figure 3.7(a) shows an artificial data
set, obtained by sampling a log-normal distribution with parameters µ = 9.357 and σ = 1.318,
truncated to 20000 (i.e. all data points larger than this value are removed from the data set).

Here, F0 is the log-normal distribution with parameters µ and σ. Instead of brute force optimization,
we can have more insight as follows. We have to maximize ℓ(µ, σ) over µ ∈ R, σ > 0, with

ℓ(µ, σ) = −n ln(σ)− 1

2σ2

n
∑

i=1

(ln xi − µ)2 − n lnN0,1 (µ+ σ ln a)

−n
2
ln(2π)−

n
∑

i=1

lnxi (3.17)

We can ignore the last two terms, which do not depend on (µ, σ). We can also do a change of
variables by taking as parameters σ, z instead of σ, µ, with

z =
ln a− µ

σ
(3.18)

For a fixed z, the optimization problem has a closed form solution (obtained by computing the
derivative with respect to σ); the maximum likelihood is obtained for σ = σ̂(z) with

σ̂(z) =
−βz +

√

4s2 + β2(4 + z2)

2
(3.19)

with β = ln a− y1, y1 =
1

n

n
∑

i=1

lnxi, s2 =
1

n

n
∑

i=1

(lnxi − y1)
2
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Figure 3.7:Fitting Censored Data in Example 3.10. The data set is an iid sample of a truncated log-normal
distribution. Thick lines: data set; plain lines: fit obtained with a technique for censored data; dashed lines:
fit obtained when ignoring the censored data.
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and the corresponding value of the likelihood (called “profile log-likelihood”) is (we omit the con-
stant terms in Eq.(3.17)):

pl(z) = −n
[

ln(σ̂(z))− 1

2σ̂2(z)

(

(

ˆσ(z)z − β
)2

+ s2
)

− lnN0,1 (z)

]

(3.20)

We need now to minimize the square bracket as a function of z ∈ R. This cannot be done in closed
form, but it is numerically simple as it is a function of one variable only. Figure 3.7(c) shows pl(z).
There is a unique maximum at z = 0.4276, which, with Eq.(3.19) and Eq.(3.18), gives

µ̂ = 9.3428 σ̂ = 1.3114

Compare to the method that would ignore the truncation. Since MLE is invariant by change of
scale we can use the log of the data; we would estimate µ by the sample mean of the log of the
data, and σ by the standard deviation, and would obtain

µ̂n = 8.6253 σ̂n = 0.8960

3.4.7 COMBINATIONS OF DISTRIBUTIONS

It is often difficult to find a distribution that fits both the tail and the body of the data. In such case,
one may use a combination of distributions, also calledcompound distribution.

Given two distributions with CDFsF1 andF2 [resp. PDFsf1 andf2], a mixture distribution of
F1 andF2 is a distribution with PDF

f(x) = pf1(x) + (1− p)f2(x)

with p ∈ [0, 1]. A mixture is interpreted by saying that a sample is drawn with probabilityp from
F1 and with probability1− p fromF2.

We are more often interested in acombination of mixture and truncation, i.e. in a combination
whose PDF has the form

f(x) = α11{x≤a}f1(x) + α21{x>a}f2(x) (3.21)

whereα1, α2 ≥ 0 anda ∈ R. This is useful for fitting a distribution separately to the tail and
the body of the data set. Note that we do not necessarily haveα1 + α2 = 1 as in a pure mixture.
Instead, one must have the normalizing conditionα1F1(a) + α2(1 − F2(a)) = 1, thus (by letting
p = α1F1(a)) we may rewrite Eq.(3.21) as

f(x) =
p

F1(a)
1{x≤a}f1(x) +

1− p

1− F2(a)
1{x>a}f2(x) (3.22)

with p ∈ [0, 1].

Assume the distributionsF1, F2 depend on some parameters, independent ofp, and need to be
fitted. Note thatp anda need to be fitted as well. If one uses MLE, one can somewhat simplify the
fitting by observing that the maximum likelihood estimate must satisfy

p̂ =
n1(a)

n
(3.23)
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wheren1(a) is the number of data points≤ a.

To see why, assume that we are given a data setxi of n data points, sorted in increasing order, so
thatn1(a) =

∑n
i=1 1{xi≤a}. The log-likelihood of the data is

ℓ =

n1(a)
∑

i=1

ln f1(xi)+

n
∑

i=n1(a)+1

ln f2(xi)+n1(a) (ln p− lnF1(a))+(n−n1(a)) (ln(1− p)− ln(1− F2(a)))

and maximizingℓ with respect top shows Eq.(3.23).

In summary, fitting a compound distribution separately to the body and the tail of a data set is based
on fitting Eq.(3.22) to the data, withp given by Eq.(3.23). It remains to fita and the parameters of
F1 andF2. This may be done by: assuminga is known, fittingF1 andF2, and computing the value
of a which maximizes the likelihood, as illustrated in the example below.
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Figure 3.8:Fitting a combination of Log-Normal for the body and Pareto for the tail. Dashed vertical line:
breakpoint.

EXAMPLE 3.11:COMBINATION OF LOG-NORMAL AND PARETO. Figure 3.8(a) shows an empirical
complementary CDF in log-log scales for a set of 105 data points representing file sizes. The plot
shows an asymptotic power law, but not over the entire body of the distribution. We wish to fit
a combination mixture of truncated log-normal distribution for the body of the distribution (left of
dashed line) and of Pareto distribution for the tail. truncated on [0, a) and Pareto rescaled to have
support on [a,+∞). The model is thus

fX(x) = q
f1(x)

F1(a)
1{x≤a} + (1− q)

f2(x)

1− F2(a)
1{x>a}

where F1 is a log-normal distribution, F2 is Pareto with exponent p, and breakpoint a. Note that
F2(a) = 0, so the PDF is

fX(x) =
q

N0,1 (µ+ σ ln a)

1√
2πσx

e−
(lnx−µ)2

2σ2 1{0<x≤a} + (1− q)p
ap

xp+1
1{x≥a} (3.24)
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The parameters to be fitted are q, µ, σ, p and the breakpoint a. We first fix a to any arbitrary value
and fit the other parameters. By Eq.(3.23), q = n1(a)

n where n1(a) is the number of data points ≤ a.
The log-likelihood is thus

ℓ(µ, σ, p, a) = n1(a) ln n1(a) + n2(a) ln n2(a)− n lnn

+ℓ1(µ, σ, a) + ℓ2(p, a)

where n2(a) = n− n1(a), ℓ1 is as in Eq.(3.17) (with n1(a) instead of n) and

ℓ2(a, p) = n2(a) (ln p+ p ln a)− (p + 1)

n
∑

i=n1(a)+1

lnxi

where we assumed that the data xi is sorted in increasing order. For a fixed a, the optimization
of µ, σ on one hand, p on the other, are separated. The optimal µ̂(a), σ̂(a) are obtained as in
Example 3.10 using techniques for censored data.

The optimal p̂ is obtained directly:

max
p
l2(a, p) = n2(a) (ln p̂(a)− 1)−

n
∑

i=n1(a)+1

lnxi (3.25)

with p̂(a) =
1

− ln a+ 1
n2(a)

∑n
i=n1(a)+1 lnxi

Putting things together we obtain the profile log-likelihood of a

pl(a) = max
µ,σ>0,p>0

ℓ(µ, σ, p, a)

= −n1(a)
[

ln(2π)

2
+ ln(σ̂(a)) +

1

2σ̂(a)2

(

(σ̂(a)ẑ(a)− β(a))2 + s2(a)
)

+ lnN0,1 (ẑ(a))

]

+n2(a) (ln p̂(a)− 1)−
n
∑

i=1

lnxi

where β(a), σ̂(a), s2(a) and µ̂(a) are as in Example 3.10 and ẑ(a) maximizes Eq.(3.20). We deter-
mine the maximum of pl(a) numerically Figure 3.8(b) shows that there is some large uncertainty
for the value of a, which can be explained by the fact that, in this region, the log-normal distribution
locally follows a power law. We find â = 136300, µ̂ = 9.3565, σ̂ = 1.3176 and p̂ = 1.1245.

3.5 HEAVY TAIL

3.5.1 DEFINITION

In Section 3.4.4 we have seen the definition of fat tail, i.e. adistribution that has vanishing hazard
rate. In this section we see an extreme case of fat tail, called “heavy tail”, which has unique, non
intuitive features. It is frequently found in models of file sizes and flow durations.

We use the following definition (which is the simplest). We say that the distribution on[a,∞),
with CDFF , is heavy tailed with index0 < p ≤ 2 if there is some constantk such that, for large
x:

1− F (x) ∼ k

xp
(3.26)
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Heref(x) ∼ g(x) means thatf(x) = g(x)(1 + ǫ(x)), with limx→∞ ǫ(x) = 0.

A heavy tailed distribution has an infinite variance, and forp ≤ 1 an infinite mean.

• The Pareto distribution with exponentp is heavy tailed with indexp if 0 < p ≤ 2.
• The log-normal distribution is not heavy tailed (its variance is always finite).
• The Cauchy distribution (density 1

π(1+x2)
) is heavy tailed with index1.

3.5.2 HEAVY TAIL AND STABLE DISTRIBUTIONS

Perhaps the most striking feature of heavy tailed distributions is that the central limit theorem does
not hold, i.e. aggregating many heavy tailed quantities does not produce a gaussian distribution.

Indeed, ifXi are idd with finite varianceσ2 and with meanµ, then 1

n
1
2

∑n
i=1(Xi − µ) tends in

distribution to the normal distributionN0,σ2 . In contrast, ifXi are iid, heavy tailed with indexp,
then there exist constantsdn such that

1

n
1
p

n
∑

i=1

Xi + dn

distrib
→

n → ∞
Sp

whereSp has astable distribution with indexp. Stable distributions are defined for0 < p ≤ 2,
for p = 2 they are the normal distributions. Forp < 2, they are either constant or heavy tailed with
indexp. Furthermore, they have a property of closure under aggregation: if Xi are iid and stable
with indexp, then 1

n
1
p
(X1+ ...+Xn) has the same distribution as theXis, shifted by some number

dn.

The shape of a stable distribution withp < 2 is defined by one skewness parameterβ ∈ [−1, 1] (but
the skewness index in the sense of Section 3.4.2 does not exist). Thestandardstable distribution
is defined by its indexp, and whenp < 2, by β. The general stable distribution is derived by a
change of scale and location. Whenβ = 0 the standard stable distribution is symmetric, otherwise
not. The standard stable distribution with skewness parameter−β is the symmetric (by change of
sign) of the standard stable distribution with parameterβ. Whenp < 2 andβ = 1, the support of
the stable distribution it[0,+∞) (and thus whenβ = −1 the support is(−∞, 0]), otherwise the
support isR.

Stable distributions that are not constant have a continuous density, which it is not known explicitly,
in general. In contrast, their characteristic functions are known explicitly [93, 73], see Table 3.2 .
Note that the Pareto distribution is not stable.

Figure 3.9 illustrates the convergence of a sum of iid Paretorandom variables to a stable distribu-
tion. In practice, stable distributions may be difficult to work with, and are sometimes replaced by
heavy tailed combinations, as in Example 3.11.

3.5.3 HEAVY TAIL IN PRACTICE

Heavy tail concretely means that very large outliers are possible. We illustrate this on two exam-
ples.
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Figure 3.9:Aggregation a sum of iid Pareto random variables (a = 1, p ∈ {1, 1.5, 2, 2.5, 3}). On every row:
The first three diagrams show the empirical distribution (normal qq-plot, histogram, complementary CDF in
log-log scale) of one sample of n1 = 104 iid Pareto random variables. The last three show similar diagrams
for a sample (Yj)1≤j≤n of n = 103 aggregated random variables: Yj = 1

n1

∑n1

i=1X
i
j , where X i

j ∼ iid Pareto.
The figure illustrates that for p < 2 there is no convergence to a normal distribution, and for p ≥ 2 there is.
It also shows that for p ≥ 2 the power law behaviour disappears by aggregation, unlike for p < 2. Note that
for p = 2 Xi is heavy tailed but there is convergence to a normal distribution.
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Figure 3.10:Simulation of Random Waypoint with speed density equal to f0
V (v) = Kαv

α
1{0≤v≤vmax},

showing instant speed and average speed (smoother line) for one user.

EXAMPLE 3.12:RANDOM WAYPOINT WITH HEAVY TAILED TRIP DURATION. Consider the following
variant of the random waypoint mobility model as in Figure 6.3 on Page 170. A mobile moves in
some area from one point to the next (we call trip the movement from one point to the next). The
velocity on one trip is sampled from the distribution with PDF f0V (v) = Kαv

α
1{0≤v≤vmax}, with α > 0

and where Kα is a normalizing constant. It follows that the complementary CDF of trip duration is
equal to

1− F 0
T (x) =

KαD̄

α+ 1

1

xα+1
(3.27)

where D̄ is the average length (in meters) of a trip.

For α = 0.5 the trip duration is heavy tailed, for α = 1.5, it has finite variance and is thus not heavy
tailed. Figure 3.10 shows a sample simulation of both cases. In the heavy tailed case, we see that
most trip durations are very short, but once in a while, the trip duration is extraordinarily large.

EXAMPLE 3.13:QUEUING SYSTEM. Consider a server that receives requests for downloading
files. Assume the requests arrival times form a Poisson process, and the requested file sizes are
iid ∼ F where F is some distribution. This is a simplified model, but it will be sufficient to make the
point.

We assume that the server has a unit capacity, and that the time to serve a request is equal to
the requested file size. This again is a simplifying assumption, which is valid if the bottleneck is
a single, FIFO I/O device. From Chapter 8, the mean response time of a request is given by the
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Pollaczek-Khintchine formula

R = ρ+
ρ2(1 + σ2

µ2 )

2(1 − ρ)

where: µ is the mean and σ2 the variance, of F (assuming both are finite); ρ is the utilization factor
(= request arrival rate ×µ). Thus the response time depends not only on the utilization and the
mean size of requests, but also on the coefficient of variation C := σ/µ. As C grows, the response
times goes to infinity.

If the real data supports the hypothesis that F is heavy tailed, then the average response time is
likely to be high and the estimators of it are unstable.

3.5.4 TESTING FOR HEAVY TAIL

There are many methods for deciding whether a data set is heavy tailed or not. One method consists
in fitting a Pareto distribution to the tail, as in Example 3.11.

A more general method is the tool by Crovella and Taqqu calledaest [31]. It uses the scaling
properties and convergence to stable distributions. ConsiderXi iid and heavy tailed, with indexp.
Call X(m)

i the aggregate sequence, where observations are grouped in bulks ofm:

X
(m)
i :=

im
∑

j=(i−1)m+1

Xj

For largem1, m2, by the convergence result mentioned earlier, we should have approximately the
distribution equalities

1

m
1
p

1

X
(m1)
i ∼ 1

m
1
p

2

X
(m2)
j (3.28)

The idea is now to plot the empirical complementary distributions ofX(m)
i for various values of

m. Further, the deviation between two curves of the plot is analyzed by means of horizontal and
vertical deviationsδ andτ as shown in Figure 3.11. We haveδ = log x2 − log x1. By Eq.(3.28),
we havex2 = (m2/m1)

1/px1 thus

δ =
1

p
log

m2

m1

Also, if Xi is heavy tailed, andm is large, thenX(m)
i is approximately stable. Thus, ifm2/m1 is an

integer, the distribution ofX(m2)
j (which is a sum ofX(m1)

i ) is the same as that of(m2/m1)
1/pX

(m1)
i .

We should thus have

τ = log P(X
(m2)
i > x1)− log P(X

(m1)
i > x1) ≈ log

m2

m1

The method inaest consists in use only the pointsx1 where the above holds, then, at such points,
estimatep by

p̂ =
1

δ
log

m2

m1

Then the average of these estimates is used. See Figure 3.11 for an illustration.
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Figure 3.11:First Panel: Deviations used in the aest tool. Second panel: application to the dataset in
Example 3.11. There is heavy tail, with an estimated index p = 1.12 (same as obtained by the direct method
in Example 3.11).

3.5.5 APPLICATION EXAMPLE : T HE WORKLOAD GENERATOR SURGE

Many of the concepts illustrated in this chapter are used in the tool Surge[9], which is a load
generator for web servers.

The loadintensityis determined by the number ofUser Equivalents (UEs), each implemented
as an independent thread of execution, on one or several machines The loadnatureis defined by
a set of constraints on the arrival process, the distribution of request sizes and the correlation of
successive requests to the same object, as described below.The parameters of the distributions
were obtained by fitting measured values (Table 3.3).

1. One UE alternates between ON-object periods and “Inactive OFF periods”. Inactive OFF
periods are iid with a Pareto distribution .

2. During an ON-object period, a UE sends a request with embedded references. Once the
first reference is received, there is an “Active OFF period”,then the request for the second
reference is sent, and so on, until all embedded references are received. There is only one
TCP connection at a time per UE, and one TCP connection for each reference (an assumption
that made sense with early versions of HTTP).

3. The active OFF times are iid random variables with Weibulldistributions.
4. The number of embedded references is modelled as a set of iid random variables, with a

Pareto distribution.

The references are viewed as requests for downloading files.The model is that there is a set of files
labeledi = 1, ..., I, stored on the server. Filei has two attributes: sizexi and request probability
θi. The distribution of attributes has to satisfy the following conditions.

5. The distributionH(x) of file sizes is a combination of truncated Lognormal and Pareto.
6. θi satisfy Zipf’s law with exponentα = 1
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7. The distributionF (x) of requested file sizes is Pareto7

The distributionsH andF are both file size distributions, sampled according to different view-
points. Thus (as we discuss in Chapter 7) there must be a relation between these two distributions,
which we now derive. LetI(t) be the random variable that gives the indexi of thetth file requested.
ThusF (x) = P(xI(t) = x). We can assume that the allocation of file sizes and popularities is done
in a preliminary phase, and is independent ofI(t). Thus

F (x) =
∑

j

P(I(t) = j)1{xj≤x} =
∑

j

θj1{xj≤x} (3.29)

Let x(1) = x(2) = ... be the file sizes sorted in increasing order, and letz(n) be the index of thenth
file in that order.z is a permutation of the set of indices, such thatx(n) = xz(n). By specializing
Eq.(3.29) to the actual valuesx(m) we find, after a change of variablej = z(n)

F (x(m)) =
∑

j

θj1{xj≤x(m)} =
∑

n

θz(n)1{x(n)≤x(m)}

thus

F (x(m)) =
m
∑

n=1

θz(n) (3.30)

which gives a constraint between theθis andxis.

The file request referencesI(t), t = 1, 2, ... are constrained by their marginal distribution (defined
by θi). The authors find that there is some correlation in the series and model the dependency as
follows:

8. For any file indexi, defineT1(i) < T2(i) < ... the successive values oft ∈ {1, 2, ...}
such thati = I(t). Assume thatTk+1(i) − Tk(i) come from a common distribution, called
“temporal locality”. The authors find it log-normal (more precisely, it is a discretized log-
normal distribution, since the values are integer).

BUILDING A PROCESS THAT SATISFIES ALL CONSTRAINTS

It remains to build a generator that produces a random outputconformant to all constraints. Con-
straints 1 to 4 are straightforward to implement, with a proper random number generator, and using
the techniques described in Section 6.6. The inactive OFF periods, active OFF periods and number
of embedded references are implemented as mutually independent iid sequences.

Constraints 5 to 7 require more care. First, thexi are drawn fromH. Second, theθis are drawn (as
explained in Section 3.4.3) but not yet bound to the file indexes. Instead, the values are put in a set
Θ. In view of Eq.(3.30), define

θ̂z(m) = F (x(m))−
m−1
∑

n=1

θz(m)

7The original paper [9] takes an indexp = 1 for this Pareto distribution, which implies that the mean request file
size is infinite, and thus the process of file size requests is not stationary (this is a freezing simulation problem as in
Section 7.4). A value ofp larger than 1 would be preferable.
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so that we should havêθz(m) = θz(m) for all m. If this would be true, it is easy to see that all
constraints are satisfied. However, this can be done in [9] only approximately. Here is one way to
do it. Assume thatz(m) = m, namely, we have sorted the file indices by increasing file size. For
m = 1 we setθ1 to the value inΘ which is closest tôθ1 = F (x1). Then remove that value from
Θ, setθ2 to the value inΘ closest tôθ2 = F (x2)− θ1, etc.

Lastly, it remains to generate a time series of file requestsI(t) such that the marginal distribution
is given by theθis and the temporal locality in condition 8 is satisfied. This can be formulated as
a discrete optimization problem, as follows. First a trace size T is chosen arbitrarily; it reflects
the length of the load generation campaign. Then, for each file i, the number of referencesNi is
drawn, so as to satisfy Zipf’s law (withE(Ni) = θi). Last, a sequenceS1, , S2, ... is drawn from
the distribution in in condition 8.

The problem is now to create a sequence of file indices(I(1), I(2), ...I(T )) such thati appearsNi

times and the distances between successive repetitions of file references is a close as possible to
the sequenceS1, , S2, .... Any heuristic for discrete optimization can be used (such as simulated
annealing or tabu search). An ad-hoc heuristic is used in [9].

3.6 PROOFS

THEOREM 3.1.1 The log likelihood of the data is

l~y(~β, σ) = −I
2
ln (2π)− I ln (σ)− 1

2σ2

I
∑

i=1

(

yi − fi(~β)
)2

(3.31)

For any fixedσ, it is maximum when
∑I

i=1

(

yi − fi(~β)
)2

is minimum, which shows item 1. Take the derivative with

respect toσ and find that for any fixed~β, it is maximum forσ = 1
I

∑

i

(

yi − fi(~β)
)2

, which shows item 1.

The rest of the theorem is a direct application of Theorem B.2.1 and Theorem B.3.1.

THEOREM 3.1.2 The log likelihood of the data is

l~y = −I ln(2) + I ln (λ)− λ

I
∑

i=1

∣

∣

∣yi − fi(~β)
∣

∣

∣ (3.32)

For any fixed~β, it is maximum when1
λ
= 1

I

∑

i

∣

∣

∣yi − fi(~β
∣

∣

∣ and the corresponding value is

−I ln
(

I
∑

i=1

∣

∣

∣yi − fi(~β)
∣

∣

∣

)

+ I ln I − I − I ln 2

which is maximum when~β minimizes
∑I

i=1

∣

∣

∣yi − fi(~β)
∣

∣

∣.

THEOREM 3.3.1 In view of Theorem 3.1.2, the MLE of~β is obtained by minimizing
∑I

i=1

∣

∣

∣yi −
(

X~β
)

i

∣

∣

∣. This

is equivalent to minimizing
∑I

i=1 ui over(~β, u) with the constraintsui ≥
∣

∣

∣yi −
(

X~β
)

i

∣

∣

∣, which is equivalent to the

constraints in the theorem.
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3.7 REVIEW

3.7.1 REVIEW QUESTIONS

QUESTION 3.7.1. How would you computea andα in Example 3.1 ?8

QUESTION 3.7.2. How would you compute the residuals in Example 3.3 ?9

QUESTION 3.7.3. How would you compute confidence intervals for the componentβj of ~β in
Theorem 3.1.1 using the Bootstrap ? In Theorem 3.1.2 ?10

QUESTION 3.7.4. Can you name distributions that are fat tailed but not heavy tailed ? 11

QUESTION 3.7.5. If the tail of the distribution ofX follows a power law, can you conclude thatX
is heavy tailed ?12

QUESTION 3.7.6. Which of the distributions used in Surge are heavy tailed ? fat tailed ? 13

3.7.2 USEFUL M ATLAB COMMANDS

• regress solves the general linear regression model as in Theorem 3.2.1
• linprog solves the linear program in Theorem 3.3.1

8By minimizing
∑

i (yi − aeαti)
2. This is an unconstrained optimization problem in two variables; use for exam-

ple a generic solver such asfminsearch in matlab.
9The residuals are estimates of the noise termsǫi. Let â andα̂ be the values estimated by maximum likelihood, for

either model. The residuals areri = yi − âeα̂ti for the former model,ri = ln yi − ln
(

âeα̂ti
)

for the latter.
10DrawR bootstrap replicates of~Y and obtainR estimates~β1, ..., ~βR of ~β, using the theorems. At level95%, take

R = 999 and use the order statistics of thejth component of the bootstrap estimates:β
(1)
j ≤ ... ≤ β

(R)
j ; obtain as

confidence interval[β(25)
j , β

(975)
j ].

11The Pareto distributions withp > 2, the log-normal distributions, the Weibull distributionswith c < 1.
12No, only if the exponent of the tail is≤ 2.
13Inactive OFF time, File size, File request size. The number of embedded references is Pareto withp > 2 thus is

fat tailed but not heavy tailed. The active OFF time and temporal locality are fat tailed but not heavy tailed.
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Distribution Standard NormalN0,1 Standard Laplace Standard Lognormal

Parameters none none σ > 0
Comment Page 24 Page 65 Page 73

PDF 1√
2π
e−

x2

2
1
2
e−|x| 1√

2πσx
e−

(lnx)2

2σ2 1{x>0}
support R R [0,+∞)

CDF
1−Q(x)
(by definition ofQ())

0.5e−|x| for x ≤ 0
1−0.5e−|x| for x ≥ 0

(

1−Q
(

lnx
σ

))

1{x>0}

characteristic func-
tion

e−
ω2

2
1

1+ω2

mean 0 0 e
σ2

2

variance 1 2
(

eσ
2 − 1

)

eσ
2

median 0 0 1

skewness index 0 0
√
eσ2 − 1

(

eσ
2
+ 2
)

kurtosis index 0 3 e4σ
2
+ 2e3σ

2
+ 3e2σ

2 − 6
hazard rate ∼ x = 1 ∼ lnx

σ2x

Effect of change of scale and location

Original Distribution Shifted and Re-scaled
Distribution ofX Distribution ofY = sX +m

Parameters
same plus
m ∈ R (location),
s > 0 (scale)

PDF fX(x)
1
s
fX
(

x−m
s

)

CDF FX(x) FX

(

x−m
s

)

characteristic func-
tion

ΦX(ω) ejωmΦX(sω)

mean µ µ+m
variance σ2 s2σ2

median ν ν +m
skewness index same
kurtosis index same
hazard rate λX(x)

1
s
λX

(

x−m
s

)

Table 3.1:Catalog of Distributions used in this chapter (continued on Table 3.2). The characteristic function
is defined as E

(

ejωX
)

and is given only when tractable. The notation a(x) ∼ b(x) means limx→∞
a(x)
b(x) = 1.

Only parameters that affect the shape of the distribution are considered in the table. Other distributions in
the same families can be derived by a change of scale and location, using the formulas given in the bottom
part of the table.
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Distribution Standard Weibull Standard Pareto
Standard Stable with
indexp < 2

Parameters c > 0 0 < p
0 < p < 2, −1 ≤
β ≤ 1

.

Comment
Page 78; called ex-
ponential forc = 1

Page 76

The stable definition
is also defined for
p = 2, in which
case it is equal to the
normal distribution
N0,2. See Page 85

PDF cxc−1e−(xc)
1{x≥0}

p
xp+11{x≥1}

well defined but usu-
ally not tractable

support [0,+∞) [1,+∞)
R except whenβ =
±1

CDF
(

1− e−(xc)
)

1{x≥0}
(

1− 1
xp

)

1{x≥1}
well defined but usu-
ally not tractable

characteristic
function

1
1−jω

for c = 1

exp [− |ω|p (1 + A)]
with A =
−jβsgn(ω) tan pπ

2

for p 6= 1
2jβ
π
sgn(ω) ln |ω|
for p = 1

meanµ Γ
(

c+1
c

)

p
p−1

for p > 1
0 for p > 1 else un-
defined

varianceσ2 Γ
(

c+2
c

)

− µ2 1
(p−1)2(p−2)

for p > 2 undefined

median (ln(2))1/c 21/p
0 whenβ = 0, else
untractable

skewness indexγ1
Γ( c+3

c )−3µσ2−µ3

σ3

2(1+p)
p−3

√

p−2
p

for p >

3
undefined

kurtosis index
Γ( c+4

c )−4γ1µσ3−6µ2σ2−µ4

σ4

−3

6(p3+p2−6p−2)
p(p−3)(p−4)

for
p > 4

undefined

hazard rate = cxc−1 = p
x

∼ p
x

Table 3.2:Continuation of Table 3.1. Γ() is the gamma function, defined as Γ(x) =
∫∞
0 tx−1dt; if x ∈ N,

Γ(x) = (x− 1)!
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model densityf(x) value of parameters

Inactive OFF time Pareto psp

xp+11{x≥s} s = 1, p = 1.5

No of embedded references Pareto psp

xp+11{x≥s} s = 1, p = 2.43

Active OFF time Weibull c
s

(

x
s

)c−1
e−(

x
s )

c

s = 1.46, c = 0.382
File Size Lognormal Eq.(3.24) µ = 9.357, σ = 1.318

comb. Pareto a = 133K, p = 1.1
q = N0,1(µ+ σ ln a)

File Request Size Pareto psp

xp+11{x≥s} s = 1000, p = 1.0
(see footnote on Page 90)

Temporal Locality Lognormal e
−

(lnx−µ)2

2σ2√
2πσx

1{x>0} µ = 1.5, σ = 0.80

Table 3.3:Distributions and parameters used in SURGE.
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CHAPTER 4

TESTS

We use tests to decide whether some as-
sertion on a model is true or not, for ex-
ample: does this data set come from a
normal distribution ? We have seen in
Chapter 2 that visual tests may be used
for such a purpose. Tests are meant to
be a more objective way to reach the
same goal.

Tests are often used in empirical sciences to draw conclusions from noisy experiments. Though
we use the same theories, our setting is a bit different; we are concerned with the nested model
setting, i.e. we want to decide whether a simpler model is good enough, or whether we do need a
more sophisticated one. Here, the question is asymmetric; if in doubt, we give preference to the
simpler model – this is the principle of parsimony. The Neyman Pearson framework is well suited
to such a setting, therefore we restrict ourselves to it.

97
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There is a large number of tests, and everyone can invent their own (this is perhaps a symptom of
the absence of a simple, non equivocal optimality criterion). In practice though, likelihood ratio
tests are asymptotically optimal, in some sense, under verylarge sets of assumptions. They are
very general, easy to use and even to develop; therefore, it is worth knowing them. We often make
use of Monte Carlo simulation to compute thep-value of a test; this is sometimes brute force, but
it avoids spending too much time solving for analytical formulae. We discuss ANOVA, as it is
very simple when it applies. Last, we also study robust tests, i.e. tests that make little assumption
about the distribution of the data.

Contents
4.1 The Neyman Pearson Framework . . . . . . . . . . . . . . . . . . . . . . .. 98
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4.1.3 p-value of a Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.5 Other Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5.1 Goodness of Fit Tests based on Ad-Hoc Pivots . . . . . . . . .. . . . . 118
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4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7.1 Tests Are Just Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

4.7.2 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1 THE NEYMAN PEARSON FRAMEWORK

4.1.1 THE NULL HYPOTHESIS AND THE ALTERNATIVE

We are given a data samplexi, i = 1, ..., n. We assume that the sample is the output generated
by some unknown model. We consider two possible hypotheses about the model,H0 andH1, and
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we would like to infer from the data which of the two hypotheses is true. In the Neyman-Pearson
framework, the two hypotheses play different roles:H0, thenull hypothesis, is the conservative
one. We do not want to reject it unless we are fairly sure.H1 is thealternative hypothesis.

We are most often interested in thenested model setting: the model is parameterized by someθ

in some spaceΘ, andH0
def
= “θ ∈ Θ0” whereasH1

def
= “θ ∈ Θ \Θ0”, whereΘ0 is a subset ofΘ.

In Example 4.1, the model could be: all data points for compiler option 0 [resp. 1] are gen-
erated as iid random variables with some distributionF0 [resp. F1]. ThenH0 is: “F0 = F1”
andH1 is “F0 andF1 differ by a shift in location”. This is the model used by the Wilcoxon
Rank Sum test (see Example 4.11 for more details). HereΘ0 = {(F0, F0), F0 is a CDF} and
Θ = {(F0, F1), F0 is a CDF andF1(x) = F0(x−m), m ∈ R}.

Another, commonly used model, for the same example could be:all data points for compiler
option 0 [resp. 1] are generated as iid random variables withsome normal distributionNµ0,σ2

[resp. Nµ1,σ2 ]. ThenH0 is: “µ0 = µ1” and H1 is “µ0 6= µ1”. This is the model used by the
so-called “Analysis of variance” (see Example 4.7 for more details). HereΘ0 = {(µ0, µ0, σ > 0)}
andΘ = {(µ0, µ1, σ > 0)}. Clearly this second model makes more assumptions, and is tobe taken
with more care.

EXAMPLE 4.1:NON PAIRED DATA . A simulation study compares the execution time, on a log
scale, with two compiler options. See Figure 4.1 for some data. We would like to test the hypoth-
esis that compiler option 0 is better than 1. For one parameter set, the two series of data come
from different experiments.

We can compute a confidence interval for each of the compiler options. The data looks normal,
so we apply the student statistic and find the confidence intervals shown on the figure.

For parameter set 1, the confidence intervals are disjoint, so it is clear that option 0 performs
better. For parameter sets 2 and 3, the intervals are overlapping, so we cannot conclude at this
point.

We see here that confidence intervals may be used in some cases for hypothesis testing, but not
always. We study in this chapter how tests can be used to disambiguate such cases.

4.1.2 CRITICAL REGION , SIZE AND POWER

Thecritical region, also calledrejection region C of a test is a set of values of the tuple(x1, ..., xn)
such that if(x1, ..., xn) ∈ C we rejectH0, and otherwise we acceptH0. The critical region entirely
defines the test1.

The output of a test is thus a binary decision: “acceptH0”, or “reject H0”. The output depends
on the data, which is random, and may be wrong with some (hopefully small) probability. We
distinguish two types of errors

• A type 1 error occurs if we rejectH0 whenH0 is true
• Conversely, atype 2 error occurs if acceptH0 whenH1 is true.

1In all generality, one also should consider randomized tests, whose output may be a random function of
(x1, ..., xn). See [81] for such tests. We do not use them in our setting
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(a) Parameter set 1
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(c) Parameter set 3

Parameter Set Compiler Option 0 Compiler Option 1

1 [−0.1669; 0.2148] [0.3360; 0.7400]
2 [−0.0945; 0.3475] [0.2575; 0.6647]
3 [−0.1150; 0.2472] [−0.0925; 0.3477]

Figure 4.1:Data for Example 4.1. Top: Logarithm of execution time, on a log scale, with two compiler
options (o=option 0, x=option 1) for three different parameter sets. Bottom: 95% confidence intervals for the
means.

The art of test development consists in minimizing both error types. However, it is usually difficult
to minimize two objectives at a time. The maximum probability of a type 1 error, taken over all
θ ∈ Θ0 is called thesize of the test. Thepower function of the test is the probability of rejection
of H0 as a function ofθ ∈ Θ \ Θ0. Neyman-Pearson tests are designed such that the size has a
fixed, small value (typically5%, or 1%). Good tests (i.e. those in these lecture notes and those
used in Matlab) are designed so as to minimize, exactly or approximately, the power, subject to a
fixed size. A test is said to be uniformly more powerful (UMP) if, among all tests of same size, it
maximizes the power for every value ofθ ∈ Θ \ Θ0. UMP tests exist for few models, therefore
less restrictive requirements were developed (the reference for these issues is [62]).

It is important to be aware of the two types of errors, and of the fact that the size of a test is just one
facet. Assume we use a UMP test of size0.05; it does not mean that the risk of error is indeed0.05,
or even is small. It simply means that all other tests that have a risk of type 1 error bounded by0.05
must have a risk of type 2 error which is the same or larger. Thus we may need to verify whether,
for the data at hand, the power is indeed large enough, thoughthis is seldom done in practice.

EXAMPLE 4.2:COMPARISON OFTWO OPTIONS, REDUCTION IN RUN TIME. The reduction in run
time due to a new compiler option is given in Figure 2.7 on Page 32. Assume that we know that
the data comes from some iid Xi∼ Nµ,σ2 . This may be argued and will be discussed again, but it
is convenient to simplify the discussion here. We do not know µ or σ.

We want to test H0: µ = 0 against H1: µ > 0. Here θ = (µ, σ), Θ = [0,∞) × (0,∞) and Θ0 =
{0} × (0,∞). An intuitive definition of a test is to reject H0 if the sample mean is large enough; if
we rescale the sample mean by its estimated standard deviation, this gives the rejection region

C =

{

(x1, ..., xn) such that
x̄

sn/
√
n
> c

}

(4.1)

for some value of c to be defined later and with, as usual x̄ = 1
n

∑n
i=1Xi and s2n = 1

n

∑n
i=1 (Xi − x̄)2.
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Figure 4.2:Power as a function of µ for Example 4.2.

The size of the test is the maximum probability of C for θ ∈ Θ0. We have

P

(√
n
x̄

sn
> c

∣

∣

∣

∣

µ = 0, σ

)

≈ 1−N0,1(c)

where N0,1 is the CDF of the standard gaussian distribution. Note that this is independent of σ
therefore

α = sup
σ>0

(1−N0,1(c)) = 1−N0,1(c)

If we want a test size equal to 0.05 we need to take c = 1.645. For the data at hand the value of
the test statistic is

√
n x̄

n
= 5.05 > c therefore we reject H0 and decide that the mean is positive.

The power function is

β(µ, σ)
def
= P

(√
n
x̄

sn
> c

∣

∣

∣

∣

µ, σ

)

= P

(√
n
x̄− µ

sn
> c−√

n
µ

sn

∣

∣

∣

∣

µ, σ

)

≈ 1−N0,1

(

c−√
n
µ

σ

)

(4.2)

Figure 4.2 plots the power as a function of µ when c = 1.645 and for σ replaced by its estimator
value sn . For µ close to the 0, the power is bad (i.e. the probability of deciding H1 is very small.
This is unavoidable as limµ→0 β(µ, σ) = α.

For the data at hand, we estimate the power by setting µ = x̄ and σ = sn in Eq.(4.2). For a test
size equal to 0.05 (i.e. for c = 1.645) we find 0.9997. The probability of a type 2 error (deciding
for H0 when H1 is true) is thus approximately 0.0003, a very small value. If we pick as test size
α = 0.1%, we find that the type 2 error probability is 2.5%.

The previous example shows that the test size does not say everything. On Figure 4.1, we see that
there is a “grey zone” (values ofµ below, say,15) where the power of the test is not large. If
the true parameter is in the grey zone, the probability of type 2 error may be large, i.e. it is not
improbable that the test will acceptH0 even whenH1 is true. It is important to keep this in mind:
a test may acceptH0 because it truly holds, but also because it is unable to reject it. This is the
fundamental asymmetry of the Neyman-Pearson framework.
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The power function can be used to decide on the sizeα of the test, at least in theory, as illustrated
next.

EXAMPLE 4.3:OPTIMAL TEST SIZE, CONTINUATION OF EXAMPLE 4.2. Say that we consider that
a reduction in run time is negligible if it is below µ∗. We want that the probability of deciding H0

when the true value equal to µ∗ or more is similar to the size α, i.e. we want to balance the two
types of errors. This gives the equations

1−N0,1 (c
∗) = α

1−N0,1

(

c∗ −√
n
µ∗

sn

)

= 1− α

thus

N0,1 (c
∗) +N0,1

(

c∗ −√
n
µ∗

sn

)

= 1

By symmetry of the gaussian PDF around its mean, we have

if N0,1(x) +N0,1(y) = 1 then x+ y = 0

from where we derive

c∗ =
√
n
µ∗

2sn

The table below gives a few numerical examples, together with the corresponding test size α∗ =
1−N0,1 (c

∗).

resolution µ∗ optimal threshold c∗ size α∗

10 0.97 0.17
20 1.93 0.02
40 3.87 5.38e-005

We see that if we care about validly detecting reductions in run time as small as µ∗ = 10ms, we
should have a test size of 17% or more. In contrast, if the resolution µ∗ is 20ms, then a test size of
2% is appropriate.

4.1.3 p-VALUE OF A TEST.

For many tests, the rejection region has the form{T (~x) > m0}, where~x is the observation,T ()
some mapping, andm0is a parameter that depends on the sizeα of the test. In Example 4.2 we can
takeT (~x) =

√
n x̄

sn
.

DEFINITION 4.1.1. Thep-value of an observation~x is

p∗(~x) = sup
θ∈Θ0

P(T ( ~X) > T (~x)|θ)

In this formula,~X is a random vector that represents a hypothetical replication of the experiment,
whereas~x is the data that we have observed.



4.1. THE NEYMAN PEARSON FRAMEWORK 103

The mappingm 7→ supθ∈Θ0
P(T ( ~X) > m|θ) is monotonic nonincreasing, and usually decreasing.

Assuming the latter, we have the equivalence

p∗(~x) < α ⇔ T (~x) > m0

in other words, instead of comparing the test statisticT (~x) against the thresholdm0, we can com-
pare thep-value against the test sizeα:

The test rejectsH0 when thep-value is smaller than the test sizeα.

The interest of thep-value is that it gives more information than just a binary answer. It is in fact
the minimum test size required to rejectH0. Very often, software packages returnp-values rather
than hard decisions (H0 orH1).

EXAMPLE: CONTINUATION OF EXAMPLE 4.2.The p-value is p∗ = 1 − N0,1

(√
nx̄
sn

)

. We find p∗ =

2.2476e − 007 which is small, therefore we reject H0.

4.1.4 TESTS ARE JUST TESTS

When using a test, it is important to make the distinction between statistical significance and prac-
tical relevance. Consider for example a situation, as in Example 4.2, where we want to test whether
a meanµ satisfiesµ = µ0 = 0 or µ > µ0. We estimate the theoretical meanµ by the sample mean
x̄. It is never the case thatµ = x̄ exactly. A test is about deciding whether the distance betweenµ0

andx̄ can be explained by the randomness of the data alone (in whichcase we should decide that
µ = µ0), or by the fact that, truly,µ > µ0. Statistical significance means that, in a case where we
find x̄ > µ0, we can conclude that there is a real difference, i.e.µ > µ0. Practical relevance means
that the differenceµ−µ0 is important for the system under consideration. It may wellhappen that
a difference is statistically significant (e.g. with a very large data set) but practically irrelevant, and
vice versa (e.g. when the data set is small).

In some cases, tests can be avoided by the use of confidence intervals. This applies to matching
pairs as in Example 4.2: a confidence interval for the mean canreadily be obtained by Theo-
rem 2.2.2. At level0.05, the confidence interval is[15.9, 36.2], so we can conclude thatµ > 0 (and
more, we have a lower bound onµ).

More generally, consider a generic model parameterized with someθ ∈ Θ ⊂ R. For testing

θ = θ0 againstH1: θ 6= θ0

we can take as rejection region
∣

∣

∣
θ̂ − θ0

∣

∣

∣
> c

If θ̂ ± c is a confidence interval at level1 − α, then the size of this test is preciselyα. For such
cases, we do not need to use tests, since we can simply use confidence intervals as discussed in
Chapter 2. However, it is not always as simple, or even possible, to reduce a test to the computation
of confidence intervals, as for example with unpaired data inExample 4.1 (though it is possible to
use confidencesetsrather than confidence intervals).
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4.2 LIKELIHOOD RATIO TESTS

In this section we introduce a generic framework, very frequently used for constructing tests. It
does not give UMP tests (as this is, in general, not possible), but the tests are asymptotically UMP
(under the conditions of Theorem 4.4.1). We give the application to simple tests for paired data
and for goodness of fit. Note that deciding which test is best is sometimes controversial, and the
best tests, in the sense of UMP, is not always the likelihood ratio test [61]; note also that the issue
of which criterion to use to decide that a test is best is disputed [79]. In our context, likelihood
ratio tests are appealing as they are simple and generic.

4.2.1 DEFINITION OF L IKELIHOOD RATIO TEST

ASSUMPTIONS AND NOTATION We assume the nested model setting, withH0
def
= “θ ∈ Θ0”

whereasH1
def
= “θ ∈ Θ \Θ0”. For a given statistic (random variable)~X and value~x of ~X, define :

• l~x(θ)
def
= ln f ~X(~x|θ) wheref ~X(.|θ) is the probability density of the model, when the parame-

ter isθ.
• l~x(H0) = supθ∈Θ0

l~x(θ)
• l~x(H1) = supθ∈Θ l~x(θ)

For example, assume some data comes from an iid sequence of normal RVs∼ N(µ, σ). We want
to testµ = 0 versusµ 6= 0. HereΘ = {(µ, σ > 0)} andΘ0 = {(0, σ > 0)}.

If H0 is true, then, approximately, the likelihood is maximum forθ ∈ Θ0 and thusl~x(H0) =
l~x(H1). In the opposite case, the maximum likelihood is probably reached at someθ 6∈ Θ0 and
thusl~x(H1) > l~x(H0). This gives an idea for a generic family of tests:

DEFINITION 4.2.1. The likelihood ratio test is defined by the rejection region

C = {l~x(H1)− l~x(H0) > k}

wherek is chosen based on the required size of the test.

The test statisticl~x(H1)− l~x(H0) is calledlikelihood ratio for the two hypothesesH0 andH1.

Thus we rejectθ ∈ Θ0 when the likelihood ratio statistic is large. The Neyman-Pearson lemma
[104, Section 6.3] tells us that, in the simple case whereΘ0 andΘ1 contain only one value each,
the likelihood ratio test minimizes the probability of type2 error. Most tests used in this lecture are
actually likelihood ratio tests. As we will see later, for large sample size, there are simple, generic
results for such tests.

There is a link with the theory of maximum likelihood estimation. Under the conditions in Defini-
tion B.2.1, define

• θ̂0 : the maximum likelihood estimator ofθ when we restrictθ to be inΘ0

• θ̂ : the unrestricted maximum likelihood estimator ofθ

Thenl~x(H0) = l~x(θ̂0) andl~x(H1) = l~x(θ̂). In the rest of this section and in the next two sections
we show applications to various settings.
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QUESTION 4.2.1. Why can we be sure thatl~x(θ̂)− l~x(θ̂0) ≥ 0 ? 2

EXAMPLE: CONTINUATION OF EXAMPLE 4.2, COMPILER OPTIONS. We want to test H0: µ = 0
against H1: µ > 0. The log-likelihood of an observation is

l~x(µ, σ) =
−n
2

ln
(

2πσ2
)

− 1

2σ2

∑

i

(xi − µ)2

and the likelihood ratio statistic is

l~x(H1)− l~x(H0) = sup
µ≥0,σ>0

l~x(µ, σ)− sup
σ>0

l~x(0, σ) = −n ln σ̂1
σ̂0

with

σ̂0 =
1

n

∑

i

x2i

σ̂1 =
1

n

∑

i

(x2i − µ̂+n )
2

µ̂+n = max(x̄, 0)

The likelihood ratio test has a rejection region of the form l~x(H1)− l~x(H0) > k, which is equivalent
to

σ̂1 < kσ̂0 (4.3)

In other words, we reject H0 if the estimated variance under H1 is small. Such a test is called
“Analysis of Variance”.

We can simplify the definition of the rejection region by noting first that σ̂1 ≤ σ̂0, and thus we must
have k ≤ 1. Second, if x̄ ≥ 0 then Eq.(4.3) is equivalent to

√
n x̄
sn
> c for some c. Third, if x̄ ≤ 0

then Eq.(4.3) is never true. In summary, we have shown that this test is the same as the ad-hoc
test developed in Example 4.2.

4.2.2 STUDENT TEST FOR SINGLE SAMPLE (OR PAIRED DATA )

This test applies to a single sample of data, assumed to be normal with unknown mean and vari-
ance. It can also be applied to two paired samples, after computing the differences. It is the two
sided variant of Example 4.2.1. The model is:X1, ..., Xn ∼ iid Nµ,σ2 whereµ andσ are not
known. The hypotheses are:

H0: µ = µ0 againstH1: µ 6= µ0

whereµ0 is a fixed value. We compute the likelihood ratio statistic and find after some algebra:

l~x(H1)− l~x(H0) =
n

2
ln

(

1 +
n(x̄− µ0)

2

∑

i(xi − x̄)2

)

2As long as the MLEs exist: by definition,l~x
(

θ̂
)

≥ l~x(θ) for anyθ.
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Let T (~x) =
√
n x̄−µ0

σ̂
be the student statistic (Theorem 2.2.3), withσ̂2 = 1

n−1

∑

i(xi − x̄)2. We can
write the likelihood ratio statistic as

l~x(H1)− l~x(H0) =
n

2
ln

(

1 +
T (~x)2

n− 1

)

(4.4)

which is an increasing function of|T (~x)|. The rejection region thus has the form

C = {|T (~x)| > η}

We computeη from the condition that the size of the test isα. UnderH0, T ( ~X) has a student
distributiontn−1 (Theorem 2.2.3). Thus

η = t−1
n−1

(

1− α

2

)

(4.5)

For example, forα = 0.05 andn = 100, η = 1.98.

Thep-value is
p∗ = 2(1− tn−1(T (~x))) (4.6)

EXAMPLE 4.4:PAIRED DATA . This is a variant of Example 4.2. Consider again the reduction in
run time due to a new compiler option, as given in Figure 2.7 on Page 32. We want to test whether
the reduction is significant. We assume the data is iid normal and use the student test:

H0: µ = 0 against H1: µ 6= 0

The test statistic is T (~x) = 5.05, larger than 1.98, so we reject H0. Alternatively, we can compute
the p-value and obtain p∗ = 1.80e − 006, which is small, so we reject H0.

As argued in Section 4.1.4, the Student test is equivalent toconfidence interval, so you do not need
to use it. However, it is very commonly used by others, so you still need to understand what it does
and when it is valid.

4.2.3 THE SIMPLE GOODNESS OFFIT TEST

Assume we are givenn data pointsx1, ..., xn, assumed to be generated from an iid sequence, and
we want to verify whether their common distribution is a given distributionF (). A traditional
method is to compare the empirical histogram to the theoretical one. Applying this idea gives the
following likelihood ratio test. We call it thesimple goodness of fit test as the null hypothesis
is for a given, fixed distributionF () (as opposed to a family of distributions, which would give a
compositegoodness of fit test).

To compute the empirical histogram, we partition the set of values of ~X into bins Bi. Let Ni =
∑n

k=1 1{Bi}(Xk) (number of observation that fall in binBi) andqi = P{X1 ∈ Bi}. If the data
comes from the distributionF () the distribution ofN is multinomial Mn,~q, i.e.

P {N1 = n1, ..., Nk = nk} =

(

n!
n1!...nk!

)

qn1
1 ...qnk

k (4.7)

The test is
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H0: Ni comes from the multinomial distributionMn,~q

against

H1: Ni comes from a multinomial distributionMn,~p for some arbitrary~p.

We now compute the likelihood ratio statistic. The parameter is θ = ~p. UnderH0, there is only
one possible value sôθ0 = ~q. From Eq.(4.7), the likelihood is

l~x(~p) = C +

k
∑

i=1

ni ln(pi) (4.8)

whereni =
∑n

k=1 1{Bi}(xk) andC = ln(n!) −∑k
i=1 ln(ni!). C is a constant and can be ignored

in the rest. To find̂θ, we have to maximize Eq.(4.8) subject to the constraint
∑k

i=1 pi = 1. The
function to maximize is concave inpi, so we can find the maximum by the lagrangian technique.
The lagrangian is

L(~p, λ) =

k
∑

i=1

ni ln(pi) + λ(1−
k
∑

i=1

pi) (4.9)

The equations∂L
∂pi

= 0 give ni = λpi. Consider first the caseni 6= 0 for all i. We findλ by the

constraint
∑k

i=1 pi = 1, which givesλ = n and thusp̂i =
ni

n
. Finally, the likelihood ratio statistic

is

l~x(H1)− l~x(H0) =

k
∑

i=1

ni ln
ni

nqi
(4.10)

In the case whereni = 0 for somei, the formula is the same if we adopt the convention that, in
Eq.(4.10), the termni ln

ni

nqi
is replaced by0 wheneverni = 0.

We now compute thep-value. It is equal to

P

(

k
∑

i=1

Ni ln
Ni

nqi
>

k
∑

i=1

ni ln
ni

nqi

)

(4.11)

where ~N has the multinomial distributionMn,~q.

For largen, we will see in Section 4.4 a simple approximation for thep-value. Ifn is not large,
there is no known closed form, but we can use Monte Carlo simulation as discussed in Section 6.4.

EXAMPLE 4.5:MENDEL [104]. Mendel crossed peas and classified the results in 4 classes of
peas i = 1, 2, 3, 4. If his genetic theory is true, the probability that a pea belongs to class i is
q1 = 9/16, q2 = q3 = 3/16, q4 = 1/16. In one experiment, Mendel obtained n = 556 peas, with
N1 = 315, N2 = 108, N3 = 102 and N4 = 31. The test is

H0 : “~q = ~p” against H1 : “~p is arbitrary”

The test statistic is
k
∑

i=1

ni ln
ni
nqi

= 0.3092 (4.12)

We find the p-value by Monte-Carlo simulation (Example 6.7) and find p = 0.9191 ± 0.0458. The
p-value is (very) large thus we accept H0.
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QUESTION 4.2.2. Assume we compute thep-value of a test by Monte Carlo simulation with100
replicates and find an estimatedp equal to0. Can we say that thep-value is small so we reject
H0 ? 3

4.3 ANOVA

In this section we cover a family of exact tests when we can assume that the data is normal. It
applies primarily to cases with multiple, unpaired samples.

4.3.1 ANALYSIS OF VARIANCE (ANOVA) AND F -TESTS

Analysis of variance (ANOVA) is used when we can assume that the data is a family of indepen-
dent normal variables, with an arbitrary family of means, but with common variance. The goal is
to test some property of the mean. The name ANOVA is explainedby Theorem 4.3.1.

ANOVA is found under many variants, and the basis is often obscured by complex computations.
All variants of ANOVA are based on a single result, which we give next; they differ only in the
details of the linear operatorsΠM andΠM0 introduced below.

ASSUMPTIONS AND NOTATION FOR ANOVA

• The data is a collection ofindependent, normalrandom variablesXr, here the indexr is in
some finite setR (with |R| = number of elements inR).

• Xr ∼ Nµr ,σ2 , i.e. all variables have thesame variance(this is pompously called “ho-
moscedasticity”). The common variance is fixed but unknown.

• The meansµr satisfy some linear constraints, i.e. we assume that~µ
def
= (µr)r∈R ∈ M , where

M is a linear subspace ofRR. Let k = dimM . The parameter of the model isθ = (~µ, σ)
and the parameter space isΘ = M × (0,+∞)

• We want to test the nested model~µ ∈ M0, whereM0 is a linear sub-space ofM . Let
k0 = dimM0. We haveΘ0 = M0 × (0,+∞).

• ΠM [resp.ΠM0] is the orthogonal projector onM [resp.M0]

EXAMPLE: NON PAIRED DATA .(Continuation of Example 4.1) Consider the data for one parameter
set. The model is

Xi = µ1 + ǫ1,i Yj = µ2 + ǫ2,j (4.13)

with ǫi,j ∼ iid N0,σ2 . We can model the collection of variables as X1, ...,Xm, Y1, ..., Yn thus R =
{1, ...,m + n}. We have then

• M = {(µ1, ...µ1, µ2, ...µ2), µ1 ∈ R, µ2 ∈ R} and k = 2
• M0 = {(µ, ...µ, µ, ...µ), µ ∈ R} and k0 = 1
• ΠM (x1, ..., xm, y1, ..., yn) = (x̄, ..., x̄, ȳ, ..., ȳ), where x̄ = (

∑m
i=1 xi)/m and ȳ = (

∑n
j=1 yj)/n.

• ΠM0(x1, ..., xm, y1, ..., yn) = (z̄, ..., z̄, z̄, ..., z̄), where z̄ = (
∑m

i=1 xi +
∑n

j=1 yj)/(m+ n).

3A confidence interval for thep-value at levelγ is given by Theorem 2.2.4 and is equal to[0, 3.689
R

] whereR is the
number of replicates. We obtain thatp ≤ 0.037 at confidenceγ = 0.95 thus we rejectH0.
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This model is an instance of what is called “one way ANOVA”.

EXAMPLE 4.6:NETWORK MONITORING. A network monitoring experiment tries to detect changes
in user behaviour by measuring the number of servers inside the intranet accessed by users.
Three groups were measured, with 16 measurements in each group. Only the average and stan-
dard deviations of the numbers of accessed servers are available:

Group Mean number of remote servers standard deviation
1 15.0625 3.2346
2 14.9375 3.5491
3 17.3125 3.5349

(here the standard deviation is
√

1
n−1

∑n
i=1(xi − x̄)2). The model is

Xi,j = µi + ǫi,j 1 ≤ ni i = 1, ..., k (4.14)

with ǫi,j ∼ iid N0,σ2 . It is also called one-way ANOVA model (one way because there is one “factor”,
index i). Here i represents the group, and j one measurement for one member of the group. The
collection is Xr = Xi,j so R = {(i, j), i = 1, ..., k = 3 and j = 1, ..., ni} and |R| =∑i ni. We have

• M = {(µi,j), such that µi,j = µi, ∀i, j}; the dimension of M is k = 3.
• M0 = {(µi,j) such that µi,j = µ, ∀i, j} and k0 = 1.

• ΠM (~x) is the vector whose (i, j)th coordinate is independent of j and is equal to x̄i.
def
=

(
∑ni

j=1 xi,j)/ni.
• ΠM0(~x) is the vector whose coordinates are all identical and equal to the overall mean

x̄..
def
= (

∑

i,j xi,j)/ |R|.

THEOREM 4.3.1 (ANOVA). Consider an ANOVA model as defined above. Thep-value of the
likelihood ratio test ofH0:“ ~µ ∈ M0, σ > 0” against H1: “ ~µ ∈ M \ M0, σ > 0” is p∗ =
1 − Fk−k0,|R|−k(f) whereFm,n() is the Fisher distribution with degrees of freedomm,n, ~x is the
dataset and

f =
SS2/(k − k0)

SS1/(|R| − k)
(4.15)

SS2 = ‖µ̂− µ̂0‖2 (4.16)

SS1 = ‖~x− µ̂‖2 (4.17)

µ̂0 = ΠM0(~x) (4.18)

µ̂ = ΠM(~x) (4.19)

(The norm is euclidian, i.e.‖~x‖2 =∑r x
2
r.)

The theorem, the proof of which of which is a direct application of the general ANOVA theorem
C.4.3, can be understood as follows. The maximum likelihoodestimators underH0 andH1 are
obtained by orthogonal projection:

µ̂0 = ΠM0(~x), σ̂
2
0 =

1

|R| ‖~x− µ̂0‖2
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µ̂ = ΠM(~x), σ̂2 =
1

|R| ‖~x− µ̂‖2

The likelihood ratio statistic can be computed explicitly and is equal to− |R|
2
ln SS1

SS0
= |R|

2
ln
(

1 + SS2
SS1

)

,

whereSS0
def
= ‖~x − µ̂0‖2 = |R| σ̂2

0 = SS1 + SS2. UnderH0, the distribution off , given
by Eq.(4.15), is FisherFk−k0,|R|−k, therefore we can compute thep-value exactly. The equality

M 0

M

x

m

m 0

S S 2

S S 1

S S 0

Figure 4.3:Illustration of quantities in Theorem 4.3.1

SS0 = SS1 + SS2 can be interpreted as a decomposition of sum of squares, as follows. Con-
siderΘ0 as the base model, withk0 dimensions for the mean; we ask ourselves whether it is worth
considering the more complex modelΘ, which hask > k0 dimensions for the mean. From its
definition, we can interpret those sums of squares as follows.

• SS2 is the sum of squares explained by the modelΘ, or explained variation.
• SS1 is the residual sum of squares
• SS0 is the total sum of squares

The likelihood ratio test acceptsΘ whenSS2/SS1 is large, i.e., when the percentage of sum of
squaresSS2/SS1 (also called percentage of variation) explained by the model Θ is high.

The dimensions are interpreted as degrees of freedom:SS2 (explained variation) is in the orthog-
onal ofM0 in M , with dimensionk − k0 = and the number of degrees of freedom forSS2 is
k − k0; SS1 (residual variation) is the square of the norm of a vector that is orthogonal toM
and the number of degrees of freedom forSS1 is |R| − k. This explains the name“ANOVA”: the
likelihood ratio statistic depends only on estimators of variance. Note that this is very specific of
homoscedasticity.

EXAMPLE 4.7:APPLICATION TOEXAMPLE 4.1, COMPILER OPTIONS. We assume homoscedasticity.
We will check this hypothesis later by applying the test in Section 4.3.2. The theorem gives the
following computations:

• µ̂ = (X̄, ..., X̄ , Ȳ , ..., Ȳ ) and σ̂ = 1
m+n(

∑

i(Xi − X̄)2 +
∑

j(Yj − Ȳ )2)

• µ̂0 = (Z̄, ..., Z̄, Z̄, ..., Z̄) with Z̄ = (mX̄+nȲ )/(m+n) and σ̂0 = 1
m+n(

∑

i(Xi− Z̄)2+
∑

j(Yj−
Z̄)2)
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Parameter Set 1 SS df MS F Prob>F
Columns 13.2120 1 13.2120 13.4705 0.0003116
Errors 194.2003 198 0.9808
total 207.4123 199

Parameter Set 2 SS df MS F Prob>F
Columns 5.5975 1 5.5975 4.8813 0.0283
Errors 227.0525 198 1.1467
total 232.6500 199

Parameter Set 3 SS df MS F Prob>F
Columns 0.1892 1 0.1892 0.1835 0.6689
Errors 204.2256 198 1.0314
total 204.4148 199

Table 4.1:ANOVA Tests for Example 4.1 (Non Paired Data)

• SS1 =
∑

i(Xi − X̄)2 +
∑

j(Yj − Ȳ )2) = SXX + SY Y

• SS2 = m(Z̄ − X̄)2 + n(Z̄ − Ȳ )2 = (X̄ − Ȳ )2/(1/m + 1/n)
• the f value is SS2

SS1/(m+n−2) .

The ANOVA tables for parameter sets 1 to 3 are given in Table 4.1. The F-test rejects the hypoth-
esis of same mean for parameter sets 1 and 2, and accepts it for parameter set 3. The software
used to produce this example uses the following terminology:

• SS2: “Columns” (explained variation, variation between columns, or between groups)
• SS1: “Error” (residual variation, unexplained variation)
• SS0: “Total” (total variation)

QUESTION 4.3.1. Compare to the confidence intervals given in the introduction. 4

QUESTION 4.3.2. What are SS0, SS1 and SS2 for parameter set 1 ?5

EXAMPLE: NETWORK MONITORING.The numerical solution of Example 4.6 is shown in the table
below. Thus we accept H0, namely, the three measured groups are similar, though the evidence
is not strong.

Source SS df MS F Prob>F
Columns 57.1667 2 28.5833 2.4118 0.1012

Errors 533.3140 45 11.8514
Total 590.4807 47

QUESTION 4.3.3. Write down the expressions of MLEs,SS1, SS2 and theF -value.6

4For parameter set 1, the conclusion is the same as with confidence interval. For parameter sets 2 and 3, confidence
intervals did not allow one to conclude. ANOVA disambiguates these two cases.

5The column “SS” gives, from top to bottom: SS2, SS1 and SS0.
6



112 CHAPTER 4. TESTS

STUDENT TEST AS SPECIAL CASE OF ANOVA. In the special case wherek − k0 = 1 (as
in Example 4.1) theF -statistic is the square of a student statistic, and a student test could be used
instead. This is used by some statistics packages.

TESTING FOR SPECIFIC VALUES By an additive change of variable, we can extend the ANOVA
framework to the case whereM0 ⊂ M are affine (instead of linear) varieties ofR

R. This includes
testing for a specific value. For example, assume we have the model

Xi,j = µi + ǫi,j (4.20)

with ǫi,j ∼ iid N0,σ2 . We want to test

H0: “µi = µ0 for all i” againstH1: “µi unconstrained”

We change model by lettingX ′
i,j = Xi,j − µ0 and we are back to the ANOVA framework.

4.3.2 TESTING FOR A COMMON VARIANCE

We often need to verify that the common variance assumption holds. Here too, a likelihood ratio
test gives the answer. In the general case, thep-value of the test cannot be computed in closed
form, so we use either Monte Carlo simulation or an asymptotic approximation. When the number
of groups is 2, there is a closed form using the Fisher distribution.

We are given a data set withI groupsxi,j , i = 1, ..., I, j = 1, ..., ni; the total number of samples
is n =

∑I
j=1 nj. We assume that it is a realization of the modelXi,j ∼ iid Nµi,σ2

i
. We assume that

the normal assumption holds and want to test

H0: σi = σ > 0 for all i againstH1: σi > 0

• µ̂ is the vector whose(i, j)th coordinate is independent ofj and is equal toX̄i.
def
=
∑ni

j=1Xi,j/ni.
• SS1 =

∑

i,j(Xi,j − X̄i.)
2

• σ̂2 = 1
|R|SS1

• µ̂0 is the vector whose coordinates are all identical and equal to the overall mean̄X..
def
= (

∑

i,j Xi,j)/ |R|
• SS2 =

∑

i ni(X̄i. − X̄..)
2

• SS0 = SS1 + SS2
• σ̂2

0 = 1
|R|SS0

• F = SS2(|R| − k)/ [SS1(k − 1)]
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THEOREM 4.3.2 (Testing for Common Variance).The likelihood ratio statisticℓ of the test of
common variance under the hypothesis above is given by

2ℓ = n ln(s2)−
I
∑

i=1

ni ln(s
2
i ) (4.21)

with µ̂i
def
=

1

ni

I
∑

j=1

xi,j , s
2
i

def
=

1

ni

I
∑

j=1

(xi,j − µ̂i)
2,

s2
def
=

1

n

I
∑

i=1

ni
∑

j=1

(xi,j − µ̂i)
2 =

I
∑

i=1

ni

n
s2i

The test rejectsH0 whenℓ is large. Thep-value is

p = P

(

n log
I
∑

i=1

Zi −
I
∑

i=1

ni logZi > 2ℓ+ n logn−
I
∑

i=1

ni logni

)

(4.22)

whereZi are independent random variables,Zi ∼ χ2
ni−1 andZ =

∑I
i=1

ni

n
Zi. Thep-value can be

computed by Monte Carlo simulation. Whenn is large:

p ≈ 1− χ2
I−1(2ℓ) (4.23)

In the special caseI = 2, we can replace the statisticℓ by

f
def
=

σ̂2
1

σ̂2
2

with σ̂2
i

def
=

1

ni − 1

I
∑

j=1

(xi,j − µ̂i)
2

and the distribution off underH0 is FisherFn1−1,n2−1. The test at sizeα rejectsH0 whenf < η
or f > ξ with Fn1−1,n2−1(η) = α/2, Fn1−1,n2−1(ξ) = 1− α/2. Thep-value is

p = Fn1−1,n2−1(min(f, 1/f))− Fn1−1,n2−1(max(f, 1/f)) + 1 (4.24)

EXAMPLE: NETWORK MONITORING AGAIN . We want to test whether the data in groups 1 and 2
in Example 4.6 have the same variance. We have η = 0.3494, ξ = 2.862; the F statistic is 0.8306
so we accept H0, i.e. that the variance is the same. Alternatively, we can use Eq.(4.24) and find
p = 0.7239 , which is large so we accept H0.

Of course, we are more interested in comparing the 3 groups together. We apply Eq.(4.21) and
find as likelihood ratio statistic ℓ = 0.0862. The asymptotic approximation gives p ≈ 0.9174, but
since the number of samples n is not large we do not trust it. We evaluate Eq.(4.22) by Monte
Carlo simulation; with R = 104 replicates we find a confidence interval for the estimated p-value of
[0.9247; 0.9347]. We conclude that the p-value is very large so we accept that the variance is the
same.
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4.4 ASYMPTOTIC RESULTS

In many cases it is hard to find the exact distribution of a teststatistic. An interesting feature of
likelihood ratio tests is that we have a simple asymptotic result. We used this result already in the
test for equal variance in Section 4.3.2.

4.4.1 LIKELIHOOD RATIO STATISTIC

The following theorem derives immediately from Theorem B.3.1.

THEOREM 4.4.1. [32] Consider a likelihood ratio test (Section 4.2) withΘ = Θ1 × Θ2, where
Θ1,Θ2 are open subsets ofRq1,Rq2 and denoteθ = (θ1, θ2). Consider the likelihood ratio test of
H0 : θ2 = 0 againstH1 : θ2 6= 0. Assume that the conditions in Definition B.2.1 hold. Then,
approximately, for large sample sizes, underH0, 2lrs ∼ χ2

q2
, wherelrs is the likelihood ratio

statistic.
It follows that thep-value of the likelihood ratio test can be approximated for large sample sizes
by

p∗ ≈ 1− χ2
q2
(2lrs) (4.25)

whereq2 is the number of degrees of freedom thatH1 adds toH0.

EXAMPLE: APPLICATION TO EXAMPLE 4.1 (COMPILER OPTIONS). Using Theorem 4.3.1 and Theo-
rem 4.4.1 we find that

2lrs
def
= N ln

(

1 +
SS2

SS1

)

∼ χ2
1

The corresponding p-values are:

Parameter Set 1 pchi2 = 0.0002854
Parameter Set 1 pchi2 = 0.02731
Parameter Set 1 pchi2 = 0.6669

They are all very close to the exact values (given by ANOVA in Table 4.1).

4.4.2 PEARSON CHI -SQUARED STATISTIC AND GOODNESS OF FIT

We can apply the large sample asymptotic to goodness of fit tests as defined in Section 4.2.3.
This gives a simpler way to compute thep-value, and allows to extend the test to thecomposite
goodness of fit test, defined as follows.

COMPOSITE GOODNESS OF FIT Similar to Section 4.2.3, assume we are givenn data points
x1, ..., xn, generated from an iid sequence, and we want to verify whether their common distribu-
tion comes from a given family of distributionsF (|θ) where the parameterθ is in some setΘ0.
We say that the test is composite because the null hypothesishas several possible values ofθ. We
compare the empirical histograms: we partition the set of values of ~X into bins Bi, i = 1...I. Let
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Ni =
∑n

k=1 1{Bi}(Xk) (number of observation that fall in binBi) andqi = Pθ{X1 ∈ Bi}. If the
data comes from a distributionF (|θ) the distribution ofNi is multinomialMn,~q(θ). The likelihood
ratio statistic test is

H0: Ni comes from a multinomial distributionMn,~q(θ), with θ ∈ Θ0

against

H1: Ni comes from a multinomial distributionMn,~p for some arbitrary~p.

We now compute the likelihood ratio statistic. The maximum likelihood estimator of the parameter
underH1 is the same as in Section 4.2.3. Letθ̂ be the maximum likelihood estimator ofθ under
H0. The likelihood ratio statistic is thus

lrs =

k
∑

i=1

ni ln
ni

nqi(θ̂)
(4.26)

Thep-value is

sup
θ∈Θ0

P

(

k
∑

i=1

Ni ln
Ni

nqi
>

k
∑

i=1

ni ln
ni

nqi(θ̂)

)

(4.27)

where ~N has the multinomial distributionMn,~q(θ̂). It can be computed by Monte Carlo simulation
as in the case of a simple test, but this may be difficult because of the supremum.

An alternative for largen is to use the asymptotic result in Theorem 4.4.1. It says that, for large
n, underH0, the distribution of2lrs is approximatelyχ2

q2
, with q2 = the number of degrees of

freedom thatH1 adds toH0. HereH0 hask0 degrees of freedom (wherek0 is the dimension ofΘ0)
andH1 hasI − 1 degrees of freedom (whereI is the number of bins). Thus thep-value of the test
is approximately

1− χ2
I−k0−1(2lrs) (4.28)

EXAMPLE: IMPACT OF ESTIMATION OF(µ, σ). We want to test whether the data set on the right of
Figure 4.4 has a normal distribution. We use a histogram with 10 bins. We need first to estimate
θ̂ = (µ̂, σ̂).

1. Assume we do this by fitting a line to the qqplot. We obtain µ̂ = −0.2652, σ̂ = 0.8709. The
values of nqi(θ̂) and ni are:

7.9297 7.0000
11.4034 9.0000
18.0564 17.0000
21.4172 21.0000
19.0305 14.0000
12.6672 17.0000
6.3156 6.0000
2.3583 4.0000
0.6594 3.0000
0.1624 2.0000

The likelihood ratio statistic as in Eq.(4.26) is lrs = 7.6352. The p-value is obtained using a χ2
7

distribution (q2 = 10− 2− 1): p1 = 0.0327, thus we would reject normality at size 0.05.
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2. It might not be good to simply fit (µ, σ) on the qqplot. A better way is to use estimation theory,
which suggests to find (µ, σ) that maximizes the log likelihood of the model. This is equivalent
to minimizing the likelihood ratio statistic lH1(~x) − lµ,σ(~x) (note that the value of lH1(~x) is easy to
compute). We do this with a numerical optimization procedure and find now µ̂ = −0.0725, σ̂ =

1.0269. The corresponding values of nqi(θ̂) and ni are now:

8.3309 7.0000
9.5028 9.0000

14.4317 17.0000
17.7801 21.0000
17.7709 14.0000
14.4093 17.0000
9.4783 6.0000
5.0577 4.0000
2.1892 3.0000
1.0491 2.0000

Note how the true value of µ̂, σ̂ provides a better fit to the tail of the histogram. The likelihood ratio
statistic is now lrs = 2.5973, which also shows a much better fit. The p-value, obtained using a χ2

7

distribution is now p1 = 0.6362, thus we accept that the data is normal.

3. Assume we would ignore that (µ, σ) is estimated from the data, but would do as if the test were
a simple goodness of fit test, with H0 : “The distribution is N−0.0725,1.0269” instead of H0 : “The
distribution is normal”. We would compute the p-value using a χ2

9 distribution (q2 = 10 − 1) and
would obtain: p2 = 0.8170, a value larger than the true p-value. This is quite general: if we estimate
some parameter and pretend it is a priori known, then we overestimate the p-value.

PEARSON CHI -SQUARED STATISTIC . In the case wheren is large,2× the likelihood ratio
statistic can be replaced by thePearson chi-squared statistic, which has the same asymptotic
distribution. It is defined by

pcs =

I
∑

i=1

(ni − nqi(θ̂))
2

nqi(θ̂)
(4.29)

Indeed, whenn is large we expect, underH0 thatni−nqi(θ̂) is relatively small, i.e.ǫi =
ni

nqi(θ̂)
−1

is small. An approximation of2lrs is found from the second order development aroundǫ = 0:
ln(1 + ǫ) = ǫ− 1

2
ǫ2 + o(ǫ2) and thus

lrs =
∑

i

ni
ni

nqi(θ̂)
n
∑

i

(1 + ǫi)qi(θ̂) ln(1 + ǫi)

= n
∑

i

(

ǫi −
1

2
ǫ2i + o(ǫ2i )(1 + ǫi)qi(θ̂)

)

= n
∑

i

qi(θ̂)ǫi

(

1− 1

2
ǫi + o(ǫi)(1 + ǫi)

)

= n
∑

i

qi(θ̂)ǫi

(

1 +
1

2
ǫi + o(ǫi)

)

= n
∑

i

qi(θ̂)ǫi + n
∑

i

qi(θ̂)
1

2
ǫ2i + n

∑

i

o(ǫ2i )



4.4. ASYMPTOTIC RESULTS 117

Note that
∑

i qi(θ̂)ǫi = 0 thus

lrs ≈ 1

2
pcs (4.30)

The Pearson Chi-squared statistic was historically developed before the theory of likelihood ratio
tests, which explains why it is commonly used.

In summary, for largen, the composite goodness of fit test is solved by computing either2lrs or
pcs. Thep-value is1−χ2

n−k0−1(2lrs) or 1−χ2
I−k0−1(pcs). If either is small, we rejectH0, i.e. we

reject that the distribution ofXi comes from the family of distributionsF (|θ).

SIMPLE GOODNESS OF FIT TEST. This is a special case of the composite test. In this case
q2 = I − 1 and thus thep-value of the test (given in Eq.(4.11) can be approximated for largen by
1 − χ2

I−1(2lrs) or χ2
I−1(pcs). Also, the likelihood ratio statistic

∑k
i=1 ni ln

ni

nqi
can be replaced by

the Pearson-Chi-Squared statistic, equal to

I
∑

i=1

(ni − nqi)
2

nqi
(4.31)

EXAMPLE: MENDEL’ S PEAS, CONTINUATION OF EXAMPLE 4.5. The likelihood ratio statistic is lrs =
0.3092 and we found by Monte Carlo a p-value p∗ = 0.9191 ± 0.0458. By the asymptotic result, we
can approximate the p-value by χ2

3(2lrs) = 0.8922.

The Pearson Chi-squared statistic is pcs = 0.6043, very close to 2lrs = 0.618. The corresponding
p-value is 0.8954.

4.4.3 TEST OF I NDEPENDENCE

The same ideas as in Section 4.4.2 can be applied to atest of independence. We are given a
sequence(xk, yk), which we interpret as a sample of the sequence(Xk, Yk), k = 1, ..., n. The se-
quence is iid ((Xk, Yk) is independent of(Xk, Yk′) and has the same distribution). We are interested
in knowing whetherXk is independent ofYk.

To this end, we compute an empirical histogram of(X, Y ), as follows. We partition the set of
values ofX [resp. Y ] into I [resp. J ] binsBi [resp.Cj]. Let Ni,j =

∑n
k=1 1{Bi}(Xk)1{Cj}(Yk)

(number of observation that fall in bin(Bi, Cj)) and pi,j = P{X1 ∈ Bi and Y1 ∈ Cj}. The
distribution ofN is multinomial. The test of independence is

H0: “pi,j = qirj for someq andr such that
∑

i qi =
∑

j rj = 1”

against

H1: “pi,j is arbitrary”

The maximum likelihood estimator underH0 is p̂0i,j =
ni.

n

n.j

n
whereni,j =

∑n
k=1 1{Bi}(xk)1{Cj}(yk)

and
{

ni. =
∑

j ni,j

n.j =
∑

i ni,j
(4.32)
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The maximum likelihood estimator underH1 is p̂1i,j =
ni,j

n
. The likelihood ratio statistic is thus

lrs =
∑

i,j

ni,j ln
nni,j

ni.n.j

(4.33)

To compute thep-value, we use, for largen, aχ2
q2

distribution. The numbers of degrees of freedom
underH1 is IJ − 1, underH0 it is (I − 1) + (J − 1), thusq2 = (IJ − 1)− (I − 1)− (J − 1) =
(I − 1)(J − 1). Thep-value is thus

p∗ =
(

1− χ2
(I−1)(J−1)

)

(2lrs) (4.34)

As in Section 4.4.2,2lrs can be replaced, for largen, by the Pearson Chi-squared statistic:

pcs =
∑

i,j

(

ni,j − ni.n.j

n

)2

ni.n.j

n

(4.35)

EXAMPLE 4.8:BRASSICA OLERACEA GEMMIFERA. A survey was conducted at the campus cafe-
teria, where customers were asked whether they like Brussels sprouts. The answers are:

i\j Male Female Total
Likes 454 44.69% 251 48.08% 705 45.84%

Dislikes 295 29.04% 123 23.56% 418 27.18%
No Answer / Neutral 267 26.28% 148 28.35% 415 26.98%

Total 1016 100% 522 100% 1538 100 %

We would like to test whether affinity to Brussels sprouts is independent of customer’s gender.
Here we have I = 3 and J = 2, so we use a χ2 distribution with q2 = 2 degrees of freedom. The
likelihood ratio statistic and the p-value are

lrs = 2.6489, p = 0.0707 (4.36)

so we accept H0, i.e. affinity to Brussels sprouts is independent of gender. Note that the Pearson
Chi-squared statistic is

pcs = 5.2178 (4.37)

which is very close to 2lrs.

4.5 OTHER TESTS

4.5.1 GOODNESS OFFIT TESTS BASED ONAD-HOC PIVOTS

In addition to the Pearsonχ2 test, the following two tests are often used. They apply to a continuous
distribution, thus do not require quantizing the observations. AssumeXi, i = 1, .., n are iid
samples. We want to testH0: the distribution ofXi isF against nonH0.

Define the empirical distribution̂F by

F̂ (x)
def
=

1

n

n
∑

i=1

1{Xi≤x} (4.38)
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Kolmogorov-Smirnov The pivot is

T = sup
x

|F̂ (x)− F (x)|

That the distribution of this random variable is independent of F is not entirely obvious, but can
be derived easily in the case whereF is continuous and strictly increasing, as follows. The ideais
to change the scale on thex-axis byu = F (x). Formally, define

Ui = F (Xi)

so thatUi ∼ U(0, 1). Also

F̂ (x) =
1

n

∑

i

1{Xi≤x} =
1

n

∑

i

1{Ui≤F (x)} = Ĝ(F (x))

whereĜ is the empirical distribution of the sampleUi, i = 1, ..., n. By the change of variable
u = F (x), it comes

T = sup
u∈[0,1]

|Ĝ(u)− u|

which shows that the distribution ofT is independent ofF . Its distribution is tabulated in statistical
software packages. For a largen, its tail can be approximated byτ ≈

√

−(lnα)/2 whereP(T >
τ) = α.

Anderson-Darling Here the pivot is

A = n

∫

R

(

F̂ (x)− F (x)
)2

F (x)(1− F (x))
dF (x)

The test is similar to K-S but is less sensitive to outliers.

QUESTION 4.5.1. Show thatA is indeed a pivot.7

EXAMPLE 4.9:FILE TRANSFERDATA . We would like to test whether the data in Figure 4.4 and its
log are normal. We cannot directly apply Kolmogorov Smirnov since we do not know exactly in
advance the parameters of the normal distribution to be tested against. An approximate method
is to estimate the slope and intercept of the straight line in the qqplot. We obtain

Original Data
slope = 0.8155
intercept = 1.0421

Transformed Data
slope = 0.8709
intercept = -0.2652

For example, this means that for the original data we take for H0: “the distribution is N(µ =
1.0421, σ2 = 0.81552)”. We can now use the Kolmogorov-Smirnov test and obtain

7Use the fact that̂F (x) = Ĝ(F (x)) and do the change of variableu = F (x) in the integral.
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Figure 4.4:Normal qqplots of file transfer data and its logarithm.

Original Data
h = 1 p = 0.0493

Transformed Data
h = 0 p = 0.2415

Thus the test rejects the normality assumption for the original data and accepts it for the trans-
formed data.

This way of doing is approximate in that we used estimated parameters for H0. This introduces
some bias, similar to using the normal statistic instead of student when we have a normal sample.
The bias should be small when the data sample is large, which is the case here.

A fix to this problem is to use a variant of KS, for example the Lilliefors test, or to use different
normality tests such as Jarque Bera (see Example 4.10) or Shapiro-Wilk. The Lilliefors test is a
heuristic that corrects the p-value of the KS to account for the uncertainty due to estimation. In
this specific example, with the Lilliefors test we obtain the same results.

JARQUE-BERA . TheJarque-Bera statistic is used to test whether an iid sample comes from a
normal distribution. It uses the skewness and kurtosis indicesγ1 andγ2 defined in Section 3.4.2.

The test statistic is equal ton
6

(

γ̂2
1 +

γ̂2
2

4

)

, the distribution of which is asymptoticallyχ2
2 for large

sample sizen. In the formula,̂γ1 andγ̂2 are the sample indices of skewness and kurtosis, obtained
by replacing expectations by sample averages in Eq.(3.13).

EXAMPLE 4.10:APPLICATION TO EXAMPLE 4.9. We would like to test whether the data in Exam-
ple 4.9 and its transform are normal.

Original Data h = 1 p = 0.0010
Transformed Data h = 0 p = 0.1913

The conclusions are the same as in Example 4.9, but for the original data the normality assumption
is clearly rejected, whereas it was borderline in Example 4.9.
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4.5.2 ROBUST TESTS

We give two examples of test that make no assumption on the distribution of the sample (but
assume it is iid). They arenon parametric in the sense that they do not assume a parameterized
family of densities.

M EDIAN TEST The model isXi ∼ iid with some distributionF () with a density. We want to
test

H0: “the median ofF is 0” againstH1: “unspecified”

A simple test is based on confidence interval, as mentioned inSection 4.1.4. LetI(~x) be a confi-
dence interval for the median (Theorem 2.2.1). We rejectH0 if

0 6∈ I(~x) (4.39)

This test is robust in the sense that it makes no assumption other than independence.

W ILCOXON SIGNED RANK TEST. It is used for testing equality of distribution in paired ex-
periments. It tests

H0: X1, ...Xn is iid with a common symmetric, continuous distribution, the median of
which is 0

against

H1: X1, ...Xn is iid with a common symmetric, continuous distribution

TheWilcoxon Signed Rank Statistic is

W =

n
∑

j=1

rank(|Xj|)sign(Xj)

where rank(|Xj|) is the rank in increasing order (the smallest value has rank 1) and sign(Xj) is
−1 for negative data,+1 for positive, and0 for null data. If the median is positive, then many
values with high rank will be positive andW will tend to be positive and large. We reject the null
hypothesis when|W | is large.

It can be shown that the distribution ofW underH0 is always the same. It is tabulated and con-
tained in software packages. For non small data samples, it can easily be approximated by a normal
distribution. The mean and variance under can easily be computed:

EH0(W ) =
n
∑

j=1

EH0(rank(|Xj |)EH0(sign(Xj))

since underH0 rank(|Xj|) is independent of sign(Xj). ThusEH0(W ) = 0. The variance is

EH0(W
2) =

n
∑

j=1

EH0(rank(|Xj|)2sign(Xj)
2) =

n
∑

j=1

EH0(rank(|Xj|)2)
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since sign(Xj)
2 = 1. Now

∑

j rank(|Xj|)2 =
∑

j j
2 is non random thus

varH0(W ) =

n
∑

j=1

EH0(rank(|Xj|)2) = EH0(
∑

j

rank(|Xj |)2) =
n
∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6

For largen, the test at sizeα rejectsH0 if |W | > η
√

n(n+1)(2n+1)
6

with N0,1(η) = 1 − α
2

(e.g.
η = 1.96 at size0.05). Thep-value is:

p = 2



1−N0,1





|W |
√

n(n+1)(2n+1)
6







 (4.40)

EXAMPLE: PAIRED DATA .This is a variant of Example 4.2. Consider again the reduction in run time
due to a new compiler option, as given in Figure 2.7 on Page 32. We want to test whether the
reduction is significant. We assume the data is iid, but not necessarily normal. The median test
gives a confidence interval

I(~x) = [2.9127; 33.7597]

which does not contain 0 so we reject H0.

Alternatively, let us use the Wilcoxon Signed Rank test. We obtain the p-value

p = 2.3103e − 005

and thus this test also rejects H0.

W ILCOXON RANK SUM TEST AND K RUSKAL -WALLIS . TheWilcoxon Rank Sum Test is
used for testing equality of distribution in paired experiments. It tests

H0: the two samples come from the same continuous distribution

against

H1: the distributions of the two samples are continuous and differ by a location shift

Let X1
i , i = 1...n1 andX2

i , i = 1...n2 be the two iid sequences that the data is assumed to be a
sample of. TheWilcoxon Rank Sum Statistic R is the sum of the ranks of the first sample in the
concatenated sample.

As for the Wilcoxon signed rank test, its distribution underthe null hypothesis depends only on
the sample sizes and can be tabulated or, for a large sample size, approximated by a normal distri-
bution. The mean and variance underH0 are

mn1,n2 =
n1(n1 + n2 + 1)

2
(4.41)

vn1,n2 =
n1n2(n1 + n2 + 1)

12
(4.42)
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We rejectH0 when the rank sum statistic deviates largely from its expectation underH0. For large
n1 andn2, thep-value is

p = 2

(

1−N0,1

( |R−mn1,n2|√
vn1,n2

))

(4.43)

EXAMPLE 4.11:NON PAIRED DATA . The Wilcoxon rank sum test applied to Example 4.1 gives
the following p-values:

Parameter Set 1 p = 0.0002854
Parameter Set 2 p = 0.02731
Parameter Set 3 p = 0.6669

The results are the same as with ANOVA. H0 (same distribution) is accepted for the 3rd data set
only, at size= 0.05.

TheKruskal-Wallis test is a generalization of Wilcoxon Rank Sum to more than 2 non paired data
series. It tests (H0): the samples come from the same distribution against (H1): the distributions
may differ by a location shift.

TURNING POINT TEST

This is a test of iid-ness. It tests

H0: X1, ..., Xn is iid

against

H1: X1, ..., Xn is not iid

We say that the vectorX1, ..., Xn is monotonic at indexi (i ∈ {2, ..., n− 1}) if

Xi−1 ≤ Xi ≤ Xi+1 orXi−1 ≥ Xi ≥ Xi+1

and we say that there is aturning point at i if the vectorX1, ..., Xn is not monotonic ati. Under
H0, the probability of a turning point ati is 2/3 (to see why, list all possible cases for the relative
orderings ofXi−1, Xi, Xi+1).

More precisely, letT be the number of turning points inX1, ..., Xn. It can be shown [18, 105] that,
for largen, T is approximatelyN 2n−4

3
, 16n−29

90
. Thus thep-value is, approximatively for largen:

p = 2



1−N0,1





∣

∣T − 2n−4
3

∣

∣

√

16n−29
90







 (4.44)

4.6 PROOFS
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PROOF OF THEOREM 4.3.2

We make a likelihood ratio test and compute the likelihood ratio statistic. We need first to compute the maximum
likelihood underH1. The log-likelihood of the model is

l~x(~µ, ~σ) = −1

2



ln(2π) +

I
∑

i=1



2ni ln(σi) +

ni
∑

j=1

(~xi,j − µi)
2

σ2
i







 (4.45)

To find the maximum underH1, observe that the terms in the summation do not have cross dependencies, thus we can
maximize each of theI terms separately. The maximum of theith term is forµi = µ̂i andσ2

i = s2i , and thus

l~x(H1) = −1

2

[

ln(2π) +
I
∑

i=1

ni (2 ln(si) + 1)

]

= −1

2

[

ln(2π) + n+ 2
I
∑

i=1

ni ln(si)

]

(4.46)

UnderH0 the likelihood is as in Eq.(4.45) but withσi replaced by the common valueσ. To find the maximum,we use
the ANOVA theorem C.4.3. The maximum is forµi = µ̂i andσ2 = s2 and thus

l~x(H0) = −1

2

[

ln(2π) +

I
∑

i=1

ni

s2i
s2

+ 2n ln(s)

]

= −1

2
[ln(2π) + n+ 2n ln(s)] (4.47)

The test statistic is the likelihood ratio statisticℓ = l~x(H1)− l~x(H0): and thus

2ℓ = n ln(s2)−
I
∑

i=1

ni ln(s
2
i ) (4.48)

The test has the form: rejectH0 whenlrs > K for some constantK. Thep-value can be obtained using Monte-Carlo
simulation. The problem is now to computeP(T > 2ℓ) whereT is a random variable distributed like

n ln(s2)−
I
∑

i=1

ni ln(s
2
i ) (4.49)

and assumingH0 holds. Observe that all we need is to generate the random variabless2i . They are independent,
andZi = nisi is distributed likeσ2χ2

ni−1 (Corollary C.4.1). Note thatT is independent of the specific value of
the unknown but fixed parameterσ, thus we can letσ = 1 in the Monte Carlo simulation, which proves Eq.(4.22).
Alternatively, one can use the large sample asymptotic in Theorem 4.4.1, which gives Eq.(4.23).

WhenI = 2 we can rewrite the likelihood ratio statistic as

ℓ =
1

2
[n ln(n1F + n2)− n1 ln(F )] + C (4.50)

whereC is a constant term (assumingn1 andn2 are fixed) andF =
s21
s22

. The derivative ofℓ with respect toF is

∂ℓ

∂F
=

n1n2(F − 1)

2F (n1F + n2)
(4.51)

thusℓ decreases withF for F < 1 and increases forF > 1. Thus the rejection region, defined as{ℓ > K}, is also of
the form{F < K1 or F > K2}. Now define

f =
σ̂2
1

σ̂2
2

(4.52)

Note thatf = FC′ whereC′ is a constant, so the set{F < K1 or F > K2} is equal to the set{fη or f > ξ} with
η = C′K1 andξ = C′K2. UnderH0, the distribution ofF is Fisher with parameters(n1−1, n2−1) (Theorem C.4.3),
so we have a Fisher test. The boundsη andξ are classically computed by the conditionsFn1−1,n2−1(η) = α/2,
Fn1−1,n2−1(ξ) = 1− α/2.

Last, note that by the properties of the Fisher distribution, the particular choice ofη andξ above is such thatξ = 1/η,
so the rejection region is also defined by{f > ξ or f < 1/ξ}, which is the same as{max(f, 1/f) > ξ}, a form
suitable to define ap-value (Section 4.1.3). Letg = max(f, 1/f) andX ∼ Fm,n, then

p
def
= P (max(X, 1/X) > g) = P (X < 1/g) + P (X > g) = Fn1−1,n2−1(1/g) + 1− Fn1−1,n2−1(g)

which, together with1/g = min(f, 1/f), shows Eq.(4.24).
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4.7 REVIEW

4.7.1 TESTS ARE JUST TESTS

1. The first test to do on any data is a visual exploration. In most cases, this is sufficient.
2. Testing for a0 mean or0 median is the same as computing a confidence interval for the mean

or the median.
3. Tests work only if the underlying assumptions are verified(in particular, practically all tests,

even robust ones, assume the data comes from an iid sample).
4. Some tests work under a larger spectrum of assumptions (for example: even if the data is not

normal). They are called robust tests. They should be preferred whenever possible.
5. Test whether the same variance assumption holds, otherwise, use robust tests or asymptotic

results.
6. If you perform a large number of different tests on the samedata, then the probability of

rejectingH0 is larger than for any single test. So, contrary to non-statistical tests, increasing
the number of tests does not always improve the decision.

4.7.2 REVIEW QUESTIONS

QUESTION 4.7.1. What is the critical region of a test ?8

QUESTION 4.7.2. What is a type 1 error ? A type 2 error ? The size of a test ?9

QUESTION 4.7.3. What is thep-value of a test ?10

QUESTION 4.7.4. What are the hypotheses for ANOVA ?11

QUESTION 4.7.5. How do you compute ap-value by Monte Carlo simulation ?12

QUESTION 4.7.6. A Monte Carlo simulation returnŝp = 0 as estimate of thep-value. Can we
rejectH0? 13

QUESTION 4.7.7. What is a likelihood ratio statistic test in a nest model ? What can we say in
general about itsp-value ?14

8Call ~x the data used for the test. The critical regionC is a set of possible values of~x such that when~x ∈ C we
rejectH0.

9A type 1 error occurs when the test says “do not acceptH0” whereas the truth isH0. A type 2 error occurs when
the test says “acceptH0” whereas the truth isH1. The size of a test issup

θ such that H0 is truePθ(C) ( = the worst
case probability of a type 1 error).

10It applies to tests where the critical region is of the formT (~x) > m whereT (~x) is the test statistic and~x is
the data. Thep-value is the probability thatT ( ~X) > T (~x) where ~X is a hypothetical data set, generated under the
hypothesisH0. We rejectH0 at sizeα if p > α.

11The data is iid, gaussian, with perhaps different means but with same variance.
12GenerateR iid samplesT r from the distribution ofT ( ~X) underH0 and computêp as the fraction of times that

T r > T (~x). We needR large enough (typically order of 10000) and compute a confidence interval forp̂ using
Theorem 2.2.4.

13We need to know the numberR of Monte Carlo replicates. A confidence interval forp is [0; 3.869/R] at level
95%; ifR is order of 100 or more, we can rejectH0 at size0.05.

14The test statistic islrs, the log of the likelihood ratios underH1 andH0, and the test rejectsH0 if lrs is large.
The nested model means that the model is parametric, with some setsΘ0 ⊂ Θ such thatH0 meansθ ∈ Θ0 andH1

meansθ ∈ Θ \Θ0. If the data sample is large, thep-value is obtained by saying that, underH0, 2lrs ∼ χq2 , whereq2
is the number of degrees of freedom thatH1 adds toH0.
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CHAPTER 5

FORECASTING

Forecasting is a risky exercise, and involves many
aspects that are well beyond the scope of this
book. However, it is the engineer’s responsibility
to forecast what can be forecast. For example,
if the demand on a communication line is multi-
plied by 2 every 6 months, it is wise to provision
enough capacity to accommodate this exponen-
tial growth. We present a simple framework to
understandwhat forecasting is. We emphasize
the need to quantify the accuracy of a forecast
with a prediction interval.

Good 

days are 

coming

For thehow, there are many methods (perhaps because an exact forecast is essentially impossible).
We focus on simple, generic methods that were found to work well in a large variety of cases. A
first method is linear regression; it is very simple to use (with a computer) and of quite general
application. It gives forecasts that are good as long as the data does not vary too wildly.

Better predictions may be obtained by a combination of differencing, de-seasonalizing filters and
linear time series models (ARMA and ARIMA processes - this isalso called the Box-Jenkins
method). We discuss how to avoid model overfitting. We show that accounting for growth and
seasonal effects is very simple and may be very effective. Wealso study five sparse ARMA and
ARIMA models, known under other names such as EWMA and Holt Winters; they are
numerically very simple and have no overfitting problem. Thenecessary background on digital
filters can be found in Appendix D.
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5.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 129

5.3 The Overfitting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

5.3.1 Use of Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Information Criterion . . . . . . . . . . . . . . . . . . . . . . . . . .. . 133

5.4 Differencing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 136

5.4.1 Differencing and De-seasonalizing Filters . . . . . . . .. . . . . . . . . 136

5.4.2 Computing Point Prediction . . . . . . . . . . . . . . . . . . . . . .. . 137

5.4.3 Computing Prediction Intervals . . . . . . . . . . . . . . . . . .. . . . 139

5.5 Fitting Differenced Data to an ARMA Model . . . . . . . . . . . . . . . . . . 140

5.5.1 Stationary but non IID Differenced Data . . . . . . . . . . . .. . . . . . 140

5.5.2 ARMA and ARIMA Processes . . . . . . . . . . . . . . . . . . . . . . . 141
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5.5.4 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6 Sparse ARMA and ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . 150

5.6.1 Constrained ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6.2 Holt-Winters Models . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

5.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.8 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158

5.1 WHAT IS FORECASTING ?

A classical forecasting example is capacity planning, where a communication or data center man-
ager needs to decide when to buy additional capacity. Other examples concern optimal use of
resources: if a data center is able to predict that some customers send less traffic at nights, this may
be used to save power or to resell some capacity to customers in other time zones.

As in any performance related activity, it is important to follow a clean methodology, in particular,
define appropriate metrics relevant to the problem area, define measurement methods, and gather
time series of data. The techniques seen in this chapter start from this point, i.e. we assume that
we have gathered some past measurement data, and would like to establish a forecast.

Informally, one can say that a forecast consists in extracting all information about the future that
is already present in the past. Mathematically, this can be done as follows. To avoid complex
mathematical constructions, we assume time is discrete. Weare interested in some quantityY (t),
wheret = 1, 2, ... We assume that there issomerandomness inY (t), so it is modeled as a stochastic
process. Assume that we have observedY1, ..., Yt and would like to say something aboutYt+ℓ for
someℓ > 0.

Forecasting can be viewed as computing the conditional distribution ofYt+ℓ, givenY1, ..., Yt.

In particular, thepoint prediction or predicted value is

Ŷt(ℓ) = E(Yt+ℓ|Y1 = y1, ..., Yt = yt)
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and aprediction interval at level1− α is an interval[A,B] such that

P (A ≤ Yt+ℓ ≤ B|Y1 = y1, ..., Yt = yt) = 1− α

The forecasting problem thus becomes (1) to find and fit a good model and (2) to compute condi-
tional distributions.

5.2 LINEAR REGRESSION

A simple and frequently used method is linear regression. Itgives simple forecasting formulas,
which are often sufficient. Linear regression models are defined in Chapter 3. In the context of
forecasting, a linear regression model takes the form

Yt =

p
∑

j=1

βjfj(t) + ǫt (5.1)

wherefj(t) are known, non random functions andǫt is iid N0,σ2 . Recall that the model is linear
with respect to~β, whereas the functionsfj need not be linear with respect tot.

EXAMPLE 5.1:INTERNET TRAFFIC. Figure 5.1 shows a prediction of the total amount of traffic on
a coast to coast link of an American internet service provider. The traffic is periodic with period
16 (one time unit is 90 mn), therefore we fit a simple sine function, i.e. we use a linear regression
model with p = 3, f0(t) = 1, f2(t) = cos(π8 t) and f3(t) = sin(π8 t). Using techniques in Section 3.2
we fit the parameters to the past data and obtain:

Yt =

3
∑

j=1

βjfj(t) + ǫt

= 238.2475 − 87.1876 cos(
π

8
t)− 4.2961 sin(

π

8
t) + ǫt

with ǫt ∼ iid N0,σ2 and σ = 38.2667. A point prediction is:

Ŷt(ℓ) =

3
∑

j=1

βjfj(t+ ℓ) = 238.2475 − 87.1876 cos(
π

8
(t+ ℓ))− 4.2961 sin(

π

8
(t+ ℓ)) (5.2)

and a 95%-prediction interval can be approximated by Ŷt(ℓ)± 1.96σ.

The computations in Example 5.1 are based on the following theorem and the formula after it; they
result from the general theory of linear regression in Chapter 3 [32, Section 8.3]:
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Figure 5.1:Internet traffic on a coast-to-coast link of an American internet service provider. One data point
every 90 mn; y-axis is amount of traffic in Mb/s, averaged over 90 mn. Left: data for t = 1 to 224 and a sine
function fitted to the data; right: zoom on the time interval from 205 to 250, showing the point prediction for
the interval 225 to 250, the prediction interval and the true value (circles), not known when the prediction
was done.

THEOREM 5.2.1. Consider a linear regression model as in Eq.(5.1) withp degrees of freedom for
~β. Assume that we have observed the data atn time pointst1, ..., tn, and that we fit the model to
thesen observations using Theorem 3.2.1. Assume that the model is regular, i.e. the matrixX
defined byXi,j = fj(ti), i = 1, ..., n, j = 1, ..., p has full rank. Letβ̂j be the estimator ofβj and
s2 the estimator of the variance, as in Theorem 3.2.1.

1. The point prediction at timetn + ℓ is Ŷtn(ℓ) =
∑p

j=1 β̂jfj(tn + ℓ)
2. An exact prediction interval at level1− α is

Ŷtn(ℓ)± ξ
√

1 + g s (5.3)

with

g =

p
∑

j=1

p
∑

k=1

fj(tn + ℓ)Gj,kfk(tn + ℓ)

whereG = (XTX)−1 andξ is the(1 − α
2
) quantile of the student distribution withn − p

degrees of freedom, or, for largen, of the standard normal distribution.
3. An approximate prediction interval that ignores estimation uncertainty is

Ŷtn(ℓ)± ηs (5.4)

whereη is the1− α quantile of the standard normal distribution.

We now explain the difference between the last two items in the theorem. Item 2 gives an exact re-
sult for a prediction interval. It captures two effects: (1)theestimation error, i.e. the uncertainty
about the model parameters due to the estimation procedure (termg in

√
1 + g) and (2) themodel

forecast uncertainty, due to the model being a random process. In practice, we often expect the
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estimation error to be much smaller than the model forecast uncertainty, i.e.g is much smaller than
1. This occurs in the rule when the numbern of points used for the estimation is large, so we can
also replace student by standard normal. This explains Eq.(5.4).

Figure 5.2 shows the prediction intervals computed by Eq.(5.3) and Eq.(5.4) (they are indistin-
guishable). By Theorem 3.2.1, one can also see that that a confidence interval for the point predic-
tion is given by±ξ

√
g s (versus±ξ

√
1 + g s for the prediction interval). The figure shows that

the confidence interval for the point prediction is small butnot negligible. However, its effect on
the prediction intervalis negligible. See also Figure 5.4 for what may happen when the problem is
ill posed.

In the simple case where the data is assumed to be iid, we can see from Theorem 2.4.2 thatg
decreases like1

n
, so in this case the approximation in Eq.(5.4) is always valid for largen.
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Figure 5.2: Left: Same example as Figure 5.1, showing the prediction interval computed by Theo-
rem 5.2.1(dot-dashed lines) and the confidence interval for the point prediction (plain lines around center
values). The predictions intervals computed by Eq.(5.3) and Eq.(5.4) are indistinguishable. Right: same
except only the last 24 points of the past data are used to fitting the model (instead of 224). The confidence
interval for the point prediction is slightly larger than in the left panel; the exact prediction interval computed
from Theorem 5.2.1 is only slightly larger than the approximate one computed from Eq.(5.4).

VERIFICATION We cannot verify a prediction until the future comes. However, one can verify
how well the model fits by screening the residuals, as explained in Theorem 3.2.1. The standard-
ized residuals should look grossly normal, not showing large trends nor correlations. Figure 5.3
displays the standardized residuals for the model in Example 5.1. While the residuals fit well with
the normal assumption, they do appear to have some correlation and some periodic behaviour.
Models that are able to better capture these effects are discussed in Section 5.5.

5.3 THE OVERFITTING PROBLEM

Perhaps contrary to intuition, a parametric model should not have too many parameters. To see
why, consider the model in Figure 5.1. Instead of a simple sine function, we now fit a more
general model, where we add a polynomial component and a moregeneral periodic function (with
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Figure 5.3:Residuals for the model fitted in Figure 5.1.

harmonics), with the hope of improving the fit, thus the prediction. The new model has the form

Yt =
d
∑

i=0

ait
i +

h
∑

j=1

(

bj cos
jπt

8
+ cj sin

jπt

8

)

(5.5)

Figure 5.4 shows the resulting fit for a polynomial of degreed = 10 and withh−1 = 2 harmonics.
The fit is better (σ = 25.4375 instead of38.2667), however, the prediction power is ridiculous. This
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Figure 5.4:More parameters is not always better. Same as Figure 5.1, but with a more general model.
Right panel: prediction intervals computed with the simple formula (5.4) (dot-dashed lines) do not coincide
with the exact prediction intervals (plain lines). The line with small circles is the exact values.

is theoverfitting problem. At the extreme, a model with absolute best fit has0 residual error – but
it is no longer an explanatory model.
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There are two classical solutions to avoid overfitting: testdata and information criterion.

5.3.1 USE OF TEST DATA

The idea is to reserve a small fraction of the data set to test the model prediction. Consider for
example Figure 5.5. We fitted the model in Eq.(5.5) withh − 1 = 2 harmonics and a polynomial
of degreed = 0 to 10. The prediction error is defined here as the mean square error between the
true values of the data at t=225 to 250 and the point predictions given by Theorem 5.2.1. The
estimation error is the estimators of σ. The smallest prediction error is ford = 4. The fitting
error decreases withd, whereas the prediction error is minimal ford = 4. This method is quite
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Figure 5.5:Model in Eq.(5.5) with h− 1 = 2 harmonics and a polynomial of degree d = 0 to 10. Top Panel:
Use of test data: estimation and prediction errors. Bottom panel: information criteria. The test data finds
that the best model is for d = 4, but the information criteria find that the best model is for d = 10, which is
an aberrant model. Information criteria should be used only for models that match the type of data.

general but has the drawback to “burn” some of the data, as thetest data cannot be used for fitting
the model.

5.3.2 INFORMATION CRITERION

An alternative is to use aninformation criterion, which strikes a balance between model accuracy
and number of parameters.Akaike’s Information Criterion (AIC) is defined for any parametric
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model by
AIC = −2l(θ̂) + 2k (5.6)

wherek is the dimension of the parameterθ andl(θ̂) is the estimated log-likelihood. It can be in-
terpreted in an information theoretic sense as follows [105, Section 7.3]. Consider an independent
replicationXt of the sequenceYt; then (2 AIC) is an estimate of the number of bits needed by
an optimal code to describe the sequenceXt, when the optimal code estimates the distribution of
Xt from the sampleYt. AIC thus measures the efficiency of our model to describe thedata. The
preferred model is the one with thesmallestinformation criterion.

For the linear regression model withn data points andp degrees of freedom for~β, the parameter
is θ = (~β, σ), thusk = p+ 1. AIC can easily be computed and one obtains

AIC = 2 (p+ n ln σ̂) + C (5.7)

whereC = 2 + n (1 + ln(2π)) andσ̂ is the MLE ofσ, i.e.

σ̂2 =
(

1− p

n

)

s2

The AIC was found in practice to have a tendancy to overestimate the model orderk. An alterna-
tive criterion is theBayesian Information Criterion(BIC)[19, 97], which is defined for a linear
regression model by

BIC = −2l(θ̂) + k lnn

wheren is the number of observations. Thus one finds

BIC = p lnn+ 2n ln σ̂ + C ′ (5.8)

with C ′ = n(1+ ln(2π))+ lnn andp is the number of degrees of freedom for the parameter of the
linear regression model.

EXAMPLE: INTERNET TRAFFIC, CONTINUED. We want to find the best fit for the model in Eq.(5.5).
It seems little appropriate to fit the growth in Figure 5.1 by a polynomial of high degree, therefore
we limit d to be 0, 1 or 2. We used three methods: test data, AIC and BIC and searched for all
values of d ∈ {0, 1, 2} and h ∈ {0, ..., 10}. The results are :

Test Data: d=2, h=2, prediction error = 44.6006
Best AIC : d=2, h=3, prediction error = 46.1003
Best BIC : d=0, h=2, prediction error = 48.7169

The test data method finds the smallest prediction error, by definition. All methods find a small
number of harmonics, but there are some minor differences. Figure 5.6 shows the values for d=1.

Figure 5.5 shows a different result. Here, we try to use a polynomial of degree up to 10, which
is not appropriate for the data. The AIC and BIC find aberrant models, whereas test data finds a
reasonable best choice.

Information criterion are more efficient in the sense that they do not burn any of the data; however,
they may be completely wrong if the model is inappropriate.
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Figure 5.6:Choice of best Model for Eq.(5.5) with degree d = 1 and various values of h. Top panel: Use of
test data; estimation and prediction errors. Bottom panel: information criteria. The prediction error is about
the same for h ≥ 2, which implies that the most adequate model if for h = 2. The information criteria also
find here that the best model is for h = 2.
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5.4 DIFFERENCING THE DATA

A slightly more sophisticated alternative to the regression method is to combine two approaches:
first capture trends and periodic behaviour by application of differencing or de-seasonalizing filters,
then fit the filtered data to a time series stationary model that allows correlation, as we explain in
this and the next section.

5.4.1 DIFFERENCING AND DE-SEASONALIZING FILTERS

Consider a time seriesY = (Y1, ..., Yn). Contrary to linear regression modelling, we require here
that the indices are contiguous integers,t = 1, ..., n. Thedifferencing filter at lag1 is the mapping,
denoted with∆1 that transforms a times seriesY of finite length into a time seriesX = ∆1Y of
same lengthsuch that

Xt = (∆1Y )t = Yt − Yt−1 t = 1, ..., n (5.9)

where by conventionYj = 0 for j ≤ 0. Note that this convention is not the best possible, but it
simplifies the theory a lot. In practice, the implication is that the first term of the filtered series
is not meaningful and should not be used for fitting a model (they are removed from the plots on
Figure 5.7). Formally, we consider∆1 to be a mapping from

⋃∞
n=1R

n onto itself, i.e. it acts on
time series of any finite length.

The differencing filter∆1 is a discrete time equivalent of a derivative. If the data hasa polynomial
trend of degreed ≥ 1, then∆1Y has a trend of degreed− 1. Thusd iterated applications of∆1 to
the data remove any polynomial trend of degree up tod.

Similarly, if the dataY is periodic with periods, then we can use thede-seasonalizing filter Rs

(proposed by S.A. Roberts in [89]). It maps a times seriesY of finite length into a time series
X = RsY of same lengthsuch that

Xt =

s−1
∑

j=0

Yt−j t = 1, ..., n (5.10)

again with the convention thatYj = 0 if j ≤ 0. One application ofRs removes a periodic
component, in the sense that ifYt is periodic of periods, thenRsY is equal to a constant.

The differencing filter at lags, ∆s, is defined similarly by

(∆sX)t = Yt − Yt−s (5.11)

It can be easily seen that
∆s = Rs∆1 (5.12)

i.e. combining de-seasonalizing and differencing at lag1 is the same as differencing at lags.

Filterscommute, e.g.Rs′RsY = RsRs′Y for all s, s′ andY ∈ R
n (see Appendix D). It follows

that the differencing filter and de-seasonalizing filter maybe used to remove polynomial growth,
non zero mean and periodicities, and that one can apply them in any order. In practice, one tries to
applyRs once for any identified periodd, and∆1 as many times as required for the data to appear
stationary.

EXAMPLE 5.2:INTERNET TRAFFIC. In Figure 5.7 we apply the differencing filter ∆1 to the time
series in Example 5.1 and obtain a strong seasonal component with period s = 16. We then apply
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the de-seasonalizing filter R16; this is the same as applying ∆16 to the original data. The result
does not appear to be stationary; an additional application of ∆1 is thus performed.

Also note that ifYt = µ + Zt whereZt is stationary, then∆sY has a zero mean1. Thus, if
after enough differencing we have obtained a stationary butnon zero mean sequence, one more
differencing operation produces a zero mean sequence.

5.4.2 COMPUTING POINT PREDICTION

With many time series, differencing and de-seasonalizing produces a data set that has neither
growth nor periodicity, thus is a good candidate for being fitted to a simple stochastic model.
In this section we illustrate a straightforward application of this idea. The method used in this
section will also be used in Section 5.5 with more elaborate models for the differenced data.

Assume we have a model for the differenced dataXt that we can use to obtain predictions forXt.
How can we use this information to derive a prediction for theoriginal dataYt ? There is a very
simple solution, based on the properties of filters given in appendix.

We write compactlyX = LY , i.eL is the combination of filters (possibly used several times each)
used for differencing and de-seasonalizing. For example, in Figure 5.7,L = ∆16∆1. ∆s is an
invertible filter for alls ≥ 1 thusL also is an invertible filter (see Appendix D for more details).
We can use the AR(∞) representation ofL−1 and write, using Eq.(D.16) in appendix:

Yt = Xt − g1Yt−1 − . . .− gqYt−q (5.13)

where(g0 = 1, g1, ..., gq) is the impulse response of the filterL. See the next example and Ap-
pendix D for more details on how to obtain the impulse response ofL. The following result derives
immediately from this and Theorem D.4.1:

PROPOSITION 5.4.1. Assume thatX = LY whereL is a differencing or de-seasonalizing filter
with impulse responseg0 = 1, g1, ..., gq. Assume that we are able to produce a point prediction
X̂t(ℓ) for Xt+ℓ given that we have observedX1 to Xt. For example, if the differenced data can be
assumed to be iid with meanµ, thenX̂t(ℓ) = µ.

A point prediction forYt+ℓ can be obtained iteratively by:

Ŷt(ℓ) = X̂t(ℓ)− g1Ŷt(ℓ− 1)− . . .− gℓ−1Ŷt(1)− gℓyt − . . .

−gqyt−q+ℓ for 1 ≤ ℓ ≤ q (5.14)

Ŷt(ℓ) = X̂t(ℓ)− g1Ŷt(ℓ− 1)− . . .− gqŶt(ℓ− q) for ℓ > q (5.15)

Note that differencing enough times removes any non zero means from the data, so we often
assume thatµ = 0.

EXAMPLE: INTERNET TRAFFIC, CONTINUED. For Figure 5.7, we have

L = ∆2
1R16 = ∆1∆16 = (1−B)(1−B16) = 1−B −B16 +B17

1more preciselyE(∆sYt) = 0 for t ≥ s + 1. i.e. the firsts elements of the differenced time series may not be 0
mean.
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Figure 5.7:Differencing filters ∆1 and ∆16 applied to Example 5.1 (first terms removed). The forecasts are
made assuming the differenced data is iid gaussian with 0 mean. o = actual value of the future (not used
for fitting the model). The point prediction is better than on Figure 5.1, but the prediction intervals are large.
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thus the impulse response g of L is given by

g0 = g17 = 1, g1 = g16 = −1, gm = 0 otherwise

If we can assume that the differenced data is iid with 0 mean, the prediction formulae for Y are

Ŷt(1) = Yt + Yt−15 − Yt−16

Ŷt(ℓ) = Ŷt(ℓ− 1) + Yt+ℓ−16 − Yt+ℓ−17 for 2 ≤ ℓ ≤ 16

Ŷt(17) = Ŷt(16) + Ŷt(1) − Yt

Ŷt(ℓ) = Ŷt(ℓ− 1) + Ŷt(ℓ− 16) − Ŷt(ℓ− 17) for ℓ ≥ 18

5.4.3 COMPUTING PREDICTION I NTERVALS

If we want to obtain not only point predictions but also to quantify the prediction uncertainty, we
need to compute prediction intervals. We consider a special, but frequent case. More general cases
can be handled by Monte Carlo methods as explained in Section5.5.4. The following result derives
from Theorem D.4.1 in appendix.

PROPOSITION 5.4.2. Assume that the differenced data is iid gaussian. i.e.Xt = (LY )t ∼
iid N(µ, σ2).

The conditional distribution ofYt+ℓ given thatY1 = y1, ..., Yt = yt is gaussian with mean̂Yt(ℓ)
obtained from Eq.(5.14) and variance

MSE2t (ℓ) = σ2
(

h2
0 + · · ·+ h2

ℓ−1

)

(5.16)

whereh0, h1, h2, . . . is the impulse response ofL−1. A prediction interval at level0.95 is thus

Ŷt(ℓ)± 1.96

√

MSE2t (ℓ) (5.17)

Alternatively, one can computêYt(ℓ) using

Ŷt(ℓ) = µ (h0 + · · ·+ hℓ−1) + hℓxt + · · ·ht+ℓ−1x1 (5.18)

The impulse response ofL−1 can be obtained numerically (for example using thefilter com-
mand), as explained in Appendix D. IfL is not too complicate, it can be obtained in a simple
closed form. For example, fors = 1, the reverse filter∆−1

1 is defined by
(

∆−1
1 X

)

t
= X1 +X2 + ... +Xt t = 1, ..., n

i.e. its impulse response ishm = 1 for all m ≥ 0. It is a discrete time equivalent of integration.

The impulse response ofL = (∆1∆s)
−1 used in Figure 5.7 is

hm = 1 +
⌊m

16

⌋

(5.19)

where the notation⌊x⌋ means the largest integer≤ x.
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Note thatµ andσ need to be estimated from the differenced data2.

EXAMPLE: INTERNET TRAFFIC, CONTINUED. Figure 5.7 shows the prediction obtained assuming
the differenced data is iid gaussian with 0 mean.

It is obtained by applying Eq.(5.18) with µ = 0, Eq.(5.17) and Eq.(5.19).

The point prediction is good, but the confidence interval appear to be larger than necessary. Note
that the model we used here is extremely simple; it has only one parameter (namely σ) to fit, which
is estimated as the sample standard deviation of the differenced data.

Compare to Figure 5.1: the point prediction seems to be more exact. Also, it starts just from the
previous value. The point prediction with differencing filters is more adaptive than with a regression
model.

The prediction intervals are large and grow with the prediction horizon. This is a symptom that
the iid gaussian model for the differenced data may not be appropriate. In fact, there are two
deviations from this model: the distribution does not appear to be gaussian, and the differenced
appears to be correlated (large values are not isolated). Addressing these issues requires a more
complex model to be fitted to the differenced time series: this is the topic of Section 5.5

5.5 FITTING DIFFERENCED DATA TO AN ARMA M ODEL

The method in this section is inspired by the original methodof Box and Jenkins in [15] and can
be called theBox-Jenkins method, although some of the details differ a bit. It appliesto cases
where the differenced dataX appears to be stationary but not iid. In essence, the method provides
a method towhiten the differenced data, i.e. it computes a filterF such thatFX can be assumed
to be iid. We first discuss how to recognize whether data can beassumed to be iid.

5.5.1 STATIONARY BUT NON IID D IFFERENCED DATA

After pre-processing with differencing and de-seasonalizing filters we have obtained a data set
that appears to bestationary. Recall from Chapter 6 that a stationary model is such that itis
statistically impossible to recognize at which time a particular sample was taken. The time series
in panel (c) of Figure 5.7 appear to have this property, whereas the original data set in panel (a)
does not. In the context of time series, lack of stationarityis due to growth or periodicity: if a data
set increases (or decreases), then by observing a sample we can have an idea of whether it is old
or young; if there is a daily pattern, we can guess whether a sample is at night or at daytime.

SAMPLE ACF

A means to test whether a data series that appears to be stationary is iid or not is thesample
autocovariance function; by analogy to the autocovariance of a process, it is defined, fort ≥ 0

2Here too, the prediction interval does not account for the estimation uncertainty
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by

γ̂t =
1

n

n−t
∑

s=1

(Xn+t − X̄)(Xn − X̄) (5.20)

whereX̄ is the sample mean. Thesample ACF is defined bŷρt = γ̂t/γ̂0. The sample PACF is also
defined as an estimator of the true partial autocorrelation function (PACF) defined in Section 5.5.2.

If X1, ..., Xn is iid with finite variance, then the sample ACF and PACF are asymptotically centered
normal with variance1/n. ACF and PACF plots usually display the bounds±1.96/

√
n. If the

sequence is iid with finite variance, then roughly95% of the points should fall within the bounds.
This provides a method to assess whetherXt is iid or not. If yes, then no further modelling is
required, and we are back to the case in Section 5.4.2. See Figure 5.10 for an example.

The ACF can be tested formally by means of theLjung-Box test. It testsH0: “the data is iid”
versusH1: “the data is stationary”. The test statistic isL = n(n + 2)

∑t
s=1

ρ̂2s
n−s

, wheret is a
parameter of the test (number of coefficients), typically

√
n. The distribution ofL underH0 is χ2

t ,
which can be used to compute thep-value.

5.5.2 ARMA AND ARIMA P ROCESSES

Once a data set appears to be stationary, but not iid (as in panel (c) of Figure 5.7) we can model it
with anAuto-Regressive Moving Average (ARMA) process.

DEFINITION 5.5.1. A 0-mean ARMA(p, q) processXt is a process that satisfies fort = 1, 2, · · · a
difference equation such as:

Xt + A1Xt−1 + · · ·+ ApXt−p = ǫt + C1ǫt−1 + · · ·+ Cqǫt−q ǫt iid ∼ N0,σ2 (5.21)

Unless otherwise specified, we assumeX−p+1 = · · · = X0 = 0.

An ARMA(p, q) process with meanµ is a processXt such thatXt − µ is a 0 mean ARMA process
and, unless otherwise specified,X−p+1 = · · · = X0 = µ.

The parameters of the process areA1, · · · , Ap (auto-regressive coefficients), C1, · · · , Cq (mov-
ing average coefficients) andσ2 (white noise variance). The iid sequenceǫt is called the noise
sequence, orinnovation.

An ARMA(p, 0) process is also called anAuto-regressive process, AR(p); an ARMA(0, q) pro-
cess is also called aMoving Average process, MA(q).

Since a difference equation as in Eq.(5.21) defines a filter with rational transfer function (Ap-
pendix D), one can also define an ARMA process by

X = µ+ Fǫ (5.22)

whereǫ is an iid gaussian sequence and

F =
1 + C1B + . . .+ CqB

q

1 + A1B + . . .+ ApBp
(5.23)

B is the backshift operator, see Appendix D.

In order for an ARMA process to be practically useful, we needthe following:
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HYPOTHESIS5.1. The filter in Eq.(5.23) and its inverse are stable.

In practice, this means that the zeroes of1+A1z
−1+ . . .+Apz

−p and of1+C1z
−1+ . . .+Cqz

−q

are within the unit disk.

Eq.(5.22) can be used to simulate ARMA processes, as in Figure 5.8.
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(a) ARMA(2,2)Xt = −0.4Xt−1+0.45Xt−2+
ǫt − 0.4ǫt−1 + 0.95ǫt−2

0 20 40 60 80 100
−3

−2

−1

0

1

2

3

4

(b) AR(2)Xt = −0.4Xt−1 + 0.45Xt−2 + ǫt

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

(c) MA(2) Xt = ǫt − 0.4ǫt−1 + 0.95ǫt−2

Figure 5.8:Simulated ARMA processes with 0 mean and noise variance σ2 = 1. The first one, for example,
is obtained by the matlab commands Z=randn(1,n) and X=filter([1 -0.4 +0.95],[1 0.4
-0.45],Z).

ARMA P ROCESS AS A GAUSSIAN PROCESS Since an ARMA process is defined by linear
transformation of a gaussian processǫt it is a gaussian process. Thus it is entirely defined by its
meanE(Xt) = µ and its covariance. Its covariance can be computed in a number of ways, the
simplest is perhaps obtained by noticing that

Xt = µ+ h0ǫt + . . .+ ht−1ǫ1 (5.24)

whereh is the impulse response of the filter in Eq.(5.23). Note that,with our convention,h0 = 1.
It follows that fort ≥ 1 ands ≥ 0:

cov(Xt, Xt+s) = σ2
t−1
∑

j=0

hjhj+s (5.25)

For larget

cov(Xt, Xt+s) ≈ γs = σ2

∞
∑

j=0

hjhj+s (5.26)

The convergence of the latter series follows from the assumption that the filter is stable. Thus,
for large t, the covariance does not depend ont. More formally, one can show that an ARMA
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process with Hypothesis 5.1 is asymptotically stationary [19, 97], as required since we want to
model stationary data3.

Note in particular that

var(Xt) ≈ σ2
∞
∑

j=0

h2
j = σ2(1 +

∞
∑

j=0

h2
j) ≥ σ2 (5.27)

thus the variance of the ARMA process is larger than that of the noise4.

For an MA(q) process, we havehj = Cj for j = 1, . . . , q andhj = 0 for j ≥ q thus the ACF is0
at lags≥ q.

TheAuto-Correlation Function (ACF) is defined by5 ρt = γt/γ0. The ACF quantifies departure
from an iid model; indeed, for an iid sequence (i.e.h1 = h2 = ... = 0), ρt = 0 for t ≥ 1. The
ACF can be computed from Eq.(5.26) but in practice there are more efficient methods that exploit
Eq.(5.23), see [105], and which are implemented in standardpackages. One also sometimes uses
thePartial Auto-Correlation Function (PACF), which is defined in Section C.5.3 as the residual
correlation ofXt+s andXt, given thatXt+1, ..., Xt+s−1 are known.6

Figure 5.9 shows the ACF and PACF of a few ARMA processes. Theyall decay exponentially.
For an AR(p) process, the PACF is exactly0 at lags7 t > p.

ARIMA P ROCESS By definition, the random sequenceY = (Y1, Y2, . . .) is an ARIMA(p, d, q)
(Auto-Regressive Integrated Moving Average) process if differencingY d times gives an ARMA(p, q)
process (i.e.X = ∆d

1Y is an ARMA process, where∆1 is the differencing filter at lag1). For
d ≥ 1 an ARIMA process is not stationary.

In the statistics literature, it is customary to describe anARIMA( p, d, q) processYt by writing

(1− B)d(1 + A1B + . . .+ ApB
p)Y = (1 + C1B + . . .+ CqB

q)ǫ (5.28)

which is the same as saying that∆d
1Y is a zero mean ARMA(p, q) process.

By extension, we also call ARIMA process a processYt such thatLY is an ARMA process where
L is a combination of differencing and de-seasonalizing filters.

5.5.3 FITTING AN ARMA M ODEL

Assume we have a time series which, after differencing and de-seasonalizing (and possible re-
scaling) produces a time seriesXt that appears to be stationary and close to gaussian (i.e doesnot
have too wild dynamics), but not iid. We may now think of fitting an ARMA model toXt.

The ACF and PACF plots may give some bound about the ordersp andq of the model, as there
tend to be exponential decay at lags larger thanp andq.

3Furthermore, it can easily be shown that if the initial conditionsX0, . . . , X−p are not set to0 as we do for
simplicity, but are drawn from the gaussian process with mean µ and covarianceγs, thenXt is (exactly) stationary.
We ignore this subtlety in this chapter and consider only asymptotically stationary processes.

4Equality occurs only whenh1 = h2 = ... = 0, i.e. for the trivial case whereXt = ǫt
5Some authors call autocorrelation the quantityγt instead ofρt.
6The PACF is well defined if the covariance matrix of(Xt, ..., Xt+s) is invertible. For an ARMA process, this is

always true, by Corollary C.3.1.
7This follows from the definition of PACF and the fact thatXt+s is entirely determined byXt+s−p, ..., Xt+s−p.
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Figure 5.9:ACF (left) and PACF (right) of some ARMA processes.
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Figure 5.10:First panel: Sample ACF of the internet traffic of Figure 5.1. The data does not appear to
come from a stationary process so the sample ACF cannot be interpreted as estimation of a true ACF
(which does not exist). Second panel: sample ACF of data differenced at lags 1 and 16. The sampled data
appears to be stationary and the sample ACF decays fast. The differenced data appears to be suitable for
modelling by an ARMA process.

Note that the sample ACF and PACF make sense only if the data appears to be generated from a
stationary process. If the data comes from a non stationary process, this may be grossly mislead-
ing (Figure 5.10).

M AXIMUM L IKELIHOOD ESTIMATION OF AN ARMA OR ARIMA M ODEL

Once we have decided for ordersp andq, we need to estimate the parametersµ, σ, A1, . . . , Ap, C1, . . . , Cq.
As usual, this is done by maximum likelihood. This is simplified by the following result.

THEOREM 5.5.1. Consider an ARMA or ARIMA model with parameters as in Definition 5.5.1,
where the parameters are constrained to be in some setS. Assume we are given some observed
datax1, . . . , xN .

1. The log likelihood of the data is−N
2
ln (2πσ̂2) where

σ̂2 =
1

N

N
∑

t=2

(

xt − X̂t−1(1)
)2

(5.29)

andX̂t−1(1) is the one step ahead forecast at timet− 1.
2. Maximum likelihood estimation is equivalent to minimizing the mean square one step ahead

forecast errorσ̂, subject to the model parameters being inS.

The one step forecastŝXt−1(1) are computed using Proposition 5.5.2 below. Care should be taken
to remove the initial values if differencing is performed.

Contrary to linear regression, the optimization involved here is non linear, even if the constraints
on the parameter set are linear. The optimizer usually requires some initial guess to run efficiently.
For MA(q) or AR(p) there exist estimation procedures (calledmoment heuristics) that are not
maximum likelihood but are numerically fast [105]. These are based on the observation that for
MA(q) or AR(p) processes, if we know the autocovariance function exactly,then we can compute
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the coefficients numerically8. Then we use the sample autocovariance as estimate of the autoco-
variance function, whence we deduce an estimate of the parameters of the process. This is less
accurate than maximum likelihood, but is typically used as an initial guess. For example, if we
want to compute the maximum likelihood estimate of a generalARMA(p, q) model, we may es-
timate the parametersµ, σ, C1, . . . , Cq of an MA(q) model, using a moment fitting heuristic. We
then give as initial guess these values plusA1 = . . . = Ap = 0.

It is necessary to verify that the obtained ARMA model corresponds to a stable filter with stable
inverse. Good software packages automatically do so, but attimes, it may be impossible to obtain
both a stable filter and a stable inverse. It is generally admitted that this may be fixed by changing
the differencing filter: too little differencing may make itimpossible to obtain a stable filter (as the
differenced data is not stationary); conversely, too much differencing may make it impossible to
obtain a stable inverse [19].

DETERMINATION OF BEST M ODEL ORDER

Deciding for the correct order may be done with the help of an information criterion (Section 5.3.2),
such as the AIC. For example, assume we would like to fit the differenced dataXt to a general
ARMA(p, q) model, without any constraint on the parameters; we havep+ q coefficients, plus the
meanµ and the varianceσ2; thus, up to the constant−N ln(2π), which can be ignored, we have

AIC = −N ln σ̂2 + 2(p+ q + 2) (5.30)

Note that the AIC counts as degrees of freedom only continuous parameters, so it does not count
the number of times we applied differencing or de-seasonalizing to the original data. Among all the
possible values ofp, q and possibly among several application of differencing or de-seasonalizing
filters, we choose the one than minimizes AIC.

VERIFICATION OF RESIDUALS

The sequence of residualse = (e1, e2, . . .) is an estimation of the non observed innovation se-
quenceǫ. It is obtained by

(e1, e2, . . . , et) = F−1(x1 − µ, x2 − µ, . . . , xt − µ) (5.31)

where(x1, x2, . . .) is the differenced data andF is the ARMA filter in Eq.(5.23). If the model fit is
good, the residuals should be roughly independent, therefore the ACF and PACF of the residuals
should be close to 0 at all lags.

Note that the residuals can also be obtained from the following proposition (the proof of which
easily follows from Corollary D.4.2, applied toXt andǫt instead ofYt andXt)

PROPOSITION5.5.1 (Innovation Formula).

ǫt = Xt − X̂t−1(1) (5.32)

whereX̂t−1(1) is the one step ahead prediction at timet− 1.

8For AR(p) processes, the AR coefficients are obtained by solving the “Yule-Walker” equations, using the
“Levinson-Durbin” algorithm [105]
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Thus, to estimate the residuals, one can compute the one stepahead predictions for the available
datax̂t−1(1), using the forecasting formulae given next; the residuals are then

et = xt − x̂t−1(1) (5.33)

5.5.4 FORECASTING

Once a model is fitted to the differenced data, forecasting derive easily from Theorem D.4.1, given
in appendix, and its corollaries. Essentially, Theorem D.4.1 says that predictions forX andY are
obtained by mapping predictions forǫ by means of the reverse filters. Sinceǫ is iid, predictions for
ǫ are trivial: e.g. the point prediction̂ǫt(h) is equal to the mean. One needs to be careful, though,
since the first terms of the differenced time seriesXt are not known, and one should use recursive
formulas that avoid propagation of errors. This gives the following formulas:

PROPOSITION5.5.2. Assume the differenced dataX = LY is fitted to an ARMA(p, q) model with
meanµ as in Definition 5.5.1.

1. Theℓ-step ahead predictions at timet, X̂t(ℓ), of the differenced data can be obtained for
t ≥ 1 from the recursion

X̂t(ℓ)− µ + A1(X̂t(ℓ− 1)− µ) + . . .+ Ap(X̂t(ℓ− p)− µ) = C1êt(ℓ− 1) + . . .+ Cqêt(ℓ− q)

X̂t(ℓ) =

{

Xt+ℓ if ℓ ≤ 0 and 1 ≤ t+ ℓ
µ if t+ ℓ ≤ 0

êt(ℓ) =







0 if ℓ ≥ 1 or t + ℓ ≤ 0

Xt+ℓ − X̂t+ℓ−1(1) if ℓ ≤ 0 and t + ℓ ≥ 2
X1 − µ if t+ ℓ = 1 and ℓ ≤ 0

In the recursion, we allowℓ ≤ 0 even though we are eventually interested only inℓ ≥ 1.
2. Alternatively,X̂t(ℓ) can be computed as follows. Let(c0 = 1, c1, c2, . . .) be the impulse

response ofF−1; then:

X̂t(ℓ)−µ = −c1(X̂t(ℓ−1)−µ)−. . .−cℓ−1(X̂t(1)−µ)−cℓ(xt−µ)−. . .−ct+ℓ−t0(xt0−µ) ℓ ≥ 1
(5.34)

where(xt0 , . . . , xt) is the differenced data observed up to timet, and wheret0 is the length
of the impulse response of the differencing and de-seasonalizing filterL.

3. Theℓ-step ahead predictions at timet, Ŷt(ℓ), of the non differenced data follow, using Propo-
sition 5.4.1.

4. Let(d0, d1, d2 . . .) be the impulse response of the filterL−1F and

MSE2t (ℓ) = σ2
(

d20 + · · ·+ d2ℓ−1

)

(5.35)

A 95% prediction interval forYt+ℓ is

Ŷt(ℓ)± 1.96
√

MSE2t (ℓ) (5.36)
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Figure 5.11:Prediction for internet traffic of Figure 5.1, using an ARMA model for the differenced data
(o=actual value of the future, no known at time of prediction). Compare to Figure 5.7: the point predictions
are almost identical, but the prediction intervals are more accurate (smaller).
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Note that we use two steps for computing the point predictions: first forXt, then forYt. One can
wonder why, since one could use a single step, based on the fact thatY = L−1Fǫ. The reason is
numerical stability: since the initial values ofXt (or equivalently, the past valuesYs for s ≤ 0) are
not known, there is some numerical error in items 1 and 2. Since we assume thatF−1 is stable,
cm → 0 for largem so the values ofxt for small t do not influence the final value of Eq.(5.34).
Indeed the non-differenced dataxt for small values oft is not known exactly, as we made the
simplifying assumption thatys = 0 for s ≤ 0. This is also why the firstt0 data points ofx are
removed in Eq.(5.34).

The problem does not exist for the computation of predictionintervals, this is why one can directly
use a single step in item 4. This is because the variance of theforecast MSE2t (ℓ) is independent of
the past data (Theorem C.5.1 in Appendix).

If one insists on using a model such thatF is stable, but notF−1, the theorem is still formally true,
but may be numerically wrong. It is then preferable to use theformulae in Section 3.3 of [19] (but
in practice one should avoid using such models).

POINT PREDICTIONS FOR AN AR(p) 0 MEAN PROCESS

The formulae have simple closed forms when there is no differencing or de-seasonalizing and the
ARMA process is AR(p) with 0 mean. In such a case,Yt = Xt and Eq.(5.34) becomes (with the
usual conventionys = 0 for s ≤ 0):

Ŷt(ℓ) = −
ℓ−1
∑

j=1

Aj Ŷt(ℓ− j)−
p
∑

j=ℓ

Ajyt−j+ℓ for 1 ≤ ℓ ≤ p

Ŷt(ℓ) = −
p
∑

j=1

Aj Ŷt(ℓ− j) for ℓ > p

whereA1, A2, . . . , Ap are the auto-regressive coefficients as in Eq.(5.21). Because of this simplic-
ity, AR processes are often used, e.g. when real time predictions are required.

EXAMPLE 5.3:INTERNET TRAFFIC, CONTINUED. The differenced data in Figure 5.10 appears to be
stationary and has decaying ACF. We model it as a 0 mean ARMA(p, q) process with p, q ≤ 20 and
fit the models to the data. The resulting models have very small coefficients Am and Cm except
for m close to 0 or above to 16. Therefore we re-fit the model by forcing the parameters such that

A = (1, A1, . . . , Ap, 0, . . . , 0, A16, . . . , A16+p)

C = (1, C1, . . . , Cp, 0, . . . , 0, C16, . . . , C16+q)

for some p and q. The model with smallest AIC in this class is for p = 1 and q = 3.

Figure 5.11 shows the point predictions and the prediction intervals for the original data. They were
obtained by first computing point predictions for the differenced data (using Matlab’s predict
routine) and applying Proposition 5.4.1. The prediction intervals are made using Proposition 5.5.2.
Compare to Figure 5.7: the point predictions are only marginally different, but the confidence
intervals are much better.

We also plot the residuals and see that they do appear uncorrelated, but there are some large
values that do not appear to be compatible with the gaussian assumption. Therefore the prediction
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intervals might be pessimistic. We computed point predictions and prediction intervals by re-
sampling from residuals. Figure 5.12 shows that the confidence intervals are indeed smaller.

USE OF BOOTSTRAP REPLICATES

When the residuals appear to be uncorrelated but non gaussian, the prediction intervals may be over
or under-estimated. It is possible to avoid the problem using a Monte Carlo method (Section 6.4),
as explained now.

The idea is to draw many independent predictions for the residuals, from which we can derive pre-
dictions for the original data (by using reverse filters). There are several possibilities for generating
independent predictions for the residuals: one can fit a distribution, or use Bootstrap replicates (i.e.
re-sample from the residuals with replacement). We give an algorithm using this latter solution.

Algorithm 3 Monte-Carlo computation of prediction intervals at level 1 − α for time series Yt using re-
samplig from residuals. We are given: a data set Yt, a differencing and de-seasonalizing filter L and an
ARMA filter F such that the residual ǫ = F−1LY appears to be iid; the current time t, the prediction lag ℓ
and the confidence level α. r0 is the algorithm’s accuracy parameter.

1: R = ⌈2 r0/α⌉ − 1 ⊲ For exampler0 = 25, R = 999
2: compute the differenced data(x1, . . . , xt) = L(y1, . . . , yt)
3: compute the residuals(eq, . . . , et) = F−1(xq, . . . , xt) whereq is an initial value chosen to

remove initial inaccuracies due to differencing or de-seasonalizing (for exampleq = length of
impulse response ofL)

4: for r = 1 : R do
5: drawℓ numbers with replacement from the sequence(eq, . . . , et) and call themǫrt+1, ..., ǫ

r
t+ℓ

6: let er = (eq, . . . , et, ǫ
r
t+1, ..., ǫ

r
t+ℓ)

7: computeXr
t+1, . . . , X

r
t+ℓ using(xq, . . . , xt, X

r
t+1, . . . , X

r
t+ℓ) = F (er)

8: computeY r
t+1, . . . , Y

r
t+ℓ using Proposition 5.4.1 (withXr

t+s andY r
t+s in lieu of X̂t(s) and

Ŷt(s))
9: end for

10:
(

Y(1), ..., Y(R)

)

= sort
(

Y 1
t+ℓ, ..., Y

R
t+ℓ

)

11: Prediction interval is[Y(r0) ; Y(R+1−r0)]

The algorithm is basic in that in gives no information about its accuracy. A largerr0 produces a
better accuracy; a more sophisticated algorithm would setr0 such that the accuracy is small.

Also note that, as any bootstrap method, it will likely fail if the distribution of the residuals is heavy
tailed.

An alternative to the bootstrap is to fit a parametric distribution to the residuals; the algorithm is
the same as Algorithm 3 except that line 5 is changed by the generation of a sample residual from
its distribution.

5.6 SPARSE ARMA AND ARIMA M ODELS

In order to avoid overfitting, it is desirable to use ARMA models that have as few parameters as
possible. Such models are calledsparse. The use of an information criterion gives a means to
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Figure 5.12:Prediction at time 224, same model as Figure 5.11, but prediction obtained with the bootstrap
method (re-sampling from residuals).

obtain sparse models, but it involves a complex non linear optimization problem. An alternative is
to impose constraints on the model, based on some sensible heuristics.

5.6.1 CONSTRAINED ARMA M ODELS

A simple method consists in forcing some of the auto-regressive and moving average coefficients
to 0, as in Example 5.3. Another method, more adapted to models with periodicity, is called
Seasonal ARIMA. Assumes that the data has a periods; a seasonal ARMA model is an ARMA
model where we force the filterF defined in Eq.(5.23) to have the form

F =
(1 +

∑q
i=1 ciB

i)
(

1 +
∑Q

i=1CiB
si
)

(1 +
∑p

i=1 aiB
i)
(

1 +
∑P

i=1AiBsi
) (5.37)

Yt is a seasonal ARIMA model∆d
1R

D
s Y is a seasonal ARMA model, for some nonnegative integers

d,D. This model is also calledmultiplicative ARIMA model, as the filter polynomials are products
of polynomials.

The only difference with the rest of this section when using aseasonal ARIMA model is the fitting
procedure, which optimizes the model parameters subject tothe constraints (using Theorem 5.5.1).
The forecasting formulae are the same as for any ARIMA or ARMAmodel.
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5.6.2 HOLT -W INTERS M ODELS

These are simple models, with few parameters, which emergedempirically, but can be explained
as ARMA or ARIMA models with few parameters. Their interest lies in the simplicity of both
fitting and forecasting. Holt Winters models were originally introduced by Holt and Winters in
[41, 107], and later refined by Roberts in [89]; we follow the presentation in this latter reference.
We discuss five models: EWMA, double EWMA and three variants of the Holt Winters seasonal
model.

EXPONENTIALLY WEIGHTED M OVING AVERAGE

This was originally defined as an ad-hoc forecasting formula. The idea is to keep a running estimate
estimatem̂t of the mean of the data, and update it using theexponentially weighted moving
average mechanism with parametera, defined fort ≥ 2 by:

m̂t = (1− a)m̂t−1 + aYt (5.38)

with initial conditionm̂1 = Y1. The point forecast is then simply

Ŷt(ℓ) = m̂t (5.39)

The following results makes the link to ARMA models (proof inSection 5.7).

PROPOSITION5.6.1 ([89]).EWMA with parametera is equivalent to modelling the non-differenced
time series with the ARIMA(0, 1, 1) model defined by

(1−B)Y = (1− (1− a)B)ǫ (5.40)

with ǫt ∼ iidN0,σ2

The parametera can be found by fitting the ARIMA model as usual, using Theorem5.5.1, namely,
by minimizing the one step ahead forecast error. There is no constraint ona, though it is classical
to take it between 0 and 1.

The noise varianceσ2 can be estimated using Eq.(5.29), which, together with Proposition 5.5.2,
can be used to find prediction intervals.

EWMA works well only when the data has no trend or periodicity, see Figure 5.13.

QUESTION 5.6.1. What is EWMA fora = 0 ? a = 1 ? 9

DOUBLE EXPONENTIAL SMOOTHING WITH REGRESSION

This is another simple model that can be used for data with trend but no season. Like simple
EWMA, it is based on ad-hoc forecasting formulae that happento correspond to ARIMA models.
The idea is to keep a running estimate of both the mean levelm̂t and the trend̂rt. Further, a
discounting factorφ is applied to model practical cases where the growth is not linear.

9a = 0: a constant, equal to the initial value;a = 1: no smoothing,̂mt = Yt.
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Figure 5.13: First graph: simple EWMA applied to swiss population data Yt with a = 0.9. EWMA is
lagging behind the trend. Second graph: simple EWMA applied to the differenced series ∆Yt. Third graph:
prediction reconstructed from the previous graph.

The forecasting equation is

Ŷt(ℓ) = m̂t + r̂t

ℓ
∑

i=1

φi (5.41)

and the update equations are, fort ≥ 3:

m̂t = (1− a) (m̂t−1 + φr̂t−1) + aYt (5.42)

r̂t = (1− b)φr̂t−1 + b(m̂t − m̂t−1) (5.43)

with initial conditionm̂2 = Y2 andr̂2 = Y2 − Y1. We assume0 < φ ≤ 1; there is no constraint on
a andb, though it is classical to take them between 0 and 1.

Forφ = 1 we have the classical Holt Winters model, also calledDouble Exponential Weighted
Moving Average; for 0 < φ < 1 the model is said “with regression”.

PROPOSITION5.6.2 ([89]). Double EWMA with regression is equivalent to modeling the non dif-
ferenced data as the zero mean ARIMA(1, 1, 2) process defined by:

(1− B)(1− φB)Y = (1− θ1B − θ2B
2)ǫ (5.44)

with

θ1 = 1 + φ− a− φab (5.45)

θ2 = −φ(1− a) (5.46)
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with ǫt ∼ iidN0,σ2 .

Double EWMA is equivalent to the zero mean ARIMA(0, 2, 2) model:

(1− B)2Y = (1− θ1B − θ2B
2)ǫ (5.47)

with

θ1 = 2− a− ab (5.48)

θ2 = −(1− a) (5.49)

The maximum likelihood estimate ofa, b andφ is obtained as usual by minimizing the one step
ahead forecast error. Figure 5.14 shows an example of doubleEWMA.

c(tt, tt[1] + seq(n, n + k - 1, 1))
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Figure 5.14:Double EWMA with a = 0.8, b = 0.8. It gives a good predictor; it underestimates the trend in
convex parts, overestimates it in concave parts.

SEASONAL M ODELS

For times series with a periodic behaviour there are extensions of the Holt Winters model, which
keep the same simplicity, and can be explained as ARIMA models. We present three variants,
which differ in the choice of some coefficients.

Assume that we know that the non differenced data has a periods. The idea is to keep the level
and trend estimateŝmt andr̂t and introduce corrections for seasonalityŝt(i), for i = 0, . . . , s− 1.
The forecast equation is [89]:

Ŷt(ℓ) = m̂t +
ℓ
∑

i=1

φir̂t + wℓŝt(ℓ mod s) (5.50)

whereφ andw are discounting factors. The update equations are, fort ≥ s+ 2:

m̂t = a (Yt − wŝt−1(1)) + (1− a)(m̂t−1 + φr̂t−1) (5.51)

r̂t = b (m̂t − m̂t−1) + (1− b)φr̂t−1 (5.52)

ŝt(i) = wŝt−1((i+ 1) mod s) +Diet for i = 0...s− 1 (5.53)
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whereDi are coefficients to be specified next andet = Yt − Ŷt−1(1).

The initial values ofm̂, r̂, ŝ are obtained by using the forecast equation witht = 1 andℓ = 1...s.
More precisely, set̂mt = Yt for t = 1, . . . , s+1, r̂1 = r, ŝ1(j) = sj for j = 0, . . . , s− 1, solve for
r, s0, s1, . . . , ss−1 in

Yj+1 = Y1 + r

j
∑

i=1

φi + wjsj mod s for j = 1 . . . s

0 =

s
∑

j=1

sj

and dor̂s+1 = φsr̂1, ŝs+1(j) = wssj . After some algebra this gives theinitial conditions:

m̂s+1 = Ys+1 (5.54)

r̂s+1 =

∑s
j=1(Yj+1 − Y1)w

s−j

∑s
j=1

∑j
i=1 φ

i−sws−j
(5.55)

ŝs+1(0) = Ys+1 − Y1 − r̂s+1

s
∑

i=1

φi−s (5.56)

ŝs+1(j) =

(

Yj+1 − Y1 − r̂s+1

j
∑

i=1

φi−s

)

ws−j for j = 1, . . . , s− 1 (5.57)

Roberts argues we should impose
∑s

i=0Di = 0. Roberts’ Seasonal Model is obtained by using
an exponential family, i.e.

D0 = 1− cs−1 (5.58)

Di = −ci−1(1− c) for i = 1, . . . , s− 1 (5.59)

for some parameterc.

PROPOSITION5.6.3 ([89]). The Roberts seasonal model with parametersa, b, c, φ, w is equivalent
to the zero mean ARIMA model

(1− φB) (1− B)

(

1 +
s−1
∑

i=1

wiBi

)

Y =

(

1−
s+1
∑

i=1

θiB
i

)

ǫ (5.60)

with ǫt ∼ iidN0,σ2 and

θ1 = 1 + φ− wc− a(1 + φb)

θi = wi−2
{

ci−2
[

(1 + φ)wc− φ− w2c2
]

− (w − φ)a− wφab
}

for i = 2, . . . , s− 1

θs = ws−2
{

cs−2 [(1 + φ)wc− φ]− (w − φ)a− wφab
}

θs+1 = −φws−1
(

cs−1 − a
)
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The Holt-Winters Additive Seasonal Model is also commonly used. It corresponds toφ =
1, w = 1 (no discounting) and

D0 = c(1− a) (5.61)

Di = 0 for i = 1, . . . , s− 1 (5.62)

It seems more reasonable to impose
∑s−1

i=0 Di = 0, and Roberts proposes a variant, theCorrected
Holt-Winters Additive Seasonal Model, for whichφ = 1, w = 1 and

D0 = c(1− a) (5.63)

Di = −c(1− a)

s− 1
for i = 1, . . . , s (5.64)

PROPOSITION5.6.4 ([89]).The Holt-Winters Additive Seasonal models with parametersa, b, c are
equivalent to the zero mean ARIMA models

(1−B) (1−Bs) Y =

(

1−
s+1
∑

i=1

θiB
i

)

ǫ (5.65)

with ǫt ∼ iidN0,σ2 and

θ1 = (1− a)(1 + ch)− ab

θi = −ab for i = 2, . . . , s− 1

θs = 1− ab− (1− a)c(1 + h)

θs+1 = −(1 − a)(1− c)

withh = 1
s−1

(Corrected Holt-Winters Additive Seasonal model) andh = 0 (Holt-Winters Additive
Seasonal model).

For all of these models, parameter estimation can be done by minimizing the mean square one step
ahead forecast error. Prediction intervals can be obtainedfrom the ARIMA model representations.

There are many variants of the Holt Winters seasonal model; see for example [48] for the multi-
plicative model and other variants.

EXAMPLE 5.4:INTERNET TRAFFIC WITH ROBERTS MODEL. We applied the seasonal models in
this section to the data set of Figure 5.1; the results are in Figure 5.15. We fitted the models by
maximum likelihood, i.e. minimizing the one step ahead forecast error. We obtained prediction
intervals by using the ARIMA representation and Proposition 5.5.2.

The best Roberts seasonal model is for a = 1, b = 0.99, c = 0.90, φ = 0.050 and w = 1. The best
Holt Winters additive seasonal model is for a = 0.090, b = 0.037 and c = 0.64. Both corrected and
non corrected Holt Winters additive seasonal models give practically the same results.

5.7 PROOFS



5.7. PROOFS 157

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

(a) Roberts Model

210 215 220 225 230 235 240 245 250
0

100

200

300

400

500

600

(b) Holt Winters Additive Seasonal Model

Figure 5.15:Prediction for internet traffic of Figure 5.1, using Additive Seasonal models. (o=actual value
of the future, no known at time of prediction). The predictions are less accurate than in Figure 5.11 but the
models are much simpler.
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THEOREM 5.5.1 Let Xt − µ = Fǫt whereF is the ARMA filter andǫt ∼ iidN0,σ2 . We identifyF with an
N × N invertible matrix as in Eq.(D.6).Yt is a gaussian vector with meanµ and covariance matrixΩ = σ2FFT .
Thus the log-likelihood of the datax1, . . . , xN is

−N
2
ln(2π)−N lnσ − 1

2σ2

(

(xT − µ~1T )F−TF−1(x− µ~1)
)

wherex is the column vector of the data and~1 is the column vector withN rows equal to1. For a givenx andF the
log-likelihood is maximum for

σ̂2 =
1

N

(

(xT − µ~1T )F−TF−1(x− µ~1)
)2

and is equal to−N
2 ln

(

2πσ̂2
)

. Now

σ̂2 =
1

N

∥

∥

∥F−1(x− µ~1)
∥

∥

∥

2

and, by definition of the model,F−1(x − µ~1) is the vector of residuals (i.e. the value ofǫt that correspond to the
observed datax1, . . . , xN ). Now use the innovation formula, Eq.(5.32), to conclude the proof.

PROPOSITION 5.6.1 Assume that EWMA corresponds to an ARIMA model. Letǫt = Yt − Ŷt−1(1) be the
innovation sequence. Re-write Eq.(5.38) as

m̂t = m̂t−1 + aǫt

Using filters, this writes aŝm = Bm̂ + aǫ. Combine withY = Bm̂ + ǫ and obtain(1 − B)Y = (1 − (1 − a)B)ǫ,
which is the required ARIMA model. Conversely, use the forecasting equations in Proposition 5.5.2) to show that we
obtain the desired forecasting equations.

The proofs of Propositions 5.6.2, 5.6.3 and 5.6.4 are similar.

5.8 REVIEW QUESTIONS

QUESTION 5.8.1. Does the order in which differencing at lags1 and16 is performed matter ?10

QUESTION 5.8.2. When is EWMA adequate ?11

QUESTION 5.8.3. When is double EWMA adequate ?12

QUESTION 5.8.4. When is a seasonal Holt Winters model adequate ?13

QUESTION 5.8.5. For ARMA and ARIMA models, what is the relation between the data Yt, one
point ahead forecastŝYt(1) and innovationǫt ? 14

QUESTION 5.8.6. How do we account for uncertainty due to model fitting when using linear re-
gression models ? ARMA models ?15

QUESTION 5.8.7. What should one be careful about when interpreting an ACF plot ? 16

10No, because filters commute.
11When the data is stationary and we want a very simple model.
12When the data has trends but no seasonality and we want a very simple model.
13When the data has trends and seasonality and we want a very simple model.
14Yt = Ŷt−1(1) + ǫt, see Eq.(5.32).
15With linear regression models there are explicit formulas,assuming the residuals are gaussian. In most cases, the

uncertainty due to fitting is negligible compared to forecasting undertainty. For ARMA models, the formulas in this
chapter simply ignore it.

16That the data appears stationary.
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QUESTION 5.8.8. What is the overfitting problem ?17

QUESTION 5.8.9. When do we need an ARIMA model rather than simply applying differencing
filters ? 18

QUESTION 5.8.10.How does one fit a Holt Winters model to the data ?19

QUESTION 5.8.11.What are sparse ARMA and ARIMA models ? Why do we use them ?20

QUESTION 5.8.12.When do we need the bootstrap ?21

QUESTION 5.8.13.When do we use an information criterion ?22

17A model that fits the past data too well might be unable to predict the future.
18When the residuals after differencing appear to be very correlated.
19Like all ARMA or ARIMA models, by minimizing the average one step ahead forecast error, see Theorem 5.5.1.
20These are models with very few parameters, hence the computational procedures are much simpler.
21When the residuals appear iid but non gaussian and we want prediction intervals.
22When we want to decide about the model order (number of parameters). It should be used only if the model seems

to make sense for the data, otherwise the results may be aberrant.
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CHAPTER 6

DISCRETEEVENT SIMULATION

Simulations are often regarded as the simplest, though mosttime consuming performance evalua-
tion method. However, even simple simulation program may pose problems, if one is not aware of
what stationarity means, and of the potential problems thatarise when a simulation does not have
a stationary regime. We start by discussing this simple, butimportant issue; the related topic of
freezing simulations is in another chapter (Section 7.4).

161
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Then we describe two commonly used techniques for implementing a simulation, namely, discrete
events and stochastic recurrences, and discuss how confidence intervals can be applied to such set-
tings. Then we discuss Monte Carlo simulation, viewed here as a method for computing integrals
or probabilities, and potential pitfalls about random number generators. Then we present practical
techniques for sampling from a distribution (CDF inversion, rejection sampling).

Importance sampling is an efficient technique for computingestimates of rare events, such as
a failure rate or a bit error rate. The main difficulty is the choice of an importance sampling
distribution. Here too, we propose a very general approach which is widely applicable and does
not require heavy developments.

Contents
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6.1 WHAT IS A SIMULATION ?

A simulation is an experiment in the computer (biologists say “in silico”) where the real environ-
ment is replaced by the execution of a program.
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EXAMPLE 6.1:MOBILE SENSORS. You want to build an algorithm A for a system of n wireless
sensors, carried by mobile users, which send information to a central database. A simulation of
the algorithm consists in implementing the essential features of the program in computer, with
one instance of A per simulated sensor. The main difference between a simulation and a real
implementation is that the real, physical world (here: the radio channel, the measurements done
by sensors) is replaced by events in the execution of a program.

6.1.1 SIMULATED T IME AND REAL T IME

In a simulation the flow of time is controlled by the computer.A first task of your simulation
program is to simulate parallelism: several parallel actions can take place in the real system; in
your program, you serialize them. Serializing is done by maintaining asimulated time, which
is the time at which an event in the real system is supposed to take place. Every action is then
decomposed into instantaneous events (for example, the beginning of a transmission), and we
assume that it is impossible that two instantaneous events take place exactly at the same time.

Assume for example that every sensor in Example 6.1 should send a message whenever there is
a sudden change in its reading, and at most every 10 minutes. It may happen in your simulation
program that two or more sensors decide to send a message simultaneously, say within a window
of 10 µs; your program may take much more than 10µs of real timeto execute these events. In
contrast, if no event happens in the system during 5 minutes,your simulation program may jump to
the next event and take just of few ms to execute 5 mn of simulated time. The real time depends on
the performance of your computer (processor speed, amount of memory) and of your simulation
program.

6.1.2 SIMULATION TYPES

There are many different types of simulations. We use the following classification.

DETERMINISTIC / STOCHASTIC . A deterministic simulation has no random components. It is
used when we want to verify a system where the environment is entirely known, maybe to verify
the feasibility of a schedule, or to test the feasibility of an implementation. In most cases however,
this is not sufficient. The environment of the system is better modelled with a random component,
which makes the output of the simulation also random.

TERMINATING / NON-TERMINATING . A terminating simulation ends when specific condi-
tions occurs. For example, if we would like to evaluate the execution time of one sequence of
operations in a well defined environment, we can run the sequence in the simulator and count the
simulated time. A terminating simulation is typically usedwhen

• we are interested in the lifetime of some system
• or when the inputs are time dependent
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EXAMPLE 6.2:JOE’ S COMPUTER SHOP. We are interested in evaluating the time it takes to serve
n customers who request a file together at time 0. We run a simulation program that terminates at
time T1 when all users have their request satisfied. This is a terminating simulation; its output is
the time T1.

ASYMPTOTICALLY STATIONARY / NON-STATIONARY . This applies to a non-terminating,
stochastic simulation only. Stationarity is a property of the stochastic model being simulated.
For an in-depth discussion of stationarity, see Chapter 7.

Very often, the state of the simulation depends on theinitial conditions and it is difficult to find
good initial conditions; for example, if you simulate an information server and start with empty
buffers, you are probably too optimistic, since a real server system that has been running for some
time has many data structures that are not empty. Stationarity is a solution to this problem: if
your simulator has a unique stationary regime, its distribution of state becomes independent of the
initial condition.

A stationary simulation is such that you gain no informationabout its age by analyzing it. For
example, if you run a stationary simulation and take a snapshot of the state of the system at times
10 and 10’000 seconds, there is no way to tell which of the two snapshots is at time 10 or 10’000
seconds.

In practice, a non terminating simulation is rarely exactlystationary, but can beasymptotically
stationary. This means that after some simulated time, the simulation becomes stationary.

More precisely, a simulation program with time independentinputs can always be thought of as
the simulation of a Markov chain. A Markov chain is a generic stochastic process such that, in
order to simulate the future after timet, the only information we need is the state of the system
at timet. This is usually what happens in a simulation program. The theory of Markov chains
(see Chapter 7) says that the simulation will either converge to some stationary behaviour, or will
diverge. If we want to measure the performance of the system under study, it is most likely that we
are interested in its stationary behaviour.

EXAMPLE 6.3:INFORMATION SERVER. An information server is modelled as a queue. The sim-
ulation program starts with an empty queue. Assume the arrival rate of requests is smaller than
the server can handle. Due to the fluctuations in the arrival process, we expect some requests to
be held in the queue, from time to time. After some simulated time, the queue starts to oscillate
between busy periods and idle periods. At the beginning of the simulation, the behaviour is not
typical of the stationary regime, but after a short time it becomes so (Figure 6.1 (a)).

If in contrast the model is unstable, the simulation output may show a non converging behaviour
(Figure 6.1 (b)).

In practice, here are the main reasons for non asymptotic stationarity.

1. Unstablemodels: In a queuing system where the input rate is larger than the service capacity,
the buffer occupancy grows unbounded. The longer the simulation is run, the larger the mean
queue length is.

2. Freezingsimulation: this is a more subtle form of non stationarity, where the system does
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Figure 6.1:Simulation of the information server in Example 6.3, with exponential service and interarrival
times. The graphs show the number of requests in the queue as a function of time, for two values of the
utilization factor.

not converge to a steady state but, instead, freezes (becomes slower and slower). This is
typically due to the occurrence of rare events with large impact. The longer the simulation,
the more likely it is that a rare, but important event occurs,and the larger the impact of
this event may be. If the simulation has regeneration points(points at which a clean state
is reached, for example when the system becomes empty), thenthe simulation freezes if
the time interval between regeneration points has an infinite mean. We study this topic in
Section 7.4, where we see an example with the random waypoint.

3. Models withseasonal or growthcomponents, or more generally, time dependent inputs; for
example: internet traffic grows month after month and is moreintense at some times of the
day.

In most cases, when you perform a non-terminating simulation,you should make sure that your
simulation is in stationary regime. Otherwise, the output of your simulation depends on the
initial condition and the length of the simulation, and it isoften impossible to decide what are
realistic initial conditions. It is not always easy, though, to know in advance whether a given
simulation model is asymptotically stationary. Chapter 7 gives some examples.

QUESTION 6.1.1. Among the following sequencesXn say which ones are stationary:

1. Xn, n ≥ 1 is i.i.d.
2. Xn n ≥ 1 is drawn as follows.X1 is sampled from a given distributionF (). To obtainXn,

n ≥ 2 we first flip a coin (and obtain0 with probability1 − p, 1 with probabilityp). If the
coin returns0 we letXn = Xn−1; else we letXn = a new sample from the distributionF ().

3. Xn =
∑n

i=1 Zi, n ≥ 1, whereZn, n ≥ 1 is an i.i.d. sequence

1

11. yes 2. yes: (X1, X2) has the same joint distribution as, for example(X10, X11). In general
(Xn, Xn+1, ..., Xn+k) has the same distribution for alln. This is an example of non-i.i.d., but stationary sequence.3.
No, in general. For example, if the common distributionF () has a finite varianceσ2, the variance ofXn is nσ2, and
grows withn, which is contradictory with stationarity.
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6.2 SIMULATION TECHNIQUES

There are many ways to implement a simulation program. We describe two techniques that are
commonly used in our context.

6.2.1 DISCRETE EVENT SIMULATION
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Figure 6.2: (a) Events and their dependencies for Example 6.4. An arrow indicates that an event may
schedule another one. (b) A possible realization of the simulation and (c) the corresponding sequence of
event execution. The arrows indicate that the execution of the event resulted in one or several new events
being inserted into the scheduler.

Many computer and communication systems are often simulated usingdiscrete event simulation
for example with the ns2 or ns3 simulator [1]. It works as follows. The core of the method is
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to use a global timecurrentTime and anevent scheduler. Events are objects that represent
different transitions; all event have an associated firing time. The event scheduler is a list of
events, sorted by increasing firing times. The simulation program picks the first event in the event
scheduler, advancescurrentTime to the firing time of this event, and executes the event. The
execution of an event may schedule new events with firing times≥currentTime, and may change
or delete events that were previously listed in the event scheduler. The global simulation time
currentTime cannot be modified by an event. Thus, the simulation time jumps from one event
firing time to the next – hence the name of discrete event simulation. In addition to simulating the
logic of the system being modelled, events have to update thecounters used for statistics.

EXAMPLE 6.4:DISCRETE EVENT SIMULATION OF A SIMPLE SERVER. A server receives requests
and serves them one by one in order of arrival. The times between request arrivals and the service
times are independent of each other. The distribution of the time between arrivals has CDF F ()
and the service time has CDF G(). The model is in fact a GI/GI/1 queue, which stands for general
independent inter-arrival and service times. An outline of the program is given below. The program
computes the mean response time and the mean queue length.

CLASSES AND OBJECTS We describe this example using an object oriented terminology, close to that
of the Java programming language. All you need to know about object oriented programming to understand
this example is as follows. An object is a variable and a class is a type. For example arrival23 is the
name of the variable that contains all information about the 23rd arrival, it is of the class Arrival. Classes
can be nested, for example the class Arrival is a sub-class of Event. A method is a function whose
definition depends on the class of the object. For example, the method execute is defined for all objects
of the class Event, and is inherited by all subclasses such as Arrival. When the method execute is
applied to the object arrival23, the actions that implement the simulation of an arrival are executed (for
example, the counter of the number of requests in the system is incremented).

Global Variables and Classes

• currentTime is the global simulated time; it can be modified only by the main program.
• eventScheduler is the list of events, in order of increasing time.
• An event is an object of the class Event. It has an attribute firingTime which is the time

at which it is to be executed. An event can be executed (i.e. the Event class has a method
called execute), as described later.
There are three Event subclasses: an event of the class Arrival represents the actions
that occur when a request arrives; Service is when a request enters service; Departure
is when a request leaves the system. The event classes are described in detail later.

• The object buffer is the FIFO queue of Requests. The queue length (in number of re-
quests) is buffer.length. The number of requests served so far is contained in the
global variable nbRequests. The class Request is used to describe the requests arriving
at the server. At a given point in time, there is one object of the class Request for every re-
quest present in the system being modelled. An object of the class Request has an arrival
time attribute.

• Statistics Counters: queueLengthCtr is
∫ t
0 q(s)ds where q(s) is the value of buffer.length

at time s and t is the current time. At the end of the simulation, the mean queue length is
queueLengthCtr/T where T is the simulation finish time.
The counter responseTimeCtr holds

∑m
m=1Rm where Rm is the response time for the

mth request and n is the value of nbRequests at the current time. At the end of the
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simulation, the mean response time is responseTimeCtr/N where N is the value of
nbRequests.

Event Classes. For each of the three event classes, we describe now the actions taken when an
event of this class is “executed”.

• Arrival: Execute Event’s Actions. Create a new object of class Request, with arrival time
equal to currentTime. Queue it at the tail of buffer.
Schedule Follow-Up Events. If buffer was empty before the insertion, create a new event
of class Service, with the same firingTime as this event, and insert it into eventScheduler.
Draw a random number ∆ from the distribution F (). Create a new event of class Arrival,
with firingTime equal to this event firingTime+∆, and insert it into eventScheduler.

• Service: Schedule Follow-Up Events. Draw a random number ∆ from the distribution
G(). Create a new event of class Departure, with firingTime equal to this event’s
firingTime+∆, and insert it into eventScheduler.

• Departure: Update Event Based Counters. Let c be the request at the head of buffer.
Increment responseTimeCtr by d − a, where d is this event’s firingTime and a is the
arrival time of the request c. Increment nbRequests by 1.
Execute Event’s Actions. Remove the request c from buffer and delete it.
Schedule Follow-Up Events. If buffer is not empty after the removal, create a new event
of class Service, with firingTime equal to this event’s firingTime, and insert it into
eventScheduler.

Main Program

• Bootstrapping. Create a new event of class Arrival with firingTime equal to 0 and
insert it into eventScheduler.

• Execute Events. While the simulation stopping condition is not fulfilled, do the following.

– Increment Time Based Counters. Let e be the first event in eventScheduler.
Increment queueLengthCtr by q(tnew − told) where q =buffer.length,
tnew=e.firingTime and told =currentTime.

– Execute e.
– Set currentTime to e.firingTime
– Delete e

• Termination. Compute the final statistics:
meanQueueLength=queueLengthCtr/currentTime
meanResponseTime=responseTimeCtr/nbRequests

Figure 6.2 illustrates the program.

QUESTION 6.2.1. Can consecutive events have the same firing time ?2

QUESTION 6.2.2. What are the generic actions that are executed when an event is executed ?3

QUESTION 6.2.3. Is the model in Example 6.4 stationary ?4

2Yes. In Example 6.4, aDeparture event when the queue is not empty is followed by aService event with
the same firing time.

31. Update Event Based Counters 2. Execute Event’s Actions 3.Schedule Follow-Up Events.
4It depends on the parameters. Leta [resp.b] be the mean ofF () [resp.G()]. The utilization factor of the queue

is ρ = b
a
. If ρ < 1 the system is stable and thus asymptotically stationary, else not (see Chapter 8).
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QUESTION 6.2.4. Is the mean queue length an event-based or a time-based statistic ? The mean
response time ?5

6.2.2 STOCHASTIC RECURRENCE

This is another simulation method; it is usually much more efficient than discrete event simulation,
but requires more work on the model. Astochastic recurrence is a recurrence of the form:

{

X0 = x0

Xn+1 = f(Xn, Zn)
(6.1)

whereXn is the state of the system at thenth transition (Xn is in some arbitrary state spaceX ),
x0 is a fixed, given state inX , Zn is some stochastic process that can be simulated (for example
a sequence of i.i.d. random variables, or a Markov chain), and f is a deterministic mapping. The
simulated timeTn at which thenth transition occurs is assumed to be included in the state variable
Xn.

EXAMPLE 6.5:RANDOM WAYPOINT.

The random waypoint is a model for a mobile point, and can be used to simulate the mobility
pattern in Example 6.1. It is defined as follows. The state variable is Xn = (Mn, Tn) where Mn is
the position of the mobile at the nth transition (the nth “waypoint”) and Tn is the time at which this
destination is reached. The point Mn is chosen at random, uniformly in a given convex area A.
The speed at which the mobile travels to the next waypoint is also chosen at random uniformly in
[vmin, vmax].

The random waypoint model can be cast as a stochastic recurrence by letting Zn = (Mn+1, Vn+1),
where Mn+1, Vn+1 are independent i.i.d. sequences, such that Mn+1 is uniformly distributed in A
and Vn+1 in [vmin, vmax]. We have then the stochastic recurrence

Xn+1 := (Mn+1, Tn+1) = (Mn+1, Tn +
‖Mn+1 −Mn‖

Vn
)

See Figure 6.3 for an illustration.

Once a system is cast as a stochastic recurrence, it can be simply simulated as a direct implemen-
tation of Eq.(6.1), for example in Matlab.

QUESTION 6.2.5. Is the random waypoint model asymptotically stationary ?6

STOCHASTIC RECURRENCE VERSUS DISCRETE EVENT SIMULATION It is always possi-
ble to express a stochastic simulation as a stochastic recurrence, as illustrated by the next example.
Both representations may have very different memory and CPUrequirements; which representa-
tion is best depends on the problem at hand.

EXAMPLE 6.6:SIMPLE SERVER AS A STOCHASTIC RECURRENCE. (Continuation of Example 6.4).
Consider implementing the simple server in Example 6.4 as a stochastic recurrence. To simplify,

5Mean queue length: time based. Mean response time: event based.
6Forvmin > 0 it is asymptotically stationary. Forvmin = 0 it is not: the model “freezes” (the number of waypoints

per time unit tends to0). See Chapter 7 for a justification).
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Figure 6.3:Simulation of the random waypoint model.

assume we are interested only in the mean queue length and not the mean response time. This
can be implemented as a stochastic recurrence as follows. Let Xn = (tn, bn, qn, an, dn) represent
the state of the simulator just after an arrival or a departure, tn = the simulated time at which this
transition occurs, bn =buffer.length, qn = queueLengthCtr (both just after the transition),
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an = the time interval from this transition to the next arrival and dn= the time interval from this
transition to the next departure.

Let Zn be a couple of two random numbers, drawn independently of anything else, with distribution
uniform in (0, 1).

The initial state is
t0 = 0, b0 = 0, q0 = 0, a0 = F−1(u), d0 = ∞

where u is a sample of the uniform distribution on (0, 1). The reason for the formula a0 = F−1(u)
is explained in Section 6.6: a0 is a sample of the distribution with CDF F ().

The recurrence is defined by f((t, b, q, a, d), (z1 , z2)) = (t′, b′, q′, a′, d′) with

if a < d // this transition is an arrival

∆ = a

t′ = t+ a

b′ = b+ 1

q′ = q + b∆

a′ = F−1(z1)

if b == 0 then d′ = G−1(z2) else d
′ = d−∆

else // this transition is a departure

∆ = d

t′ = t+ d

b′ = b− 1

q′ = q + b∆

a′ = a−∆

if b′ > 0 then d′ = G−1(z1) else d
′ = ∞

6.3 COMPUTING THE ACCURACY OF STOCHASTIC SIMULA -
TIONS

A simulation program is expected to output some quantities of interest. For example, for a simula-
tion of the algorithmA it may be the average number of lost messages. The output of a stochastic
simulation is random: two different simulation runs produce different outputs. Therefore, it is not
sufficient to give one simulation result; in addition, we need to give the accuracy of our results.

6.3.1 INDEPENDENT REPLICATIONS

A simple and very efficient method to obtain confidence intervals is to usereplication. Perform
n independent replications of the simulation, each producing an outputx1, ..., xn. Be careful to
have truly random seedsfor the random number generators, for example by accessing computer
time (Section 6.5).
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6.3.2 COMPUTING CONFIDENCE I NTERVALS

You have to choose whether you want a confidence interval for the median or for the mean. The
former is straightforward to compute, thus should be preferred in general.

Methods for computing confidence intervals for median and mean are summarized in Section 2.2.

EXAMPLE: APPLICATION TO EXAMPLE 6.2. Figure 6.4 shows the time to transfer all files as a
function of the number of customers. The simulation outputs do not appear to be normal, therefore
we test whether n is large, by looking at the qqplot of the the bootstrap replicates. We find that
it looks normal, so we can use the student statistic. By curiosity, we also compute the bootstrap
percentile estimate and find that both confidence intervals are very close, the bootstrap percentile
estimate being slightly smaller.

There are other methods of obtaining confidence intervals, but they involve specific assumptions
on the model and require some care; see for example [49].

6.3.3 NON-TERMINATING SIMULATIONS

Non-terminating simulations should be asymptotically stationary (Section 6.1.2). When you sim-
ulate such a model, you should be careful to dotransient removal. This involves determining:

• when to start measuring the output (this is the time at which we consider that the simulation
has converged to its stationary regime

• when to stop the simulation

Unfortunately, there is no simple, bullet proof method to determine these two times. In theory,
convergence to the stationary regime is governed by the value of the second eigenvalue modulus
of the transition matrix of the markov chain that representsyour simulation. In all but very special
cases, it is impossible to estimate this value. A practical method for removing transients is to look
at the data produced by the simulation, and visually determine a time after which the simulation
output does not seem to exhibit a clear trend behaviour. For example, in Figure 6.1 (a), the mea-
surements could safely start at timet = 1. This is the same stationarity test as with time series
(Chapter 5).

Determining when to stop a simulation is more tricky. The simulation should be large enough for
transients to be removable. After that, you need to estimatewhether running the simulation for a
long time reduces the variance of the quantities that you aremeasuring. In practice, this is hard to
predict a priori. A rule of thumb is to run the simulation longenough so that the output variable
looks gaussian across several replications, but not longer.

6.4 MONTE CARLO SIMULATION

Monte Carlo simulation is a method for computing probabilities, expectations, or,in general,
integrals when direct evaluations is impossible or too complex. It simply consists in estimating the
expectation as the mean of a number of independent replications.
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Figure 6.4:Time to serve n files in Joe’s computer shop (Example 6.2): (a) results of 30 independent
replications, versus number of customers (b) 95%confidence intervals for the mean obtained with the normal
approximation (left), with the bootstrap percentile estimate (middle); 95% confidence interval for the median
(right). (c) qqplot of simulation outputs, showing deviation from normality (d) qq-plots of the bootstrap
replicates, showing normality.

Formally, assume we are given a model for generating a data sequence~X. The sequence may be

i.i.d. or not. Assume we want to computeβ = E

(

ϕ( ~X)
)

. Note that this covers the case where

we want to compute a probability: ifϕ(~x) = 1{~x∈A} for some setA, thenβ = P( ~X ∈ A).

Monte-Carlo simulation consists in generatingR i.i.d. replicates~Xr, r = 1, ..., R. The Monte-
Carlo estimate ofβ is

β̂ =
1

R

R
∑

r=1

ϕ( ~Xr) (6.2)

A confidence interval forβ can then be computed using the methods in Chapter 2 (Theorem 2.2.2
and Theorem 2.2.4). By adjustingR, the number of replications, we can control the accuracy of



174 CHAPTER 6. DISCRETE EVENT SIMULATION

the method, i.e. the width of the confidence interval.

In particular, the theorem for confidence intervals of success probabilities (Theorem 2.2.4) should
be used when the goal is to find an upper bound on a rare probability and the Monte Carlo estimate
returns0, as illustrated in the example below.

EXAMPLE 6.7:p-VALUE OF A TEST. Let X1, ...,Xn be a sequence of i.i.d. random variables that
take values in the discrete set {1, 2, ..., I}. Let qi = P(Xk = i). Let Ni =

∑n
k=1 1{Xk=i} (number of

observation that are equal to i). Assume we want to compute

p = P

(

k
∑

i=1

Ni ln
Ni

nqi
> a

)

(6.3)

where a > 0 is given. This computation arises in the theory of goodness of fit tests, when we
want to test whether Xi does indeed come from the model defined above (a is then equal to
∑k

i=1 ni ln
ni
nqi

where ni is our data set). For large values of the sample size n we can approximate
β by a χ2 distribution (see Section 4.4), but for small values there is no analytic result.

We use Monte-Carlo simulation to compute p. We generate R i.i.d. replicates Xr
1 , ...,X

r
n of the

sequence (r = 1, ..., R). This can be done by using the inversion method described in this chapter.
For each replicate r, let

N r
i =

n
∑

k=1

1{Xr
k=i} (6.4)

The Monte Carlo estimate of p is

p̂ =
1

R

R
∑

r=1

1{∑k
i=1 Ni ln

Ni
nqi

>a} (6.5)

Assuming that p̂R ≥ 6, we compute a confidence interval by using the normal approximation in
Eq.(2.29). The sample variance is estimated by

σ̂ =

√

p̂(1− p̂)

R
(6.6)

and a confidence interval at level 0.95 is p̂ ± 1.96σ̂. Assume we want a relative accuracy at least
equal to some fixed value ǫ (for example ǫ = 0.05). This is achieved if

1.96σ̂

p̂
≤ ǫ (6.7)

which is equivalent to

R ≥ 3.92

ǫ2

(

1

p̂
− 1

)

(6.8)

We can test for every value of R whether Eq.(6.8) is verified and stop the simulation when this
happens. Table 6.1 shows some results with n = 100 and a = 2.4; we see that p is equal to
0.19 with an accuracy of 5%; the number of Monte Carlo replicates is proportional to the relative
accuracy to the power −2.

If p̂R < 6 then we cannot apply the normal approximation. This occurs when the p-value to be
estimated is very small. In such cases, typically, we are not interested in an exact estimate of the
p-value, but we want to know whether it is smaller than some threshold α (for example α = 0.05).
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R p̂ margin

30 0.2667 0.1582
60 0.2500 0.1096
120 0.2333 0.0757
240 0.1917 0.0498
480 0.1979 0.0356
960 0.2010 0.0254
1920 0.1865 0.0174
3840 0.1893 0.0124
7680 0.1931 0.0088

Table 6.1:Computation of p in Example 6.7 by Monte Carlo simulation. The parameters of the model are
I = 4, q1 = 9/16, q2 = q3 = 3/16, q4 = 1/16, n = 100 and a = 2.4. The table shows the estimate p̂ of p
with its 95% confidence margin versus the number of Monte-Carlo replicates R. With 7680 replicates the
relative accuracy (margin/p̂) is below 5%.

Eq.(2.26) and Eq.(2.27) can be used in this case. For example, assume the same data as in
Table 6.1 except for a = 18.2. We do R = 104 monte carlo replicates and find p̂R = 0. We can
conclude, with confidence 95%, that p ≤ 1− (0.025)

1
R = 3.7E − 4.

QUESTION 6.4.1. In the first case of Example 6.7 (Table 6.1), what is the conclusion of the test ?
In the second case ?7

6.5 RANDOM NUMBER GENERATORS

The simulation of any random process uses a basic function (such asrand in Matlab) that is
assumed to return independent uniform random variables. Arbitrary distributions can be derived
from there, as explained in Section 6.6.

In fact,rand is apseudo-random number generator. It produces a sequence of numbers that
appear to be random, but is in fact perfectly deterministic,and depends only on one initialization
value of its internal stated, called theseed. There are several methods to implement pseudo
random number generators; they are all based on chaotic sequences, i.e. iterative processes where
a small difference in the seed produces very different outputs.

Simple random number generators are based onlinear congruences of the typexn = axn−1 mod
m. Here the internal state aftern calls torand is the last outputxn; the seed isx0. Like for any
iterative algorithm, the sequence is periodic, but for appropriate choices ofa andm, the period
may be very large.

EXAMPLE 6.8:L INEAR CONGRUENCE. A widespread generator (for example the default in ns2)
has a = 16′807 and m = 231 − 1. The sequence is xn = san mod m

m where s is the seed. m is a
prime number, and the smallest exponent h such that ah = 1 mod m is m − 1. It follows that for
any value of the seed s, the period of xn is exactly m− 1. Figure 6.5 shows that the sequence xn
indeed looks random.

7In the first case we accept the null hypothesis, i.e. we believe that the probability of casei is qi. In the second
case, thep-value is smaller than0.95 so we reject the null hypothesis.
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The period of a random number generator should be much smaller than the number of times it is
called in a simulation. The generator in Example 6.8 has a period of ca.2×109, which may be too
small for very large simulations. There are other generators with much longer periods, for example
the “Mersenne Twister” [67] with a period of219937 − 1. They use other chaotic sequences and
combinations of them.

Perfect pseudo-random number generators do not exist; onlytruly random generators can be per-
fect. Such generators exist: for example, a quantum mechanics generator is based on the fact that
the state of a photon is believed to be truly random. For a general text on random number, see [59];
for software implementing good generators, see [60] and L’Ecuyer’s home page. For a general
discussion of generators in the framework of simulation, see [40]. Figure 6.6 illustrates a potential
problem when the random number generator does not have a longenough period.

USING A RANDOM NUMBER GENERATOR IN PARALLEL STREAMS For some (obsolete)
generators as in Example 6.8, choosing small seed values in parallel streams may introduce a
strong correlation (whereas we would like the streams to be independent).

EXAMPLE 6.9:PARALLEL STREAMS WITH INCORRECTSEEDS. Assume we need to generate two
parallel streams of random numbers. This is very frequent in discrete event simulations; we may
want to have one stream for the arrival process, and a second one for the service process. Assume
we use the linear congruential generator of Example 6.8, and generate two streams xn and x′n with
seeds s = 1 and s′ = 2. Figure 6.7 shows the results: we see that the two streams are strongly
correlated. In contrast, taking s′ = the last value xN of the first stream does not have this problem.

More modern generators as mentioned above do not have this problem either.

SEEDING THE RANDOM NUMBER GENERATOR A safe way to make sure that replications are
reasonably independent is to use the internal state of the generator at the end of the 1st replication as
seed for the second replication and so one. This way, if the generator has a long enough sequence,
the different replications have non overlapping sequences.

In practice, though, we often want independent replications to be run in parallel, so this mode of
operation is not possible. A common practice is to take as seed a truly random number, for example
derived from the computer clock or user input with the mouse.

6.6 HOW TO SAMPLE FROM A DISTRIBUTION

In this section we discuss methods to produce a sampleX for a random variable that has a known
distribution. We assume that we have a random number generator, that provides us with indepen-
dent samples of the uniform distribution on(0, 1). We focus on two methods of general applica-
bility: CDF inversion and rejection sampling.
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Figure 6.5:1000 successive numbers for the generator in Example 6.8. (a) QQplot against the uniform
distribution in (0, 1), showing a perfect match. (b) autocorrelation function, showing no significant correlation
at any lag (c) lag plots at various lags, showing independence.
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(b) L’Ecuyer”’s generator [60]

Figure 6.6: Simulation outputs for the throughput of TCP connections over a wireless ad-hoc network.
The wireless LAN protocol uses random numbers for its operation. This simulation consumes a very large
number of calls to rand. The simulation results obtained with both generators are different: Lecuyer’s
generator produces consistently smaller confidence intervals.
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Figure 6.7:xn versus x′n for two streams generated with the linear congruential in Example 6.8. (a) seed
values are 1 and 2 (b) seed values are (1, last value of first stream).
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6.6.1 CDF INVERSION

The method ofCDF inversion, also calledpercentile inversion method, applies to real or integer
valued random variable, when the CDF is easy to invert.

THEOREM 6.6.1. LetF be the CDF of a random variableX with values inR. Define thepseudo-
inverse, F−1 ofF by

F−1(p) = sup{x : F (x) ≤ p}
LetU be a sample of a random variable with uniform distribution on(0, 1); F−1(U) is a sample
ofX.

Application to real random variable. In the case whereX has a positive density over some
intervalI, thenF is continuous and strictly increasing onI, and the pseudo-inverse is the inverse
of F , as in the next example. It is obtained by solving forx in the equationF (x) = p, x ∈ Id.

EXAMPLE 6.10:EXPONENTIAL RANDOM VARIABLE . The CDF of the exponential distribution with
parameter λ is F (x) = 1 − e−λx. The pseudo-inverse (which in this case is the plain inverse) is
obtained by solving the equation

1− e−λx = p

where x is the unknown. The solution is x = − ln(1−p)
λ . Thus a sample X of the exponential

distribution is obtained by letting X = − ln(1−U)
λ , or, since U and 1− U have the same distribution:

X = − ln(U)

λ
(6.9)

where U is the output of the random number generator.

Application to integer random variable. AssumeN is a random variable with values inN. Let
pk = P(N = k), then forn ∈ N:

F (n) =
n
∑

k=0

pk

and forx ∈ R:
{

if x < 0 then F (x) = 0
else F (x) = P(N ≤ x) = P(N ≤ ⌊x⌋) = F (⌊x⌋)

We now computeF−1(p), for 0 < p < 1. Letn be the smallest integer such thatp < F (n). The set
{x : F (x) ≤ p} is equal to(−∞, n) (Figure 6.8); the supremum of this set isn, thusF−1(p) = n.
In other words, the pseudo inverse is given by

F−1(p) = n ⇔ F (n− 1) ≤ p < F (n) (6.10)

Thus we have shown:

COROLLARY 6.6.1. Let N be a random variable with values inN and letpk = P(N = k), for
k ∈ N. A sample ofN is obtained by settingN to the unique indexn such that

∑n−1
k=0 pk ≤ U <

∑n
k=0 pk, whereU is the output of the random number generator.
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n = F-1(p)n-1

p  

F(n-1)

F(n)  

xF(x) � p

Figure 6.8:Pseudo-Inverse of CDF F () of an integer-valued random variable

EXAMPLE 6.11:GEOMETRIC RANDOM VARIABLE . Here X takes integer values 0, 1, 2, .... The
geometric distribution with parameter θ satisfies P(X = k) = θ(1− θ)k, thus for n ∈ N:

F (n) =
n
∑

k=0

θ(1− θ)k = 1− (1− θ)n+1

by application of Eq.(6.10):

F−1(p) = n⇔ n ≤ ln(1− p)

ln(1− θ)
< n+ 1

hence

F−1(p) =

⌊

ln(1− p)

ln(1− θ)

⌋

and, since U and 1− U have the same distribution, a sample X of the geometric distribution is

X =

⌊

ln(U)

ln(1− θ)

⌋

(6.11)

QUESTION 6.6.1. Consider the function defined byCOIN(p)= if rand()<p 0 else 1. What
does it compute ?8

QUESTION 6.6.2. Compare Eq.(6.9) and Eq.(6.11).9

8It generates a sample of the Bernoulli random variable that takes the value0 with p and the value1 with probability
1− p.

9They are similar, in fact we haveN = ⌊X⌋ if we letλ = ln(1−θ). This follows from the fact that ifX ∼ exp(λ),
then⌊X⌋ is geometric with parameterθ = 1− e−λ
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6.6.2 REJECTION SAMPLING

The method ofrejection sampling is widely applicable. It can be used to generate samples of
random variables when the inversion method does not work easily. It applies to random vectors of
any dimension.

The method is based on the following result, which is of independent interest. It allows to sample
from a distribution given in conditional form.

THEOREM 6.6.2 (Rejection Sampling for a Conditional Distribution). LetX be a random variable
in some spaceS such that the distribution ofX is the conditional distribution ofX̃ given that
Ỹ ∈ A, where(X̃, Ỹ ) is a random variable inS × S ′ andA is a measurable subset ofS.
A sample ofX is obtained by the following algorithm:

do
draw a sample of(X̃, Ỹ )

until Ỹ ∈ A
return(X̃)

The expected number of iterations of the algorithm is1
P(Ỹ ∈A)

.

EXAMPLE 6.12:DENSITY RESTRICTED TO ARBITRARY SUBSET. Consider a random variable in
some space (R,Rn,Z...) that has a density fY (y). Let A be a set such that P(Y ∈ A) > 0. We are
interested in the distribution of a random variable X whose density is that of Y , restricted to A:

fX(y) = KfY (y)1{y∈A} (6.12)

where K−1 = P(Y ∈ A) > 0 is a normalizing constant. This distribution is the conditional distribu-
tion of Y , given that Y ∈ A.

QUESTION 6.6.3. Show this.10

Thus a sampling method for the distribution with density in Eq.(6.12) is to draw samples of the
distribution with density fY until a sample is found that belongs to A. The expected number of
iterations is 1/P(Y ∈ A).

For example, consider the sampling of a random point X uniformly distributed on some bounded
area A ⊂ R

2. We can consider this density as the restriction of the uniform density on some
rectangle R = [xmin, xmax] × [ymin, ymax] that contains the area A. Thus a sampling method is to
draw points uniformly in R, until we find one in A. The expected numbers of iterations is the ratio
of the area of R to that of A; thus one should be careful to pick a rectangle that is close to A.
Figure 6.9 shows a sample of the uniform distribution over a non-convex area.

QUESTION 6.6.4. How can one generate a sample of the uniform distribution over R ? 11

Now we come to a very general result, for all distributions that have a density.

10For any (measurable) subsetB of the space,P(X ∈ B) = K
∫

B fY (y)1{y∈A}dy = KP(Y ∈ A and Y ∈ B) =
P(Y ∈ B|Y ∈ A).

11The coordinates are independent and uniform: generate two independent samplesU, V ∼Unif(0, 1); the sample
is ((1 − U)xmin + Uxmax, (1− V )ymin + V ymax.
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Figure 6.9:1000 independent samples of the uniform distribution over A = the interior of the cross. Sam-
ples are obtained by generating uniform samples in the bounding rectangle and rejecting those samples
that do not fall in A.

THEOREM 6.6.3 (Rejection Sampling for Distribution with Density).Consider two random vari-
ablesX, Y with values in the same space, that both have densities. Assume that:

• we know a method to draw a sample ofX
• the density ofY is known up to a normalization constantK: fY (y) = Kfn

Y (y), wherefn
Y is

a known function
• there exist somec > 0 such that

fn
Y (x)

fX(x)
≤ c

A sample ofY is obtained by the following algorithm:

do
draw independent samples ofX andU , whereU ∼Unif(0, c)

until U ≤ fn
Y (X)

fX(X)

return(X)

The expected number of iterations of the algorithm isc
K

.

A frequent use of Theorem 6.6.3 is as follows.

ARBITRARY DISTRIBUTION WITH DENSITY Assume that we want a sample ofY , which
takes values in the bounded interval[a, b] and has a densityfY = Kfn

Y (y). Assume thatfn
Y (y)

(non normalized density) can easily be computed, but not thenormalization constantK which is
unknown. Also assume that we know an upper boundM onfn

Y .

We takeX uniformly distributed over[a, b] and obtain the sampling method:

do
drawX ∼Unif(a, b) andU ∼Unif(0,M)
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until U ≤ fn
Y (X)

return (X)

Note that we donot need to know the multiplicative constantK. For example, consider the distri-
bution with density

fY (y) = K
sin2(y)

y2
1{−a≤y≤a} (6.13)

K is hard to compute, but a boundM onfn
Y is easy to find (M = 1) (Figure 6.10).

EXAMPLE 6.13:A STOCHASTIC GEOMETRY EXAMPLE. We want to sample the random vector
(X1,X2) that takes values in the rectangle [0, 1] × [0, 1] and whose distribution has a density
proportional to |X1 − X2|. We take fX = the uniform density over [0, 1] × [0, 1] and fnY (x1, x2) =
|x1 − x2|. An upper bound on the ratio fn

Y (x1,x2)

fX(x1,x2)
is 1. The sampling algorithm is thus:

do
draw X1, X2 and U ∼Unif(0, 1)

until U ≤ |X1 −X2|
return(X1,X2)

Figure 6.10 shows an example. Note that there is no need to know the normalizing constant to
apply the sampling algorithm.
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Figure 6.10:(a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fX(x)

proportional to sin2(x)
x2 1{−a≤y≤a} with a = 10. (b) 2000 independent samples of the distribution on the

rectangle with density fX1,X2(x1, x2) proportional to |x1 − x2|.

6.6.3 AD-HOC M ETHODS

The methods of inversion and rejection sampling may be improved in some special cases. We
mention in detail the case of the normal distribution, whichis important to optimize because of its
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frequent use.

SAMPLING A NORMAL RANDOM VARIABLE . The method of inversion cannot be directly
used, as the CDF is hard to compute. An alternative is based onthe method ofchange of variables,
as given in the next proposition, the proof of which is by direct calculus.

PROPOSITION6.6.1. Let (X, Y ) be independent, standard normal random variables. Let
{

R =
√
X2 + Y 2

Θ = arg(X + jY )

R andΘ are independent,R has a Rayleigh distribution (i.e is positive with densityre
−r2

2 ) andΘ
is uniformly distributed on[0, 2π].

The CDF of the Rayleigh distribution can easily be inverted:F (r) = P(R ≤ r) = 1− e−r2/2 and
F−1(p) =

√

−2 ln(1− p). A sampling method for a couple of two independent standard normal
variables is thus (Box-Müller method):

drawU ∼Unif(0, 1) andΘ ∼Unif(0, 2π)
R =

√

−2 ln(U)
X = R cos(Θ), Y = R sin(Θ)
return (X, Y )

CORRELATED NORMAL RANDOM VECTORS. We want to sample(X1, ..., Xn) as a normal
random vector with zero mean and covariance matrixΩ (see Section C.2). If the covariance matrix
is diagonal (i.e.Ωi,j = 0 for i 6= j) then theXis are independent and we can sample them one by
one (or better, two by two). We are interested here in the casewhere there is some correlation.

The method we show here is again based on a change of variable.There exists always a change
of basis inRn such that, in the new basis, the random vector has a diagonal covariance matrix. In
fact, there are many such bases (one of them is orthonormal and can be obtained by diagonalisation
of Ω, but is much more expensive than the method we discuss next).An inexpensive and stable
algorithm to obtain one such basis is called Choleski’s factorization method. It finds a triangular
matrix L such thatΩ = LLT . Let Y be a standard normal vector (i.e. an i.i.d. sequence ofn
standard normal random variables). LetX = LY . The covariance matrix ofX is

E(XXT ) = E(LY (LY )T )) = E(L(Y Y T )LT ) = LE(Y Y T )LT = LLT = Ω

Thus a sample ofX can be obtained by samplingY first and computingLY . Figure 6.6.3 shows
an example.

There are many ways to optimize the generation of samples. Good references are [108] and [90]

6.7 IMPORTANCE SAMPLING

6.7.1 MOTIVATION

Sometimes we want to estimate by simulation the probabilityof a rare event, for example, a
failure probability or a bit error rate. In such cases, straightforward Monte Carlo simulation is not
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Figure 6.11:1000 independent samples of the normal vector X1, X2 with 0 mean and covariance Ω1,1 =
σ2
1 = 1, Ω2,2 = σ2

2 = 1 and Ω1,2 = Ω2,1 = 0 (left), Ω1,2 = Ω2,1 = 1/2 (right). The right sample is obtained by
the transformation X = LY with Y i.i.d. ∼ N0,1 and L = (1, 0; 1/2,

√
3/2).

efficient, as it requires a large number of runs to obtain a reliable estimate; for example, assume
the failure probability to be estimated is10−5. With R independent replications of a Monte Carlo
simulation, the expected number or runs which produce one failure is N/10−5, so we need107

runs to be able to observe 100 failures. In fact, we need orderof 4.107 runs in order to obtain a
95% confidence interval with a margin on the failure probabilityof the order of10%.

Assume we want to estimate a failure probabilityp, by doingR replications. A naive Monte Carlo
estimate iŝp = N

R
whereN is the number of runs which produce a failure. A1 − α confidence

interval for p has a length of ofη times the standard deviation ofp̂, whereN0,1(η) = 1 − α
2
.

The relative accuracy of the estimator isηc, wherec is the coefficient of variation of̂p. Now

c =

√
p(1−p)/R

p
=

√
1−p√
Rp

≈ 1√
Rp

, where the approximation is for very smallp. Assume we want a
relative accuracy on our estimation ofp equal toβ. We should take η√

Rp
= β, i.e.

R =
η2

β2p
(6.14)

For example, forα = 0.05 we haveη = 1.96 and thus forβ = 0.10 we should takeR ≈ 400
p

.

6.7.2 THE I MPORTANCE SAMPLING FRAMEWORK

Importance sampling is a method that can be used to reduce the number of required runs in a
Monte Carlo simulation, when the events of interest (e.g. the failures) are rare. The idea is to
modify the distribution of the random variable to be simulated, in a way such that the impact of
the modification can be exactly compensated, and such that, for the modified random variable, the
events of interest are not rare.

Formally, assume we simulate a random variableX in R
d, with PDFfX(). Our goal is to estimate

p = E(φ(X)), whereφ is the metric of interest. Frequently,φ(x) is the indicator function, equal
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to 1 if the valuex corresponds to a failure of the system, and0 otherwise. We replace the original
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Figure 6.12:First Panel: log of the PDF of X1 in Example 6.14. Second panel: log of the PDF of the
twisted distribution (i.e. distribution of X̂1) when θ = 4.2.

PDFfX() by another one,fX̂(), called the PDF of theimportance sampling distribution, on the
same spaceRd. We assume that

if fX(x) > 0 then fX̂(x) > 0

i.e. the support of the importance sampling distribution contains that of the original one. Forx in
the support offX(), define theweighting function

w(x) =
fX(x)

fX̂(x)
(6.15)

We assume thatw(x) can easily be evaluated. Let̂X be a random variable whose distribution is
the importance sampling distribution. We also assume that it is easy to draw a sample of̂X.

It comes immediately that

E

(

φ(X̂)w(X̂)
)

= E (φ(X)) = p (6.16)

which is the fundamental equation of importance sampling. An estimate ofp is thus given by

pest =
1

R

R
∑

r=1

φ(X̂r)w(X̂r) (6.17)

whereX̂r areR independent replicates of̂X.

Why would this be easier than the original problem ? Assume wehave found a sampling distribu-
tion for which the events of interest are not rare. It followsthatw(x) is very small, butφ(X̂) is
not. So the eventsφ(X̂) = 1 are not rare, and can be reproduced many times in a short simulation.
The final result,p is small because we weight the outputsφ(X̂) by small numbers.

EXAMPLE 6.14:BIT ERROR RATE AND EXPONENTIAL TWISTING. The Bit Error Rate on a commu-
nication channel with impulsive interferers can be expressed as [68]:

p = P (X0 +X1 + ...+Xd > a) (6.18)



6.7. IMPORTANCE SAMPLING 187

0 1 2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.13:First panel: Required number of simulation runs to estimate the bit error rate in Example 6.14
with 10% of relative accuracy, using an importance sampling distribution with parameter θ (on x-axis). All
simulations estimate give the same value estimated value of p = 0.645E − 05, but the required number of
simulation runs R is proportional to the variance. Second panel: all simulations estimate p by the formula

p = E

(

φ(X̂)w(X̂)
)

; the panel shows E

(

φ(X̂)
)

, i.e. the probability that there is a bit error when X̂ is

drawn from the importance sampling distribution with parameter θ. For θ = 0 we have the true value

p = 0.645E−05. The smallest number of runs, i.e. the smallest variance, is obtained when E

(

φ(X̂)
)

≈ 0.5.

where X0 ∼ N0,σ2 is thermal noise and Xj , j = 1, ..., d represents impulsive interferers. The
distribution of Xj is discrete, with support in {±xj,k, k = 1, ..., n} ∪ {0} and:

P(Xj = ±xj,k) = q

P(Xj = 0) = 1− 2nq

where n = 40, q = 1
512 and the array {±xj,k, k = 1, ..., n} are given numerically by channel estima-

tion (Table 6.2 shows a few examples, for d = 9). The variables Xj ,j = 0, ..., d are independent.
For large values of d, we could approximate p by a gaussian approximation, but it can easily be
verified that for d of the order of 10 or less this does not hold [68].

A direct Monte Carlo estimation (without importance sampling) gives the following results (R is
the number of Monte Carlo runs required to reach 10% accuracy with confidence 95%, as of
Eq.(6.14)):
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k j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

1 0.4706 0.0547 0.0806 0.0944 0.4884 0.3324 0.4822 0.3794 0.2047
2 0.8429 0.0683 0.2684 0.2608 0.0630 0.1022 0.1224 0.0100 0.0282
... ... ...

Table 6.2:Sample Numerical values of xj,k for Example 6.14; the complete list of values is available on
the web site of the book.

σ a BER estimate R

0.1 3 (6.45 ± 0.6) × 10−6 6.2× 107

Now we apply importance sampling in order to reduce the required number of simulation runs R.
We consider importance sampling distributions derived by exponential twisting, i.e. we define the
distribution of X̂j , j = 0, ..., d by:

{

X̂j has the same support as Xj

P(X̂j = x) = ηj(θ)e
θx
P(Xj = x)

where ηj(θ) is a normalizing constant. This gives

P(Xj = −xj,k) = ηj(θ)qe
−θxj,k

P(Xj = xj,k) = ηj(θ)qe
θxj,k

P(Xj = 0) = ηj(θ)(1− 2nq)

ηj(θ)
−1 = q

n
∑

k=1

(

e−θxj,k + eθxj,k

)

+ 1− 2nq

Similarly, the distribution of the gaussian noise X̂0 is obtained by multiplying the PDF of the stan-
dard normal distribution by eθx and normalizing:

fX̂0
(x) = η0

1√
2πσ

e−
x2

2σ2 eθx

= η1e
θ2σ2

2
1√
2πσ

e−
(x−θσ2)

2

2σ2

Thus η0 = e−
θ2σ2

2 and X̂0 is normally distributed with same variance as X0 but with mean σ2θ
instead of 0. Note that for θ > 0, X̂j is more likely to take large values than Xj . The weighting
function is

w(x0, ..., xd) = e−θ
∑d

j=0 xj
1

∏d
j=0 ηj

(6.19)

We perform R Monte Carlo simulations with X̂j in lieu of Xj ; the estimate of p is

pest =
1

R

R
∑

r=1

w
(

X̂r
0 , ..., X̂

r
d

)

1{X̂r
0+...+X̂r

d>a} (6.20)

Note that θ = 0 corresponds to direct Monte Carlo (without importance sampling). All simulations
give the same estimated value p ≈ 0.645E − 05, but the required number of simulation runs
required to reach the same accuracy varies by more than 3 orders of magnitude.
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6.7.3 SELECTING AN I MPORTANCE SAMPLING DISTRIBUTION

The previous example shows that importance sampling can dramatically reduce the number of
Monte Carlo runs for estimating rare events, but also that itis important to carefully choose the
importance sampling distribution, as a wrong choice my giveno improvement (or might even be
worse).

A first observation can be derived from the analysis of Figure6.13: the best choice is when the
probability of the event of interest, under the importance sampling distribution, is close to0.5 (i.e.

E

(

φ(X̂)
)

≈ 0.5). Note that, perhaps contrary to intuition, choosingE

(

φ(X̂)
)

≈ 1 is a very

bad choice. In other words, we need to make the events of interest not so rare, but not so certain
either. This can be explained as follows. If we takeE

(

φ(X̂)
)

≈ 1, the simulator has a hard

time producing samples where the event of interest doesnot occur, which is as bad as the initial
problem.

A second observation is that we can evaluate the efficiency ofan importance sampling estimator
of p by its variance

v̂ = var
(

φ(X̂)w(X̂)
)

= E

(

φ(X̂)2w(X̂)2
)

− p2

Assume that we want a1−α confidence interval of relative accuracyβ. By a similar reasoning as
in Eq.(6.14), the required number of Monte Carlo estimates is

R = v̂
η2

β2p2
(6.21)

Thus, it is proportional tôv. In the formula,η is defined byN0,1(η) = 1 − α
2
; for example, with

α = 0.05, β = 0.1, we needR ≈ 400v̂/p2.

Therefore, the problem is to find a sampling distribution which minimizesv̂, or, equivalently,

E

(

φ(X̂)2w(X̂)2
)

. The theoretical solution can be obtained by calculus of variation; it can be

shown that the optimal sampling distributionfX̂(x) is proportional to|φ(x)| fX(x). In practice,
however, it is impossible to compute, since we assume in the first place that it is hard to compute
φ(x).

In Algorithm 4 we give a heuristic method, which combines these two observations. Assume
we have at our disposal a family of candidate importance sampling distributions, indexed by a
parameter12 θ ∈ Θ. The function varEst() estimates, by Monte Carlo, whether a givenθ satisfies

E

(

φ(X̂)
)

≈ 0.5; if so, it returns an estimate ofE
(

φ(X̂)2w(X̂)2
)

, else it returns∞. Note that the

number of Monte Carlo runs required by varEst() is small, since we are interested only in returning

results in the cases whereE
(

φ(X̂)
)

≈ 0.5, i.e. we are not in the case of rare events.

The first part of the algorithm (line 8) consists in selectingone value ofθ which minimizes
varEst(θ). This can be done by random exploration of the setΘ, or by any heuristic optimiza-
tion method (such as Matlab’sfminsearch).

12For simplicity, we do not show the dependency onθ in expressions such asE
(

φ(X̂)
)

, which could be more

accurately described asE
(

φ(X̂)
∣

∣

∣ θ
)

.
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Algorithm 4 Determination of a good Importance Sampling distribution. We want to estimate p =
E (φ(X)), where X a random variable with values in R

d and φ(x) ∈ [0; 1]; X̂ is drawn from the importance
sampling distribution with parameter θ; w() is the weighting function (Eq.(6.15)).

1: function MAIN

2: η = 1.96; β = 0.1; pCountMin= 10; ⊲ β is the relative accuracy of the final result
3: GLOBAL R0 = 2 η2

β2 ; ⊲ Typical number of iterations
4: ⊲ R0 chosen by Eq.(6.14) withp = 0.5
5: Rmax = 1E + 9; ⊲ Maximum number of iterations
6: c = β2

η2
;

7:

8: Findθ0 ∈ Θ which minimizes varest(θ);
9:

10: pCount0= 0; pCount= 0;m2 = 0;
11: for r = 1 : Rmax do
12: draw a samplex of X̂ using parameterθ0;
13: pCount0=pCount0+φ(x);
14: pCount=pCount+φ(x)w(x);
15: m2 = m2 + (φ(x)w(x))2;
16: if r ≥ R0 and pCountMin< pCount< r− pCountMinthen

17: p =
pCount

r
;

18: v = m2

r
− p2;

19: if v ≤ cp2r then break
20: end if
21: end if
22: end for
23: return p, r
24: end function
25:

26: function VAREST(θ) ⊲ Test ifE
(

φ(X̂)
)

≈ 0.5 and if so estimateE
(

φ(X̂)2w(X̂)2
)

27: CONSTp̂min = 0.3, p̂max = 0.7;
28: GLOBAL R0;
29: p̂ = 0; m2 = 0;
30: for r = 1 : R0 do
31: draw a samplex of X̂ using parameterθ;
32: p̂ = p̂ + φ(x);
33: m2 = m2 + (φ(x)w(x))2;
34: end for
35: p̂ = p̂

R
;

36: m2 =
m2

R
;

37: if p̂min ≤ p̂ ≤ p̂max then
38: return m2;
39: else
40: return ∞;
41: end if
42: end function
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The second part (lines 10 to 23) uses the bestθ and importance sampling as explained earlier. The
algorithms performs as many Monte Carlo samples as requiredto obtained a given accuracy level,
using Eq.(6.21) (line 19).

EXAMPLE 6.15:BIT ERROR RATE, RE-VISITED. We can apply Algorithm 4 directly. With the same
notation as in Example 6.14, an estimate of v̂, the variance of the importance sampling estimator,
is

v̂est =
1

R

R
∑

r=1

w
(

X̂r
0 , ..., X̂

r
d

)2
1{X̂r

0+...+X̂r
d>a} − p2est (6.22)

We computed v̂est for different values of θ; Figure 6.13 shows the corresponding values of the
required number of simulation runs R (to reach 10% accuracy with confidence 95%), as given by
Eq.(6.21)).

Alternatively, one could use the following optimization. We can avoid the simulation of a normal
random variable by noticing that Eq.(6.18) can be replaced by

p := P (X0 +X1 + ...+Xd > a)

= P (X0 > a− (X1 + ...+Xd))

= E (P (X0 > a− (X1 + ...+Xd) |X1, ...,Xd))

= E

(

1−N0,1

(

a− (X1 + ...+Xd)

σ

))

:= E (φ (X1 + ...+Xd))

where, as usual, N0,1() is the cdf of the standard normal distribution and φ(x) = 1 − N0,1(x). So
the problem becomes to compute E (φ (X1 + ...+Xd)).

We applied Algorithm 4 with the same numerical values as in Example 6.14 and with exponential
twisting. Note the difference with Example 6.14: we modify the distributions of X1...Xd but not of

the normal variable X0. The best θ is now for E
(

φ(X̂)
)

≈ 0.55 (instead of 0.5) and the number of

simulation runs required to achieve the same level of accuracy is slightly reduced.

In the above example we restricted the choice of the importance sampling distribution to an ex-
ponential twist, with the same parameterθ for all random variablesX1...Xd. There are of course
many possible variants; for example, one might use a different θ for eachXj, or one can use differ-
ent methods of twisting the distribution (for example re-scaling); note however that the complexity
of the choice of an importance sampling distribution shouldnot outweigh its final benefits, so in
general, we should aim at simple solutions. The interested reader will find a general discussion
and overview of other methods in [98].

6.8 PROOFS

THEOREM 6.6.1

The pseudo-inverse has the property that [55, Thm 3.1.2]

F (x) ≥ p⇔ F−1(p) ≤ x
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Let Y = F−1(U). ThusP(Y ≤ y) = P(F (y) ≤ U) = F (y) and the CDF ofY is F ().

THEOREM 6.6.2

LetN be the (random) number of iterations of the algorithm, and let (X̃k, Ỹk) be the sample drawn at thekth iteration.
(These samples are independent, but in general,X̃k andỸk arenot independent). Letθ = P(Ỹ ∈ A). We assume
θ > 0 otherwise the conditional distribution of̃X is not defined. The output of the algorithm isX = X̃N .

For some arbitrary measurableB in S, we computeP(X̃N ∈ B):

P

(

X̃N ∈ B
)

=
∑

k≥1

P

(

X̃k ∈ B and N = k
)

=
∑

k≥1

P

(

X̃k ∈ B and Ỹ1 6∈ A, ..., Ỹk−1 6∈ A, Ỹk ∈ A
)

=
∑

k≥1

P

(

X̃k ∈ B and Ỹk ∈ A
)

P

(

Ỹ1 6∈ A
)

...P
(

Ỹk−1 6∈ A
)

=
∑

k≥1

P

(

X̃k ∈ B|Ỹk ∈ A
)

θ(1− θ)k−1

=
∑

k≥1

P

(

X̃1 ∈ B|Ỹ1 ∈ A
)

θ(1 − θ)k−1

= P

(

X̃1 ∈ B|Ỹ1 ∈ A
)

∑

k≥1

θ(1 − θ)k−1

= P

(

X̃1 ∈ B|Ỹ1 ∈ A
)

The second equality is by definition ofN . The third is by the independence of(X̃k, Ỹk) and(X̃k′ , Ỹk′) for k 6= k′.
The last equality is becauseθ > 0. This shows that the distribution ofX is as required.

N − 1 is geometric with parameterθ thus the expectation ofN is 1/θ.

THEOREM 6.6.3

Apply Theorem 6.6.2 withX̃ = X andỸ = (X,U). All we need to show is that the conditional density ofX given
thatU ≤ fn

Y (X)
fX (X) is fY .

To this end, pick some arbitrary functionφ. We have

E

(

φ(X)|U ≤ fn
Y (X)

fX(X)

)

= K1E

(

φ(X)1
{U≤ fn

Y
(X)

fX (X)
}

)

= K1

∫

E

(

φ(x)1
{U≤ fn

Y
(x)

fX (x)
}
|X = x

)

fX(x)dx

= K1

∫

φ(x)
fn
Y (x)

fX(x)
fX(x)dx

=
K1

K

∫

φ(x)fY (x)dx =
K1

K
E(φ(Y ))

whereK1 is some constant. This is true for allφ thus, necessarily,K1/K = 1 (takeφ = 1).
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6.9 REVIEW

QUESTION 6.9.1. How do you generate a sample of a real random variable with PDFf() and
CDF F () ? 13

QUESTION 6.9.2. Why do we care about stationarity ?14

QUESTION 6.9.3. What is rejection sampling ?15

QUESTION 6.9.4. How do you generate a sample of a discrete random variable ?16

QUESTION 6.9.5. What is importance sampling?17

QUESTION 6.9.6. Why do we need to run independent replications of a simulation ? How are they
obtained ?18

QUESTION 6.9.7. Consider the sampling method: DrawCOIN(p) until it returns 0. The value of
the sampleN is the number of iterations. Which distribution is that a sample from ? Is this a good
method ?19

QUESTION 6.9.8. If we do a direct Monte Carlo simulation (i.e without importance sampling) of
a rare event, the theorem for confidence intervals of successprobabilities (Theorem 2.2.4) gives a
confidence interval. So why do we need importance sampling ?20

13In mayn cases matlab does it. If not, ifF () is easily invertible, use CDF inversion. Else, iff() has a bounded
support, use rejection sampling.

14Non terminating simulations depend on the initial conditions, and on the length of the simulation. If the simulator
has a stationary regime, we can eliminate the impact of the simulation length (in simulated time) and of the initial
conditions.

15Drawing independent samples of an object with some probability distributionp(.), some conditionC is met. The
result is a sample of the conditional probabilityp(.|C).

16With the method of CDF inversion. Letpk be the probability of outcomek, k = 1...n andFk = p1 + ... + pk
(with F0 = 0). DrawU ∼ Unif(0, 1); if Fk ≤ U < Fk then letN = k.

17A method for computing probabilities of rare events. It consists in changing the initial probability distribution in
order to make rare events less rare (but not certain).

18To obtain confidence intervals. By running multiple instances of the simulation program; if done sequentially,
the seed of the random generator can be carried over from one run to the next. If replications are done in parallel on
several machines, the seeds should be chosen independentlyby truly random sources.

19The distribution ofN is geometric withθ = 1 − p, so this method does produce a sample from a geometric
distribution. However it draws in average1

θ
random numbers from the generator, and the random number generator

is usually considered an expensive computation compared toa floating point operation. Ifθ is small, the procedure in
Example 6.11 (by CDF inversion) is much more efficient.

20Assume we simulate a rare event, without importance sampling, and find0 success out ofR Monte Carlo repli-
cates. Theorem 2.2.4 gives a confidence interval for probability of success equal to[0, 3.869

R
] at confidence level0.95;

for example, ifR = 104, we can say thatp < 4 ·10−4. Importance sampling will give more, it will provide an estimate
of, for example5.33 · 10−5 ± 0.4 · 10−5. In many cases (for example when computingp-values of tests), all we care
about is whetherp is smaller than some threshold; then we may not need importance sampling. Importance sampling
is useful if we need the magnitude of the rare event.
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CHAPTER 7

PALM CALCULUS, OR THE IMPORTANCE OF

THE V IEWPOINT

When computing or measuring a performance
metric (as defined in Chapter 1), one should spec-
ify which observer’sviewpoint is taken. For ex-
ample, in a simulation study of an information
server, one may be interested in the metric “worst
case backlog”, defined as the 95-percentile of the
number of pending requests.
One way is to measure the queue of pending re-
quests at request arrival epochs over a large num-
ber of arriving requests, and compute the 95-
percentile of the resulting empirical distribution.
An alternative is to measure the queue of pending
requests at periodic intervals (say every second)
over a long period of time and compute the 95-
percentile of the resulting empirical distribution.
The former method reflects the viewpoint of an
arriving request, the latter of an observer at an
arbitrary point in time. The former method eval-
uates the metric using a clock that ticks at every
request arrival, whereas the latter uses a standard
clock. Both methods will usually provide differ-
ent values of the metric. Therefore, a metric def-
inition should specify which clock, or viewpoint
is used, and the choice should be relevant for the
specific issues being addressed.

This fish 

is black

This fishThis fish

is white

In Section 7.1, we give an intuitive definition of event clocks and of event versus time averages;
we show that subtle, but possibly large, sampling biases areunavoidable. We also show how to use
the large time heuristic to derive Palm calculus formulas, i.e. formulas that relate metrics obtained

195
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with different clocks.

In the rest of the chapter we formally present Palm calculus,i.e. a formal treatment of these
intuitive definitions and formulas. This is a branch of probability which is not well known, though
it is quite important for any measurement or simulation study, and can be presented quite simply.
In essence, the Palm probability of an event is the conditional probability, given that some specific
point process has a point. Making sense of this is simple in discrete time, but very complex in
continuous time, as is often the case in the theory of stochastic processes. We do not dwell on
formal mathematical constructions, but we do give formulasand exact conditions under which
they apply.

We introduce Feller’s paradox, an apparent contradiction in waiting times that can explained by a
difference in viewpoints. We give useful formulas such as the Rate Conservation Law and some
of its many consequences such as Little’s, Campbell’s shot noise, Neveu’s exchange and Palm’s
inversion formulas. We discuss simulations defined as stochastic recurrences, show how this can
explain when simulations freeze and how to avoid transient removals at all (perfect simulation).
Last, we give practical formulas for computing Palm probabilities with Markov models observed
along a subchain, and use these to derive the PASTA property.
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7.1 AN I NFORMAL I NTRODUCTION

In this section we give an intuitive treatment of event versus time averages and explain the use of
event clocks. A formal treatment involves Palm calculus andis given in Section 7.2.

7.1.1 EVENT VERSUS T IME AVERAGES

Consider a discrete event simulation that runs for a long period of time, and letT0, T1, . . . , TN be
a sequence ofselected events, for example, the request arrival times at an information server.
Assume that we associate to the stream of selected events a clock that ticks at timesT0, T1, . . . , TN

(theevent clock). An event average statistic is any performance metric that his computed based
on sampling the simulation state at timesTn, i.e. using the event clock. For example, the average
queue length at the information server upon request arrivalcan be defined as

Q̄0 :=
1

N + 1

N
∑

n=0

Q(T−
n )

(whereQ(t−) is the queue size just before timet) and is an event average statistic.

In contrast, atime average statistic is obtained using the standard clock, assumed to have infinite
accuracy (i.e. the standard clock ticks everyδ time units, whereδ is “infinitely small”). For
example, the average queue length, defined by

Q̄ :=
1

TN − T0

∫ TN

T0

Q(s)ds

is a time average statistic.

In signal processing parlance, event averages correspond to adaptive sampling.

EXAMPLE 7.1:GATEKEEPER. A multitasking system receives jobs. Any arriving job is first pro-
cessed by a “gatekeeper task”, which allocates the job to an available “application processor”.
Due to power saving, the gatekeeper is available only at times, 0, 90, 100, 190, 200, ... (in millisec-
onds). For example a job that arrives at time 20ms is processed by the gatekeeper at time 90ms.

A job that is processed by the gatekeeper at times 0, 100, 200... is allocated to an application
processor that has an execution time of 1000ms. In contrast, a job that is processed by the
gatekeeper at times 90, 190, ... has an execution time of 5000ms (Figure 7.1). We assume there
is neither queuing nor any additional delay. We are interested in the average job execution time,
excluding the time to wait until the gatekeeper wakes up to process the job.
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Figure 7.1:Gatekeeper: jobs are dispatched to a processor with processing time equal to 5000 or 1000 ms

The system designer thinks that the average job execution time is

Ws =
1000 + 5000

2
= 3000

since there are two application processors and this is the average of their execution times.

A customer may have a different viewpoint. If she sends a job to the system at a random instant,
she will be allocated to an application processor depending on the time of arrival. She computes
her performance metric assuming that she picks a millisecond at random uniformly in an interval
[0, T ] where T is large, and obtains

Wc =
90

100
× 5000 +

10

100
× 1000 = 4600

The metric Ws is an event average; it can be measured using the event clock that ticks whenever
the gatekeeper wakes up. The metric Wc is a time average; it can be measured using a clock that
ticks every millisecond.

This example shows that event averages may be very differentfrom time averages, in other words,
sampling biasmay be a real issue. Therefore it is necessary, when defining ametric, to specify
which clock (i.e which viewpoint) is adopted. Further, one should discuss which viewpoint makes
sense for the performance of interest. In the previous example, the time average viewpoint is a
better metric as it directly reflects customer experience.

7.1.2 THE L ARGE T IME HEURISTIC

Palm calculus is a set of formulas for relating event and timeaverages. They form the topic of the
other sections in this chapter. However, it may be useful to know that most of these formulas can
be derived heuristically using thelarge time heuristic, which can be described as follows.

1. formulate each performance metric as a long run ratio, as you would do if you would be
evaluating the metric in a discrete event simulation;

2. take the formula for the time average viewpoint and break it down into pieces, where each
piece corresponds to a time interval between two selected events;

3. compare the two formulations.
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We explain it on the following example.

EXAMPLE: GATEKEEPER, CONTINUED. We can formalize Example 7.1 as follows. The two metrics
areWs (event average, system designer’s viewpoint) andWc (time average, customer’s viewpoint).

1. In a simulation, we would estimate Ws and Wc as follows. Let T0, T1, . . . , TN be the selected
event times (times at which gatekeeper wakes up) and Sn = Tn − Tn−1 for n = 1 . . . N . Let
Xn be the execution time for a job that is processed by the gatekeeper at time Tn

Ws :=
1

N

N
∑

n=1

Xn (7.1)

Wc :=
1

TN − T0

∫ TN

T0

XN+(t)dt (7.2)

where N+(t) is the index of the next event clock tick after t, i.e. a job arriving at time t is
processed by the gatekeeper at time Tn with n = N+(t).

2. We break the integral in Eq.(7.2) into pieces corresponding to the intervals [Tn, Tn+1):

Wc =
1

TN − T0

N
∑

n=1

∫ Tn

Tn−1

XN+(t)dt =
1

TN − T0

N
∑

n=1

∫ Tn

Tn−1

Xndt

=
1

TN − T0

N
∑

n=1

SnXn (7.3)

3. We now compare Eqs.(7.1) and (7.3). Define the sample average sleep time S̄ := 1
N

∑N
n=1 Sn,

the sample average execution time X̄ := 1
N

∑N
n=1Xn and the sample cross-covariance

Ĉ :=
1

N

N
∑

n=1

(Sn − S̄)(Xn − X̄) =
1

N

N
∑

n=1

SnXn − S̄X̄

We can re-write Eqs.(7.1) and (7.3) as:

Ws = X̄

Wc =
1

NS̄

N
∑

n=1

SnXn =
1

S̄
(Ĉ + S̄X̄) = X̄ +

Ĉ

S̄

In other words, we have shown that

Wc =Ws +
Ĉ

S̄
(7.4)

Numerically, we find Ĉ
S̄
= 1600 and Eq.(7.4) is verified.

Eq.(7.4) is our first example of Palm calculus formula; it relates the time averageWs to the event
averageWc. Note that it holds quite generally, not just for the system in Example 7.1. We do not
need any specific assumptions on the distribution of sleep orexecution times, nor do we assume
any form of independence. The only required assumption is that the metricsWs andWc can be
measured using Eqs.(7.1) and (7.2). In the next section, we give a formal framework where such
assumptions hold.
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Figure 7.2:The Stop and Go protocol

Eq.(7.4) shows that, for this example, the difference in viewpoints is attributed to the cross-
covariance between sleep time and execution time. A positive [resp. negative] cross-covariance
implies that the time average is larger [resp smaller] than the event average. In Example 7.1, the
cross-covariance is positive and we do find a larger time average. If sleep time and execution times
are non-correlated, the two viewpoints happen to produce the same metric.

7.1.3 TWO EVENT CLOCKS

There exist formulas not only for relating time and event averages, but also for relating different
event averages (see Theorem 7.3.5). We show in this section how such formulas can be derived,
using the following variant of the large time heuristic:

1. formulate each performance metric as a long run ratio, as you would do if you would be
evaluating the metric in a discrete event simulation;

2. take the formula for one event average viewpoint and breakit down into pieces, where each
piece corresponds the time interval between two selected events of the second viewpoint;

3. compare the two formulations.

EXAMPLE 7.2:STOP AND GO PROTOCOL. A source sends packets to a destination. Error recovery
is done by the stop and go protocol, as follows. When a packet is sent, a timer, with fixed value
t1, is set. If the packet is acknowledged before t1, transmission is successful. Otherwise, the
packet is re-transmitted. The packet plus acknowledgement transmission and processing have a
constant duration equal to t0 < t1. The proportion of successful transmissions (fresh or not) is
1 − α. We assume that the source is greedy, i.e., always has a packet ready for transmission.
Can we compute the throughput θ of this protocol without making any further assumptions ? The
answer is yes, using the large time heuristic.

To this end, we compare the average transmission times sampled with the two different event
clocks. The former (clock “a”) ticks at every transmission or re-transmission attempt; the latter
(clock “0”) ticks at fresh arrivals. Accordingly, let τa be the average time between transmission or
retransmission attempts, and τ0 be the average time between fresh arrivals (Figure 7.2).

1. Consider a simulation such that there are N + 1 fresh arrivals, at times T0, T2, . . . , TN , with
N large. Tn are the ticks of clock 0. The estimates of τa and τ0 are

τa =
TN − T0
Na
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τ0 =
TN − T0

N
(7.5)

where Na is the number of transmission or retransmission attempts generated by packets 1
to N . The estimate of the throughput θ is

θ =
N

TN − T0
=

1

τ0

Also, by definition of the error ratio α: Na(1− α) = N thus

τa = (1− α)τ0

2. We focus on τa and break it down into pieces corresponding to the ticks of clock 0:

τa =
TN − T0
Na

=
1

Na

N
∑

n=1

Xn

where Xn is the total transmission and retransmission time for the nth packet, i.e. the time
interval between two ticks of clock 0. Let An be the number of unsuccessful transmission
attempts for the nth packet (possibly 0). It comes:

Xn = Ant1 + t0

τa =
1

Na

(

t1

N
∑

n=1

An + t0N

)

=
1

Na
(t1(Na −N) + t0N))

= αt1 + (1− α)t0 (7.6)

3. Compare Eqs.(7.5) and (7.6) and obtain τ0 = α
1−αt1 + t0; the throughput is thus:

θ =
1

α
1−α t1 + t0

(7.7)

In this example, as in general with Palm calculus formulas, the validity of a formula such as
Eq.(7.7) does not depend on any distributional or independence assumption. We did not make any
particular assumption about the arrival and failure processes, they may be correlated, non Poisson,
etc.

7.1.4 ARBITRARY SAMPLING M ETHODS

To conclude this section we describe how different viewpoints occur in various situations, with
clocks that may not be related to time. Here too, the large “time” heuristic provides useful rela-
tionships.

EXAMPLE 7.3:FLOW VERSUS PACKET CLOCK [96]. Packets arriving at a router are classified in
“flows”. We would like to plot the empirical distribution of flow sizes, counted in packets. We
measure all traffic at the router for some extended period of time. Our metric of interest is the
probability distribution of flow sizes. We can take a flow “clock”, or viewpoint, i.e. ask: pick an
arbitrary flow, what is its size ? Or we could take a packet viewpoint and ask: take an arbitrary
packet, what is its size ? We have thus two possible metrics (Figure 7.3):
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Figure 7.3:Distribution of flow sizes, viewed by an arbitrary flow and an arbitrary packet, measured by an
internet service provider.

Per flow fF (s) = 1/N× number of flows with length s, where N is the number of flows in the
dataset;

Per packet fP (s) = 1/P× number of packets that belong to a flow of length s, where P is the
number of packets in the dataset;

The large time heuristic helps us find a relation between the two metrics.

1. For s spanning the set of observed flow sizes:

fF (s) =
1

N

N
∑

n=1

1{Sn=s} (7.8)

fP (s) =
1

P

P
∑

p=1

1{SF (p)=s} (7.9)

where Sn be the size in bytes of flow n, for n = 1, . . . N , and F (p) is the index of the flow
that packet number p belongs to.

2. We can break the sum in Eq.(7.9) into pieces that correspond to ticks of the flow clock:

fP (s) =
1

P

N
∑

n=1

∑

p:F (p)=n

1{Sn=s} =
1

P

N
∑

n=1

P
∑

p=1

1{F (p)=n}1{Sn=s}

=
1

P

N
∑

n=1

1{Sn=s}

P
∑

p=1

1{F (p)=n} =
1

P

N
∑

n=1

1{Sn=s}s =
s

P

N
∑

n=1

1{Sn=s} (7.10)
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3. Compare Eqs.(7.8) and (7.10) and obtain that for all flow size s:

fP (s) = ηsfF (s) (7.11)

where η is a normalizing constant (η = N/P ).

Eq.(7.11) relates the two ways of computing the distribution of flow sizes. Note that they differ by
one exponent, so it could be that the flow size is heavy tailed when sampled with a packet clock,
but light tailed when sampled with a flow clock.

EXAMPLE 7.4:K ILOMETER VERSUSTIME CLOCK: CYCLIST’ S PARADOX . A cyclist rides swiss moun-
tains; his speed is 10 km/h uphill and 50 km/h downhill. A journey is made of 50% uphill slopes and
50% downhill slopes. At the end of the journey, the cyclist is disappointed to read on his speedome-
ter an average speed of only 16.7 km/h, as he was expecting an average of 10+50

2 = 30 km/h.
Here, we have two ways of measuring the average speed: with the standard clock (speedometer),
or with the kilometer clock (cyclist’s intuition). Let us apply the large time heuristic.

1. Pick a unit of length (perhaps smaller than the kilometer) such that the cyclist’s speed is
constant on a piece of trip of length 1, and let vl be the speed at the lth piece of the trip,
l = 1, ..., L, where L is the trip length. The average speed measured with the standard clock,
St and with the kilometer clock, Sk are:

St = L/T

Sk =
1

L

L
∑

l=1

vl (7.12)

where T is the trip duration.
2. Break L into pieces corresponding to the km clock:

T =
L
∑

l=1

1

vl

St =
L

∑L
l=1

1
vl

(7.13)

3. Thus St (Eq.(7.13)) is the harmonic mean of vl whereas Sk (Eq.(7.12)) is the arithmetic
mean (Section 2.4.3). The harmonic mean is the inverse of the mean of the inverses. If
the speed is not constant throughout the whole trip, the harmonic mean is smaller than the
arithmetic mean [106], thus the cyclist’s intuition will always have a positive bias (leading to
frustration).

In this case the large time heuristic does not give a closed form relationship between the two
averages; however, a closed form relationship can be obtained for the two distributions of speeds.
Using the same method as in Example 7.3, one obtains

ft(v) = η
1

v
fk(v) (7.14)

where ft(v) [resp. fk(v)] is the PDF of the speed, sampled with the standard clock [resp. km
clock] and η is a normalizing constant; ft puts more mass on the small values of the speed v, this
is another explanation to the cyclist’s paradox.
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7.2 PALM CALCULUS

Palm calculus is a branch of probability that applies to stationary point processes. We give an
intuitive, but rigorous, treatment. A complete mathematical treatment can be found for example in
[4, 88] or in [95] in the context of continuous time Markov chains.

7.2.1 HYPOTHESES

STATIONARITY We assume that we are observing the output of a simulation, which we interpret
as a sample of a stochastic processS(t). Time t is either discrete or continuous.This process is
stationary if for any anyn, any sequence of timest1 < t2 < ... < tn and any time shiftu the
joint distribution of(S(t1 + u), S(t2 + u), ..., S(tn + u)) is independent ofu. In other words, the
process does not change statistically as it gets older. In practice, stationarity occurs if the system
has a stationary regime and we let the simulation run long enough (Chapter 6).

We also assume that, at every timet, we are able to make an observationX(t) from the simulation
output. The value ofX(t) may be in any space. We assume that the processX(t) is jointly station-
ary with the simulation state processS(t) (i.e. (X(t), S(t)) is a stationary process). Note that even
if the simulation is stationary, one might easily define outputs that are not jointly stationary (such
as:X(t) = the most recent request arrival time at an information server). A sufficient condition for
X(t) to be jointly stationary withS(t) is

1. at every timet, X(t) can be computed from the present, the past and/or the future of the
simulation stateS(t), and

2. X(t) is invariant under of change of the origin of times.

For example, if an information server can be assumed to be stationary, thenX(t) = time elapsed
since the last request arrival time andX(t) = the queue size at timet satisfy the conditions.

7.2.2 DEFINITIONS

POINT PROCESS We introduce now the definition ofstationary point process. Intuitively,
this is the sequence of times at which the simulation does a transition in some specified set.

Formally, a stationary point process in our setting is associated with a subsetF0 of the set of all
possible state transitions of the simulation. It is made of all time instantst at which the simulation
does a transition inF0, i.e. such that(S(t−), S(t+)) ∈ F0.

In practice, we do not need to specifyF0 explicitly. In contrast, we have a simulation in steady state
and we consider times at which something of a certain kind happens; the only important criterion is
to make sure that the firing of a point can be entirely determined by observing only the simulation.
For example, we can consider as point process the request arrival times at an information server.

Technically, we also need to assume that the simulation process is such that the point process is
simple, i.e. with probability 1 two instants of the point process cannot be equal; (this is true in
practice if the simulation cannot have several transitionsat the same time), and non explosive, i.e.
the expected number of time instants over any finite intervalis finite. This implies that the instants
of the point process can be enumerated and can be described asan increasing sequence of (random)
timesTn, wheren is integer, andTn < Tn+1.
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In continuous time, to avoid ambiguities, we assume that allprocesses are right continuous, so that
if there is a transition at timet, S(t) is the state of the simulation just after the transition.

The sequenceTn is (as a thought experiment) assumed to be infinite both in thepresent and the
past, i.e. the indexn spansZ. With the terminology of Section 7.1,(Tn)n∈Z is the sequence of
ticks of the event clock.

THE ARBITRARY POINT IN T IME Since the simulation is in stationary regime, we imagine
that, at time0, the simulation has been running for some time. Because the point process is defined
in terms of transitions of the simulation stateS(t), it is also stationary. It is convenient, and
customary, to denote the time instants of the point processTn such that

... < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < ... (7.15)

In other words,T0 is the last instant of the point process before time0, andT1 the next instant
starting from time0. This convention is the one used by mathematicians to give a meaning to “an
arbitrary point in time”: we regardt = 0 as our random time instant, in some sense, we fix the
time origin arbitrarily.

This differs from the convention used in many simulations, wheret = 0 is the beginning of the
simulation. Our convention, in this chapter, is thatt = 0 is the beginning of the observation period
for a simulation that has a stationary regime and has run longenough to be in steady state.

I NTENSITY Theintensity λ of the point process is defined as the expected number of points per
time unit. We have assumed that there cannot be two points at the same instant. In discrete or
continuous time, the intensityλ is defined as the unique number such that the numberN(t, t + τ)
of points during any interval[t, t + τ ] satisfies [4]:

E(N(t, t + τ)) = λτ (7.16)

In discrete time,λ is also simply equal to the probability that there is a point at an arbitrary time:

λ = P(T0 = 0) = P(N(0) = 1) = P(N(t) = 1) (7.17)

where the latter is valid for anyt, by stationarity.

One can think ofλ as the (average) rate of the event clock.

PALM EXPECTATION AND PALM PROBABILITY LetY be a one time output of the simulation,
assumed to be integrable (for example because it is bounded). We define the expectationEt(Y ) as
the conditional expectation ofY given that a point occurs at timet:

E
t(Y ) = E(Y |∃n ∈ Z, Tn = t) (7.18)

If Y = X(t) whereX(t) and the simulation are jointly stationary,E
t(X(t)) does not depend ont.

For t = 0, it is called the:

DEFINITION 7.2.1 (Palm expectation).

E
0(X(0)) = E(X(0)| a point of the processTn occurs at time0) (7.19)

By the labeling convention in Eq.(7.15), if there is a point of the processTn at0, it must beT0, i.e.

E
0(X(0)) = E(X(0)|T0 = 0)
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Note that there is some ambiguity in the notation, as the processTn is not explicitly mentioned (in
Section 7.3.3 we will need to remove this ambiguity).

The Palmprobability is defined similarly, namely

P
0(X(0) ∈ W ) = P(X(0) ∈ W | a point of the processTn occurs at time0)

for any measurable subsetW of the set of values ofX(t). In particular, we can writeP0(T0 =
0) = 1.

The interpretation of the definition is easy in discrete time, if, as we do, we assume that the point process is “simple”,
i.e. there cannot be more than one point any instantt. In this case, Eq.(7.18) has to be taken in the usual sense of
conditional probabilities:

E
t(Y ) = E(Y |N(t) = 1) =

E(Y N(t))

E(N(t))
=

E(Y N(t))

P(N(t) = 1)
=

E(Y N(t))

λ

whereN(t) = 1 if there is a point at timet, 0 otherwise.

In continuous time, “there is a point at timet” has probability0 and cannot be conditioned upon. However, it is possible
to give a meaning to such a conditional expectation, similarto the way one can define the conditional probability
density function of a continuous random variable:

E
t(Y ) = lim

τ→0

E (Y N(t, t+ τ))

E(N(t, t+ τ))
= lim

τ→0

E (Y N(t, t+ τ))

λτ
(7.20)

where the limit is in the Radon-Nykodim sense, defined as follows. For a given random variableY , consider the
measureµ defined for any measurable subsetB of R by

µ(B) =
1

λ
E

(

Y
∑

n∈Z

1{Tn∈B}

)

(7.21)

whereλ is the intensity of the point processTn. If B is negligible (i.e. its Lebesgue measure, or length, is0) then, with
probability1 there is no event inB andµ(B) = 0. By the Radon-Nykodim theorem [91], there exists some function g
defined onR such that for anyB: µ(B) =

∫

B
g(t)dt. The Palm expectationEt(Y ) is defined asg(t). In other words,

for a given random variableY , Et(Y ) it is defined as the function oft that satisfies, for anyB:

E

(

Y
∑

n∈Z

1{Tn∈B}

)

= λ

∫

B

E
t(Y )dt (7.22)

7.2.3 INTERPRETATION AS T IME AND EVENT AVERAGES

In this section we make the link with the intuitive treatmentin Section 7.1.

T IME AVERAGES. If X(t) is jointly stationary with the simulation, it follows that the distribu-
tion ofX(t) is independent oft; it is called thetime stationarydistribution ofX.

Assume that, in addition,X(t) is ergodic, i.e that time averages tend to expectations, (which, is for
example true on a discrete state space if any state can be reached from any state)), for any bounded
functionφ, we can estimateE(φ(X(t))) by (in discrete time):

E(φ(X(t))) ≈ 1

T

T
∑

t=1

φ(X(t))
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whenT is large. An equivalent statement is that for any (measurable) subsetW of the set of values
of X(t):

P(X(t) ∈ W ) ≈ fraction of time thatX(t) is in the setW

In other words, the time stationary distribution ofX(t) can be estimated by a time average.

EVENT AVERAGES. We can interpret the Palm expectation and Palm probability as event aver-
age if the processX(t) is ergodic (note however that Palm calculus does not requireergodicity).
Indeed, it follows from the definition of Palm expectation that

E
0 (φ(X(0))) ≈ 1

N

N
∑

n=1

φ (X (Tn))

for N large.

It can be shown [4] that if the processX(t) is ergodic and integrable thenlimN→∞
1
N

∑N
n=1 φ (X (Tn)) = E

0
(

φ(X0)
)

.

An equivalent statement is that, for any (measurable) subset W of the set of values ofX(t):

P
t(X(t) ∈ W ) = P

0(X(0) ∈ W ) ≈ fraction of points of the point process at whichX(t) is in W

Thus the Palm expectation and the Palm probability can be interpreted as event averages. In other
words, they are ideal quantities, which can be estimated by observingX(t) sampled with the event
clock.

7.2.4 THE I NVERSION AND I NTENSITY FORMULAS

formulas that relate time and event averages. Also known under the name of Ryll-Nardzewski and
Slivnyak’s formula, the inversion formula relates the timestationary and Palm probabilities. The
proof for discrete time, a direct application of the definition of conditional probability, is given in
appendix.

THEOREM 7.2.1. (Inversion Formula.)

• In discrete time:

E(X(t)) = E(X(0)) = λE0

(

T1
∑

s=1

X(s)

)

= λE0

(

T1−1
∑

s=0

X(s)

)

(7.23)

• In continuous time:

E(X(t)) = E(X(0)) = λE0

(
∫ T1

0

X(s)ds

)

(7.24)

By applying the inversion toX(t) = 1 we obtain the following formula, which states that the in-
tensity of a point process is the inverse of the average time between points.
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THEOREM 7.2.2. (Intensity Formula.)

1

λ
= E

0(T1 − T0) = E
0(T1) (7.25)

Recall that the only assumption required is stationarity. There is no need for independence or Pois-
son assumptions.

EXAMPLE 7.5:GATEKEEPER, CONTINUED. Assume we model the gatekeeper example as a dis-
crete event simulation, and consider as point process the waking ups of the gatekeeper. Let X(t)
be the execution time of a hypothetical job that would arrive at time t. The average job execution
time, sampled with the standard clock (customer viewpoint) is

Wc = E(X(t)) = E(X(0))

whereas the average execution time, sampled with the event clock (system designer viewpoint), is

Ws = E
t(X(t)) = E

0(X(0))

The inversion formula gives

Wc = λE0

(
∫ T1

0
X(t)dt

)

= λE0 (X(0)T1)

(recall that T0 =0 under the Palm probability and X(0) is the execution time for a job that arrives
just after time 0). Let C be the cross-covariance between sleep time and execution time:

C := E
0(T1X(0)) − E

0(T1)E
0(X(0))

then

Wc = λ
[

C + E
0(X(0))E0(T1)

]

By the inversion formula λ = 1
E0(T1)

thus

Wc = Ws + λC

which is the formula we had derived using the heuristic in Section 7.1.

To be rigorous we need to make sure that the process being simulated is stationary. With the data in
Example 7.1, this appears to be false, as the wakeup times are periodic, starting at time 0. This is not a
problem for such cases: when the simulation state is periodic, say with period θ, then it is customary to
consider the simulation as a realization of the stochastic process obtained by drawing the origin of times
uniformly in [0, θ]. This produces a stochastic process which is formally stationary. In practical terms, this
amounts to choosing the arbitrary point in time uniformly at random in [0, θ].

EXAMPLE 7.6:STATIONARY DISTRIBUTION OF RANDOM WAYPOINT [56]. The random waypoint
model is defined in Example 6.5, but we repeat the definitions here. A mobile moves from one
waypoint to the next in some bounded space S. When arrived at a waypoint, say Mn, it picks a
new one, say Mn+1 randomly uniformly in S, picks a speed Vn uniformly at random between vmin

and vmax and goes to the next waypoint Mn+1 at this constant speed.
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Figure 7.4:Distribution of speed sampled at waypoint (first panel) and at an arbitrary time instant (second
panel). vmin = 0.2, vmax = 2m/s.

Figure 7.4 shows that the distribution of speed, sampled at waypoints, is uniform between vmin and
vmax, as expected. In contrast, the distribution, sampled at an arbitrary point in time, is different.
We can explain this by Palm’s inversion formula.

We assume that this model has a stationary regime, i.e. that vmin > 0 (see Section 7.4). The sta-
tionary distribution of V (t) is obtained if we know E(φ(V (t)) for any bounded, test function φ of the
speed. Let f0V (v) be the PDF of the speed chosen at a waypoint, i.e. f0V (v) =

1
vmax−vmin

1{vmin≤v≤vmax}.
We have

E(φ(V (t)) = λE0

(∫ T1

0
φ(V (t)) dt

)

= λE0 (T1φ(V0)) = λE0

(‖M1 −M0‖
V0

φ(V0)

)

= λE0 (‖M1 −M0‖)E0

(

1

V0
φ(V0)

)

= K1

∫

1

v
φ(v)f0V (v) dv (7.26)

where Tn is the time at which the mobile arrives at the waypoint Mn and K1 is some constant.
This shows that the distribution of speed sampled at an arbitrary point in time has PDF

f(v) = K1
1

v
f0V (v) (7.27)

This explains the shape in 1
v of the second histogram in Figure 7.4.

A similar argument can be made for the distribution of location. At a waypoint, it is uniformly
distributed, by construction. Figure 7.5 shows that, at an arbitrary time instant, it is no longer so.
Palm’s inversion formula can also be used to derive the PDF of location, but it is very complex [54].
It is simpler to use the perfect simulation formula explained in Section 7.4.3.

7.3 OTHER USEFUL PALM CALCULUS RESULTS

In this section we consider a stationary simulation and a point process following the assumptions
in the previous section.

7.3.1 RESIDUAL T IME AND FELLER ’ S PARADOX

In this section we are interested in theresidual time, i.e. the time from now to the next point.
More precisely, letT+(t) [resp. T−(t)] be the first point after [resp. before or at]t. Thus, for
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Figure 7.5:A sample of 104 points drawn from the stationary distribution of the random waypoint. The
distribution is not uniform, even though waypoints are picked uniformly in the area.

example,T+(0) = T1 andT−(0) = T0. The following theorem is an immediate consequence of
the inversion formula.

THEOREM 7.3.1. LetX(t) = T+(t)− t (time until next point, also called residual time),Y (t) =
t− T−(t) (time since last point),Z(t) = T+(t)− T−(t) (duration of current interval). For anyt,
the distributions ofX(t) andY (t) are equal, with PDF:

fX(s) = fY (s) = λP0(T1 > s) = λ

∫ +∞

s

f 0
T (u)du (7.28)

wheref 0
T is the Palm PDF ofT1 − T0 (PDF of inter-arrival times). The PDF ofZ(t) is

fZ(s) = λsf 0
T (s) (7.29)

In particular, it follows that

E(X(t)) = E(Y (t)) =
λ

2
E
0(T 2

1 ) in continuous time (7.30)

E(X(t)) = E(Y (t)) =
λ

2
E
0(T1(T1 + 1)) in discrete time (7.31)

E(Z(t)) = λE0(T 2
1 ) (7.32)

Note that in discrete time, the theorem means thatP(X(t) = s) = P(Y (t) = s) = λP0(T1 ≥ s)
andP(Z(t) = s) = λsP0(T1 = s).

EXAMPLE 7.7:POISSON PROCESS. Assume that Tn is a Poisson process (see Section 7.6). We
have f0T (t) = λe−λs and P

0(T1 > s) = P
0(T1 ≥ s) = e−λs thus fX(s) = fY (s) = f0T (s).

This is expected, by the memoriless property of the Poisson process: we can think that at every
time slot, of duration dt, the Poisson process flips a coin and, with probability λdt, decides that
there is an arrival, independent of the past. Thus, the time X(t) until the next arrival is independent
of whether there is an arrival or not at time t, and the Palm distribution of X(t) is the same as its
time average distribution. Note that this is special to the Poisson process; processes that do not
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have the memoriless property do not have this feature.

The distribution of Z(t) has density
f0T (s) = λ2se−λs

i.e., it is an Erlang-2 distribution1. Note here that it differs from the Palm distribution, which is
exponential with rate λ. In particular, the average duration of the current interval, sampled at an
arbitrary point in time, is 2

λ , i.e. twice the average inter-arrival time 1
λ (this is an instance of Feller’s

paradox, see later in this section). A simple interpretation for this formula is as follows: Z(t) =
X(t) + Y (t), both X(t) and Y (t) are exponentially distributed with rate λ and are independent.

EXAMPLE 7.8:AT THE BUS STOP. Tn is the sequence of bus arrival instants at a bus stop. We do
not assume here that the bus interarrival times Tn − Tn−1 are iid. E0(T1) =

1
λ is the average time

between buses, seen by an inspector standing at the bus stop and who spends the hour counting
intervals from bus to bus. E(T1) = E(X(0)) is the average waiting time experienced by you and
me.

By Eq.(7.30):

E(X(t)) = E(X(0)) =
1

2

(

1

λ
+ λvar0(T1 − T0)

)

(7.33)

where var0(T1 − T0) is the variance, under Palm, of the time between buses, i.e. the variance
estimated by the inspector. The expectation E(X(t)) is minimum, equal to 1

2λ when the buses are
absolutely regular (Tn − Tn−1 is constant). The larger the variance, the larger is the waiting time
perceived by you and me. In the limit, if the interval between buses seen by the inspector is heavy
tailed, then E(X(t)) is infinite. Thus the inspector should report not only the mean time between
buses, but also its variance.

1For k = 1, 2, 3, ..., theErlang-k distribution with parameterλ is the distribution of the sum ofk independent
exponential distributions with rateλ.
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FELLER ’ S PARADOX . We continue to consider Example 7.8 and assume that Joe wouldlike
to verify the inspector’s reports by sampling one bus inter-arrival time. Joe arrives at timet and
measuresZ(t) = ( time until next bus− time since last bus). By Eq.(7.32)

E(Z(t)) =
1

λ
+ λvar0(T1 − T0)

wherevar0(T1 − T0) is the variance of the inter-arrival time (=
∫∞
0

s2f 0
T (s)ds − 1

λ2 ). Thus, the
average of Joe’s estimate isalways largerthan the inspector’s (which is equal to1

λ
) by a term equal

toλvar0(T1−T0). This happens although both observers sample the same system (but not with the
same viewpoint). This systematic bias is known asFeller’s paradox. Intuitively, it occurs because
a stationary observer (Joe) is more likely to fall in a large time interval.

We did not make any assumption other than stationarity aboutthe process of bus arrivals in this
example. Thus Feller’s paradox is true for any stationary point process.

7.3.2 THE RATE CONSERVATION L AW AND L ITTLE ’ S FORMULA

M IYAZAWA ’ S RATE CONSERVATION L AW

This is a fundamental result in queuing systems, but it applies to a large variety of systems, well
beyond queuing theory. It is best expressed in continuous time.

t

T
1

XT3

T
3 T

4

X(t)

Figure 7.6:Rate Conservation Law.

Consider a random, real valued stochastic processX(t) with the following properties (Figure 7.6):

• X(t) is continuous everywhere except perhaps at instants of a stationary point processTn;
• X(t) is continuous to the right;
• X(t) has a right-handside derivativeX ′(t) for all values oft.

Define∆Xt by ∆Xt=0 if t is not a point of the point processTn and∆XTn = X(Tn) −X(T−
n ),

i.e. ∆Xt is the amplitude of the discontinuity at timet. Note that it follows that

X(t) = X(0) +

∫ t

0

X ′(s)ds+
∑

n∈N
∆Tn1{t≤Tn} (7.34)
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THEOREM 7.3.2. (Rate Conservation Law [69]) Assume that the point processTn andX(t) are
jointly stationary. IfE0 |∆0| < ∞ andE |X ′(0))| < ∞ then

E (X ′(0)) + λE0 (∆0) = 0

whereλ is the intensity of the point processTn andE0 is the Palm expectation.

The proof in continuous time can be found for example in [70].We can interpret the theorem as
follows.

• E (X ′(0)) (also equal toE (X ′(t)) for all t) is the average rate of increase of the process
X(t), excluding jumps.

• E
0 (∆0) is the expected amplitude of one arbitrary jump. ThusλE0 (∆0) is the expected rate

of increase due to jumps.
• The theorem says that, if the system is stationary, the sum ofall jumps cancels out, in aver-

age.

Remark. The theorem can be extended somewhat to the cases where some expectations are
infinite, as follows [70]. Assume the point processTn can be decomposed as the superposition
of the stationary point processesT j

n, j = 1...J and that these point processes have no point in
common. Let∆j

t be the jump ofX(t) whent is an instant of the point processT j
n, i.e.

X(t) = X(0) +

∫ t

0

X ′(s)ds+
J
∑

j=1

∑

n∈N
∆j

Tn
1{t≤T j

n} (7.35)

and∆j
t = 0 whenevert is not an instant of the point processT j

n.

Assume thatX ′(t) ≥ 0 and the jumps of a point process are all positive or all negative. More
precisely, assume that∆j

t ≥ 0 for j = 1...I and∆j
t ≤ 0 for j = I +1, ...J . Last, assume thatX(t)

and the point processesT j
n are jointly stationary. Then

E (X ′(0)) +

I
∑

j=1

λjE
0
j

(

∆j
0

)

= −
J
∑

j=I+1

λjE
0
j

(

∆j
0

)

(7.36)

whereE0
j is the Palm expectation with respect to the point processT n

j and the equality holds even
if some of the expectations are infinite.

EXAMPLE 7.9:M/GI/1 QUEUE AND POLLACZEK-KHINCHINE FORMULA . Consider the M/GI/1
queue, i.e. the single server queue with Poisson arrivals of rate λ and independent service times,
with mean S̄ and variance σ2S . Assume ρ = λS̄ < 1 so that there is a stationary regime (The-
orem 8.3.1). Apply the rate conservation law to X(t) = W (t)2, where W (t) is the amount of
unfinished work at time t.

The jumps occur at arrival instants, and when there is an arrival at time t, the jump is

∆X = (W (t) + S)2 −W (t)2 = 2SW (t) + S2

where S is the service time of the arriving customer. By hypothesis, S is independent of W (t)
thus the expectation of a jump is 2E0 (W (t)) S̄ + S̄2 + σ2S. By the PASTA property (Example 7.18),
E
0 (W (t)) = E (W (t)). Thus, the rate conservation law gives

E
(

X ′(t)
)

+ 2ρE (W (t)) + λ
(

S̄2 + σ2S
)

= 0
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Between jumps, W (t) decreases at rate 1 if W (t) > 0, thus the derivative of X is X ′(t) =
2W (t)1{W (t)>0} and E (X ′(t)) = −2E (W (t)). Putting things together:

E (W (t)) =
λ
(

S̄2 + σ2S
)

2(1− ρ)

By the PASTA property again, E (W (t)) is the average workload seen by an arriving customer,
i.e. the average waiting time. Thus the average response time (waiting time + service time) is
(Pollaczek-Khinchine formula for means) :

R̄ =
S̄(1− ρ(1− κ))

1− ρ
(7.37)

with κ = 1
2

(

1 +
σ2
S

S̄2

)

.

Similarly, applying the rate conservation law to X(t) = e−sW (t) for some arbitrary s ≥ 0 gives the
Laplace Stieltjes transform of the distribution of W (t) (see Eq.(8.5)).

CAMPBELL ’ S SHOT NOISE FORMULA

Consider the following system, assumed to be described by the state of a stationary simulation
S(t). Assume that we can observe arrivals of jobs, also called customers, or “shots”, and that the
the arrival timesTn form a stationary point process.

The nth customers also has an “attribute”,Zn, which may be drawn according to the specific rules
of the system. As usual in this chapter, we do not assume any form of iid-ness, but we assume
stationarity; more precisely the attributeZn is obtained by sampling the simulation state at time
Tn (this is quite general as we do not specify what we put in the simulation state). If the attributes
have this property, we say that they aremarks of the point processTn and that the process(Tn, Zn)
is astationary marked point process. We do not specify the nature of the attribute, it can take
values in any arbitrary space.

When thenth customer arrives, she generates a load on the system, in the form of work to be done.
Formally, we assume that there is a functionh(s, z) ≥ 0 (the “shot”) such thath(s, z) is the load
at times, due to a hypothetical customer who arrived at time0 and would have markz. The total
load in the system at timet, is

X ′(t) =
∑

n∈Z
1{Tn≤t}h(t− Tn, Zn)

and the total amount of work to be performed, due to customersalready present in the system is

X(t) =
∑

n∈Z
1{Tn≤t}

∫ ∞

t

h(s− Tn, Zn)ds

For example, in [7], a customer is an internet flow, its mark isits size in bytes, and the total system
load is the aggregate bit rate (Example 7.7). The average load L̄, at an arbitrary point in time, is

L̄ = E

(

∑

n∈Z
1{Tn≤t}h(t− Tn, Zn)

)

= E

(

∑

n≤0

h(−Tn, Zn)

)
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Figure 7.7:Shot Noise (top) and Little’s formula (bottom)

where the latter is obtained by takingt = 0. The work generated during her lifetime by one
customer, given that her mark isz, is

∫∞
0

h(t, z)dt. The average load generated by one arbitrary
customer can be expressed as a Palm expectation, relative tothe point process of customer arrivals,
namely as

work per customer= E
0

(∫ ∞

0

h(t, Z0)dt

)

(7.38)

(Z0 in the formula stands for the attribute of an arbitrary customer). Letλ be the intensity of the
point processTn, i.e. the customer arrival rate.

The total work decreases at the rateX ′(t) and when a customer arrives at timeTn, jumps by
∆t =

∫∞
0

h(t, Z0)dt. The jumps are nonnegative and the derivative is nonpositive thus we can
apply Theorem 7.3.2, more precisely, the remark after it to−X(t), with J = 1 andI = 0. We
have thus shown:

THEOREM 7.3.3 (Shot Noise).The average load at an arbitrary point in time is

L̄ = λ× work per customer (7.39)

where equality holds also if either̄L or the work per customer is infinite.

Eq.(7.39) is also known asCampbell’s Formula.

EXAMPLE 7.10:TCP FLOWS. In [7], a customer is a TCP flow, h(t, z) is the bit rate generated
at time t by a TCP flow that starts at time 0 and has a size parameter z ∈ R

+. Thus V̄ =
E
0
(∫∞

0 h(t, Z0)dt
)

is the average volume of data, counted in bits, generated by a flow during its
entire lifetime. Campbell’s formula says that the average bit rate on the system L̄, measured in
b/s, is equal to λV̄ , where λ is the flow arrival rate.
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THE H = λG FORMULA

This is an interpretation of the rate conservation law that is quite useful in applications. Consider
some arbitrary system where we can observe arrival and departure of jobs (also called customers).
Let Tn be the point process of arrivals times, with intensityλ (not necessarily Poisson, as usual
in this chapter). Also assume that when a job is present in thesystem, it uses some amount of
resource, per time unit (for example, electrical power or CPU cycles). Assume the system is
stationary.

LetGn be the total amount of system resource consumed by jobn during its presence in the system;
and letḠ be the average resource consumption per job, i.e. the expectation ofGn whenn is an
arbitrary customer, and let̄H be the average rate at which the resource is allocated to jobs, i.e. the
expectation ofH(t) at any timet. Eq.(7.39) can be re-formulated as follows.

TheH = λG Formula, or Extended Little Formula:

H̄ = λḠ (7.40)

EXAMPLE 7.11:POWER CONSUMPTION PERJOB. A system serves jobs and consumes in average
P̄ watts. Assume we allocate the energy consumption to jobs, for example by measuring the
current when a job is active. Let Ē be the total energy consumed by a job, during its lifetime, in
average per job, measured in Joules. By Eq.(7.40):

P̄ = λĒ

where λ is the number of jobs per second, served by the system.

L ITTLE ’ S FORMULA

Consider again some arbitrary system where we can observe arrival and departure of jobs (also
called customers), withTn the point process of arrivals times, with intensityλ. Let Rn be the
residence time of thenth customer,n ∈ Z (thus her departure time isTn + Rn). Let N(t) be the
number of customers present in the system at timet. Assume that the mean residence timeR̄ (i.e.
the expectation ofRn) is finite (by the stationarity assumption it is independentof n).

We did not exactly define what a customer and the system are, therefore we need, formally, to be more precise; this
can be done as follows. We are given a sequence(Tn ∈ R, Rn ∈ R

+)n∈Z stationary with respect to indexn. Assume
thatTn can be viewed as a stationary point process, with intensityλ, (i.e. the expectation ofTn − Tn−1 is finite,
Theorem 7.4.1). The number of customers in the system at timet is then defined by

N(t) =
∑

n∈Z

1{Tn≤t<Rn+Tn}

Note that, by stationarity,λ is also equal to the departure rate. DefineR(t) by R(t) = Rn if and
only if Tn ≤ t < Tn+1, i.e.R(t) is the residence time of the most recently arrived customer at time
t. Also let

E
t(R(t)) = E

0(R(0)) = R̄

E(N(t)) = E(N(0)) = N̄
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We can apply Campbell’s formula by lettingZn = Rn andh(t, z) = 1{0≤t<z}, i.e. the load
generated by one customer is1 as long as it is present in the system; equivalently, we can apply the
rate conservation law withX(t) = residual time to be spent by customers present in in the system.
This gives the celebrated theorem:

THEOREM 7.3.4 (Little’s Formula). The mean number of customers in the system at timet, N̄ :=
E(N(t)), is independent oft and satisfies

N̄ = λR̄

whereλ is the arrival rate andR̄ the average response time, experienced by an arbitrary customer.

Little’s formula makes no assumption other than stationarity. In particular, we do not assume that
the residence times are independent of the state of the system, and wedo notassume that the arrival
process is Poisson. Also note that the formula holds even if either N̄ or R̄ is infinite.

Little’s formula is very versatile, since it does not say what we call a system and a customer. The
next section is an example of this versatility.

DISTRIBUTIONAL L ITTLE FORMULA

Assume we are interested not just in the average number of customers in a system, but in the
distribution of ages in the system. More precisely, fixr0 > 0; we would like to knowN̄(r0),
defined as the average number of customers in the system with an age≥ r. Call fR() the PDF of
customer residence time. Consider the virtual system, defined such that we count only customers
that have been present in the system for at leastr0 time units:

Original System Thenth customer arrives at timeTn and stays for a durationRn

Virtual System The nth customer arrives at timeTn + r0. If Tn < r0, this customer leaves
immediately. Else, this customer stays for a durationRn − r0.

Apply Little’s formula to the virtual system. The average customer residence time in the virtual
system is

∫ ∞

r0

(r − r0)fR(r)dr =

∫ ∞

r0

[
∫ r

r0

ds

]

fR(r)dr =

∫ ∞

r0

∫ r

r0

fR(r)dsdr

=

∫ ∞

r0

[
∫ ∞

s

fR(r)dr

]

ds =

∫ ∞

r0

F c
R(s)ds

whereF c
R() is the complementary CDF of the residence time, i.e.F c

R(r) =
∫∞
r

fR(r)dr. Thus

N̄(r0) = λ

∫ ∞

r0

F c
R(r)dr

Let fN() the PDF of the distribution of ages at an arbitrary point in time, i.e. such that̄N(r0) =
N̄
∫∞
r0

fN(r)dr. It follows thatfN (r) = λ
N̄
F c
R(r) =

1
R̄
F c
R(r), i.e.

fN(r) =
1

R̄

∫ ∞

r

fR(r)dr (7.41)



218 CHAPTER 7. PALM CALCULUS, OR THE IMPORTANCE OF THE VIEWPOINT

Eq.(7.41) is called aDistributional Little Formula. It relates the PDFfN of the age of a customer
sampled at an arbitrary point in time to the PDF of residence timesfR. Note the analogy with
Eq.(7.28) (but the hypotheses are different).

7.3.3 TWO EVENT CLOCKS

Assume in this section that we observe two point processes from the same stationary simulation,
sayAn, Bn, n ∈ Z. Let λ(A) [resp. λ(B)] be the intensity of theA [resp. B] point process.
WheneverX(t) is some observable output, jointly stationary with the simulation, we can sample
X(t) with the two event clocksA, or B, i.e. we can define two Palm probabilities, denoted with
E0

A(X(0)) andE0
B(X(0)).

We can also measure the intensity of one point process using the other process’s clock; for example,
let λA(B) be the intensity of theB point process measured with the event clockA. LetNB[t1, t2)
be the number of points of processB in the time interval[t1, t2). We have

λA(B) = E
0
A ( NB[A0, A1)) (7.42)

i.e. it is the average number ofB points seen between twoA points.

THEOREM 7.3.5. (Neveu’s Exchange Formula)

λA(B) =
λ(B)

λ(A)
(7.43)

E
0
A(X(0)) = λA(B)E0

B

(

∑

n∈Z
X (An) 1{B0≤An<B1}

)

(7.44)

Eq.(7.44) is the equivalent of the inversion formula Eq.(7.23), if we replace the standard clock by
clockA and the point processTn by Bn; indeed the last term in Eq.(7.44) is the sum of theX(t)
values observed at allA points that fall betweenB0 andB1.

It follows from this theorem that

1

λA(B)
= E

0
B (NA[0, B1)) = E

0
B (NA[B0, B1)) (7.45)

which is the equivalent of Eq.(7.25), namely, the intensityof the point processB, measured with
A’s clock, is the inverse time between two arbitraryB points, again measured withA’s clock (the
last term,NA[B0, B1), is the number of ticks of theA clock between twoB points).

The following theorem follows immediately from Theorem 7.3.5 and Eq.(7.45).

THEOREM 7.3.6. (Wald’s Identity)

E
0
A(X(0)) =

E
0
B

(
∑

n∈Z X (An) 1{B0≤An<B1}
)

E0
B (NA[B0, B1))

(7.46)

Eq.(7.46) is calledWald’s identity. It is often presented in the context of renewal processes, but
this need not be: like all Palm calculus formulae, it requires only stationarity, and no independence
assumption.
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EXAMPLE 7.12:THE STOP AND GO PROTOCOL. We re-visit the computation of the stop and go
protocol given in Example 7.2. The A point process consists of the emission times of successful
transmissions, and the B point process consists of all transmission and retransmission attempts.
Apply Eq.(7.45):

1

λA(B)
= E

0
B (NA[B0, B1))

Note thatNA[B0, B1) is 1 if the attempt at B0 is successful and 0 otherwise, thus the right-handside
in the equation is the probability that an arbitrary transmission or retransmission attempt is suc-
cessful. By definition of α, this is 1 − α. Thus λ(A)

λ(B) = 1 − α. Compute λ(B) from Eq.(7.25):
1

λ(B) = (1− α)t0 + αt1. Combining the two gives

λ(A) =
1

α
1−αt1 + t0

as already found.

All formulas in this section continue to hold if we replace the semi-closed intervals that span one tick of an event clok
to the next, such as[A0, A1) [resp.[B0, B1)], by the semi-closed intervals(A0, A1] [resp.(B0, B1]], but do not hold
if we replace them by closed or open intervals (such as[A0, A1] or (A0, A1)).

One can even replace them by the so-calledVoronoi cells, which are the intervals that are bounded by the middleof
two successive points, for example one can replace[A0, A1) by [A−1+A0

2 , A0+A1

2 ) or (A−1+A0

2 , A0+A1

2 ]. Thus, for
example,

λA(B) = E
0
A ( NB[A0, A1)) = E

0
A ( NB(A0, A1])

= E
0
A

(

NB[
A−1 +A0

2
,
A0 +A1

2
)

)

= E
0
A

(

NB(
A−1 +A0

2
,
A0 +A1

2
]

)

and Eq.(7.44) can be generalized to

E
0
A(X(0)) = λA(B)E0

B

(

∑

n∈Z

X (An)1{B0≤An<B1}

)

= λA(B)E0
B

(

∑

n∈Z

X (An)1{B0<An≤B1}

)

= λA(B)E0
B

(

∑

n∈Z

X (An)1{B−1+B0
2 ≤An<

B1+B2
2 }

)

= λA(B)E0
B

(

∑

n∈Z

X (An)1{B−1+B0
2 <An≤B1+B2

2 }

)

7.4 SIMULATION DEFINED AS STOCHASTIC RECURRENCE

7.4.1 STOCHASTIC RECURRENCE, M ODULATED PROCESS

A simulator can be defined as discrete event or as stochastic recurrence (Chapter 6). This also
provides a simple, yet powerful model, to analyze stationary but time correlated systems.

Recall that a stochastic recurrence is defined by a sequenceZn, n ∈ Z, (also called the modulator
state at thenth epoch) and a sequenceSn > 0, interpreted as the duration of thenth epoch. The
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Figure 7.8:The Gilbert Loss Model. When the channel is in state 0 the packet loss ratio is 0, in state 1 it is
p1. The average number of consecutive periods in state i is 1

qi
(i = 0, 2).

state space forZn is arbitrary, not necessarily finite or even enumerable. We assume that(Zn, Sn)
is random, but stationary2 with respect to the indexn. As usual, we do not assume any form of
independence.

We are interested in themodulated process (Z(t), S(t)) defined byZ(t) = Zn, S(t) = Sn

whenevert belongs to thenth epoch (i.e. whenTn ≤ t < Tn+1). We would like to apply Palm
calculus to(Z(t), S(t)).

EXAMPLE 7.13:LOSS CHANNEL MODEL. A path on the internet is modelled as a loss system,
where the packet loss ratio at time t, p(t) depends on a hidden state Z(t) ∈ {1, ..., I} (called the
modulator state). During one epoch, the modulator remains in some fixed state, say i, and the
packet loss ratio is constant, say pi. At the end of an epoch, the modulator changes state and a
new epoch starts.

Once in a while we send a probe packet on this path, thus we measure the time average loss ratio
p̄. How does it relate to pi ? Apply the inversion formula:

p̄ =

∑

i π
0
i piS̄i

∑

i π
0
i S̄i

where π0i is the probability that the modulator is in state i at an arbitrary epoch (proportion of i
epochs) and S̄i is the average duration of an i-epoch.

For example, assume that Zn is the Gilbert loss model shown in Figure 7.8, i.e. a discrete time
two state Markov chain, and Sn is equal to one round trip time. We have π0i = q1−i

q0+q1
, for i = 0, 1. It

follows that
p̄ =

q0p1
q0 + q1

7.4.2 FREEZING SIMULATIONS

In the previous example, we had implicitly assumed that we can apply Palm calculus, i.e. that the
processZ(t) is stationary. In the rest of this section we give conditionsfor this assumption to be
valid.

2This means that the joint distribution of(Zn, Sn . . . , Zn+m, Sn+m) is independent ofm.
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We first make a technical assumption. It says that the number of epochs per time unit does not
explode. More precisely, for any fixedt0 > 0, call

D(t0) =

∞
∑

n=1

1{S0+...+Sn−1≤t0}

We interpretD(t0) as the number of epochs that are entirely included in the interval (0, t0], given
that we start the first epoch at time0. The technical assumption is

H1 For everyt0, the expectation ofD(t0) is finite.

Surprisingly, though(Zn, Sn) is stationary with respect ton, this is not enough to guarantee sta-
tionarity ofZ(t). To see why, assume thatZ(t) is stationary and that there exists a stationary point
processTn such thatTn+1 − Tn = Sn. Apply the inversion formula:

λ =
1

∫∞
0

tf 0
S(t)dt

(7.47)

wheref 0
S(t) is the probability density function ofSn (it does not depend onn by hypothesis). Thus

we need to assume that the expectation ofSn is finite. The next theorem says that, essentially, this
is also sufficient.

THEOREM 7.4.1. Assume that the sequenceSn satisfiesH1 and has finite expectation. There exists
a stationary processZ(t) and a stationary point processTn such that

1. Tn+1 − Tn = Sn

2. Zn = Z(Tn)

The theorem says that we can apply Palm calculus, and in particular treatZn as the state of a sta-
tionary simulation sampled with the event clock derived from Sn. The proof can be found in [4],
where it is called “inverse construction”.

ConditionH1 is often intuitively obvious, but may be hard to verify in some cases. In the sim-
ple case whereSn are independent (thus iid since we assume stationarity withrespect ton) the
condition always holds:

THEOREM 7.4.2 (Renewal Case).If theSn are iid andSn > 0, then conditionH1 holds

The next example shows a non iid case.

EXAMPLE 7.14:RANDOM WAYPOINT, CONTINUATION OF EXAMPLE 7.6. For the random waypoint
model, the sequence of modulator states is

Zn = (Mn,Mn+1, Vn)

and the duration of the nth epoch is

Sn =
d (Mn,Mn+1)

Vn
(7.48)

where d (Mn,Mn+1) is the distance from Mn to Mn+1.
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Figure 7.9:Freezing simulation: random waypoint with vmin = 0. The model does not have a stationary
regime and the simulation becomes slower and slower. First panel: sample of instant speed versus time
for one mobile. Second panel: speed averaged over [0; t] for one mobile (zig zag curve) or for 30 mobiles
(smoother curve). The average speed slowly tends to 0.

Can this be assumed to come from a stationary process ? We apply Theorem 7.4.1. The average
epoch time is

E(S0) = E

(

d (Mn,Mn+1)

Vn

)

= E (d (Mn,Mn+1))E

(

1

Vn

)

since the waypoints and the speed are chosen independently. Thus we need that E
(

1
Vn

)

< ∞,

i.e. vmin > 0.

We also need to verify H1. We cannot apply Theorem 7.4.2 since the epoch times are not inde-
pendent (two consecutive epoch times depend one one common waypoint). However, but Sm and
Sn are independent if n−m ≥ 2, and one can show that H1 holds using arguments similar to the
proof of Theorem 7.4.2 [56].

What happens if the expectation ofSn is infinite ? It can be shown (and verified by simulation) that
the modelfreezes: as you run the simulation longer and longer, it becomes morelikely to draw
a very long intervalSn, and the simulation state stays there for long. This is an interesting case
where non stationarity is not due to explosion, but toaging (Figure 7.9). In the random waypoint
example above, this happens if we choosevmin = 0.

7.4.3 PERFECT SIMULATION OF STOCHASTIC RECURRENCE

Assume we are interested in simulating the modulator process (Z(t), S(t)). A simple method
consists in drawing a sample of(Z0, S0) from the joint distribution with PDFf 0

Z,S(z, s), then
decide that the simulation stays in this state for a durationS0, then drawZ1, S1 from its conditional
distribution given(Z0, S0) and so on. For a stochastic recurrence satisfying the hypotheses of
Theorem 7.4.1, as the simulation time gets large, the simulation will get into its stationary regime
and its state will be distributed according to the stationary distribution of(Z(t), S(t)).

It is possible to do better, and start the simulation directly in the stationary regime, i.e. avoid
transients at all. This is calledperfect simulation. It is based on Palm’s inversion formula, which
gives a way to sample from the stationary distribution, as weexplain now.

We want to start a simulation of the modulator process(Z(t), S(t)), in stationary regime. We need
to draw a sample from the stationary distribution of(Z(t), S(t)) but this is not sufficient. We also
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need to sample the time until the next change of modulator state. Therefore, it is useful to consider
the joint process(Z(t), S(t), T+(t)), whereT+(t) is the residual time, defined in Section 7.3.1 as
the time to run until the next change in modulator state, i.e.

if Tn ≤ t < Tn+1 then T+(t) = Tn+1 − t

THEOREM 7.4.3 (Stationary Distribution of Modulated Process).Let (Zn, Sn)n∈Z satisfy the hy-
potheses of Theorem 7.4.1 and letf 0

Z,S(z, s) be the joint PDF of(Zn, Sn), independent ofn by
hypothesis. The stationary distribution of(Z(t), S(t), T+(t)) (defined above) is entirely charac-
terized by the following properties:

1. The joint PDF of(Z(t), S(t)) is

fZ,S(z, s) = ηsf 0
Z,S(z, s) (7.49)

whereη is a normalizing constant, equal to the inverse of the expectation ofSn;

2. The conditional distribution ofT+(t) given thatZ(t) = z andS(t) = s is uniform on[0, s].

Recall thatZn takes values in any arbitrary space, but you may think of it asan element ofRk for
some integerk3.

Note that the theorem does not directly give a formula for thejoint PDF of (Z(t), S(t), T+(t)),
though this can be derived, at least in theory, from the combination of items 1 and 2 (see [54] for
an example).

Also do not confuse item 2 with the unconditional distribution of the residual timeT+(t). From
Theorem 7.3.1, we know that the distribution ofT+(t) has PDF proportional to1 − F 0

S(t), where
F 0
S() is the CDF ofSn, i.e. it is not uniform.

We can recover this result from the above theorem, as follows. Consider a test functionφ() of the residual timeT+(t).
The theorem says that

E
(

φ(T+(t))
∣

∣Z(t) = s, S(t) = s
)

=
1

s

∫ s

0

φ(t)dt

thus

E
(

φ(T+(t))
)

= η

∫

z∈Z

∫ ∞

0

(

1

s

∫ s

0

φ(t)dt

)

sf0
Z,S(z, s)dzds

= η

∫

z∈Z

∫ ∞

0

(∫ s

0

φ(t)dt

)

f0
Z,S(z, s)dzds

= η

∫ ∞

0

(∫ s

0

φ(t)dt

)

f0
S(s)ds

= η

∫ ∞

0

(∫ ∞

t

f0
S(s)ds

)

φ(t)dt

= η

∫ ∞

0

(

1− F 0
S(t)

)

φ(t)dt

which shows that the PDF ofT+(t) is η(1− F 0
S(t)), as given in Theorem 7.3.1.

3Formally,Zn may take values in some arbitrary spaceZ andSn is a positive number. We assume that there is a
measureµ onZ and the PDFf0

Z,S(z, s) is defined with respect to the measure product ofµ and the Lebesgue measure
on (0,∞)
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Figure 7.10:Perfect Simulation of Random Waypoint. First Panel: 7 samples of previous waypoint (P ),
current mobile location (M ), and next waypoint (N ) sampled at an arbitrary point in time. P and N are not
independent; their joint PDF is proportional to their distance. (Compare to the distribution obtained when
sampling an arbitrary waypoint: there, by construction, P and N are independent and uniformly distributed),
they are independent, by definition of the model). Given P and N , M is uniformly distributed on [P,N ].
Second panel: 10000 samples of the next waypoint, sampled at an arbitrary point in time. The distribution
is not uniform, with a larger density towards the edges.

We obtain a perfect simulation algorithm by immediate application of the above theorem, see
Algorithm 5. Note the factors used when sampling the initial time interval: we can interpret this
by saying that the probability, for an observer who sees the system in its stationary regime, of
falling in an interval of durations is proportional tos. This is the same argument as in Feller’s
paradox (Section 7.3.1).

Algorithm 5 Perfect simulation of Modulated Process

1: Sample(z, s) from the joint distribution with PDFηsf 0
Z,S(z, s) (Eq.(7.49))

2: Samplet uniformly in [0, s]
3: Start the simulation withZ(0) = z, S(0) = s, T+(0) = T

EXAMPLE 7.15:PERFECT SIMULATION OF RANDOM WAYPOINT. We assume that the model in
Example 7.14 has a stationary regime, i.e. that vmin > 0. The modulator process is here Z(t) =
(P (t), N(t), V (t), S(t)) where P (t) [N(t)] is the previous [next] waypoint, V (t) is the instant speed
and S(t) is the duration of the current trip. Note that S(t) is determined by Eq.(7.48), i.e.

S(t) =
d(P (t), N(t)

V (t)

so it is a deterministic function of (P (t), N(t), V (t)) and can be omitted from the description of the
modulator process.

Note that by standard change of variable arguments:

fP,N,V (p, n, v) =
d(p, n)

v2
fP,N,S(p, n, s)
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f0P,N,V (p, n, v) =
d(p, n)

v2
f0P,N,S(p, n, s)

A direct application of Theorem 7.4.3, item 1, gives the joint PDF of (P (t), N(t), V (t)):

fP,N,V (p, n, v) =
d(p, n)

v2
ηsf0P,N,S(p, n, s) = ηsf0P,N,V (p, n, v)

= ηf0P,N,V (p, n, v)
d(p, n)

v

Now, by definition of the random waypoint model, speed and waypoints are chosen independently
at a waypoint, i.e.

f0P,N,V (p, n, v) = f0P,N(p, n)f0V (v)

Thus

fP,N,V (p, n, v) = ηd(p, n)f0P,N (p, n)
1

v
f0V (v) (7.50)

Since the joint PDF is the product of the PDFs of (P,N) on one hand, V on the other hand, it
follows that these two are independent, i.e., when sampled at an arbitrary point in time, the trip
endpoints on one hand, and the chosen speed on the other hand, are independent. Furthermore,
by marginalization, the joint PDF of (P (t), N(t)) is

fP,N(p, n) = η1d(p, n) (7.51)

for p, n in the area of interest, and 0 otherwise, and where η is a normalizing constant. Thus the
joint PDF of trip endpoints is proportional to their distance, i.e. we are more likely to see long trips
in average (this is reminiscent of Feller’s paradox in Section 7.3.1, though in space, not in time).
It follows also that the distribution of a trip endpoint is not uniform, and that the two endpoints are
not independent (though they are when sampled at waypoints). Figure 7.10 shows samples from
the marginal distribution of P (t) (which is the same as that of N(t)). We used rejection sampling
(Theorem 6.6.3), which does not require knowing the normalizing constant η1.

We also obtain that the distribution of speed at an arbitrary point in time is proportional to 1
vf

0
V (v),

which we had already found in Example 7.6. After some algebra, one finds that the CDF of V (t) is

FV (v) =
ln v − ln vmin

ln vmax − ln vmin
(7.52)

for vmin ≤ v ≤ vmax, 0 if v ≤ vmin and 1 if v ≥ vmax.

Let M(t) be the mobile location at time t. The residual time is related to M(t) by

N(t)−M(t) =
T+(t)V (t)

d(P (t), N(t)
(N(t)− P (t))

so that adding either T+(t) or M(t) to the modulator process are equivalent. Thus we can take as
process state (P (t), N(t), V (t),M(t)). A direct application of Theorem 7.4.3, item 2, together with
change of variable arguments as above, give that the conditional distribution of M(t) given that
P (t) = p,N(t) = n, V (t) = v is uniform on the segment [p, n]. In particular, it is independent of the
speed V (t).

We summarize the findings in Algorithm 6.
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Algorithm 6 Perfect simulation of Random Waypoint

1: Sample speedv from the distribution with CDFFV in Eq.(7.52) (e.g. using CDF inversion,
Theorem 6.6.1).

2: Sample previous waypointp and next waypointn from the distribution with PDF proportional
to the distance fromp to n (e.g. using rejection sampling Theorem 6.6.3).

3: Samplem uniformly on the segment that joinsp andn, e.g. by samplingu uniformly in [0, 1]
and lettingm = (1− u)p+ un.

4: Start the simulation withP (0) = p,N(0) = n, V (0) = v,M(0) = m.

7.5 APPLICATION TO M ARKOV CHAIN M ODELS AND THE

PASTA PROPERTY

In this section we consider a stochastic processS(t) (the state of the simulation) that can be ex-
pressed as a Markov chain, in discrete or continuous time. Formally, this means that the state at
time t contains all information for advancing the simulation. Most simulations that we perform in
a computer fall in this framework, since the simulation program uses only information available in
memory. This does not mean that Markov models are always the best models to analyze a prob-
lem, as the state space may be prohibitively large. But it does provide a convenient framework
to reason about what we are doing, for example to understand what the PASTA property means
(Section 7.5.2). In this section we limit ourselves to Markov chains over a finite state space, as this
provides considerable simplifications.

In appendix of this chapter (Section 7.6) we give a quick review of Markov chains. There are many
very good books on the topic, see for example [21, 108, 17].

7.5.1 EMBEDDED SUB-CHAIN

If we observe a Markov chain just after some selected transitions, we obtain anembedded sub-
chain, which is itself a discrete time Markov chain, clocked by theselected transitions. We explain
in this section how to compute all elements of the embedded subchain, in particular the Palm
probabilities for events observed with the clock of the embedded subchain.

Consider first discrete time.S(t) is a stationary Markov chain with enumerable state spaceS. We
are interested in observing the transitions ofS(t), which is equivalent to observing the process
(S(t − 1), S(t)). Note that this is also a Markov chain. LetF0 ⊂ S2 be a subset of the set of
possible transitions, and callTn, n = 1, 2... the time instants at which the chain does a transition
in F0, i.e.,

T1
def
= inf {t > 1 : (S(t− 1), S(t)) ∈ F0}

Tn
def
= inf {t > Tn−1 : (S(t− 1), S(t)) ∈ F0}

We assume that there is an infinity of such times, i.e.Tn < ∞ with probability1, and further,
that the expected time between visits is also finite4. Then, by Theorem 7.4.1, we can treatTn as a
stationary point process associated with the stationary processS(t).

4this is true for example ifF0 consists of only recurrent non null states of the chain(S(t− 1), S(t).
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The sequence of states observed just after a transition,S(Tn), is itself a discrete time Markov chain,
since the knowledge of the state at thenth transition is sufficient to compute the probabilities
of future events (this is the strong Markov property). The sequenceYn = S(Tn) is called the
embedded sub-chain. We call matrix of selected transitions the matrix of probabilitiesC
defined by

Ci,j = Qi,j1{(i,j)∈F0}

for all (i, j) and whereQ is the transition matrix ofS (see Eq.(7.57)). The matrixC is simply
derived by inspection. We also define the matrixJi,j by

Ji,j
def
= P(S(T1) = j|S(0) = i)

so thatJi,j is the transition probability of the chainYn if i is a reachable state ofYn. Note thatJ is
not equal toC, as the next theorem shows.

In continuous time, the definitions are similar (recall thatwe assume right-continuous sample
paths, so a selected transition occurs at timet if (S(t−), S(t)) ∈ F0). The matrix of selected
transitions is now a rate matrix, given by

Ci,j = Ai,j1{(i,j)∈F0}

for all (i, j) and whereA is the transition rate matrix ofS (with Ai,i = −∑j 6=iAi,j). Here we
assume that looping transitions are not possible, i.e.(i, i) 6∈ F0 for all i. Note thatYn is a discrete
time Markov chain even ifS(t) is in continuous time.

THEOREM 7.5.1. (Embedded Subchain) Consider a stationary Markov chain in discrete or
continuous timeS(t) with t ∈ Z or t ∈ R, with stationary probabilityπ, defined over some
enumerable state space. Consider an embedded sub-chainYn, n ∈ N, with the assumptions above,
and with matrix of selected transitionsC.

1. The transition matrixJ of the embedded sub-chainYn satisfies(Id−Q+C)J = C (discrete
time) or(C −A)J = C (continuous time).

2. The intensity of the point process of selected transitions isλ =
∑

i,j πiCi,j.

3. The probability that an arbitrary selected transition is(i, j) is 1
λ
πiCi,j (in discrete time this

is defined asP0(S−1 = i, S0 = j); in continuous time asP0(S0− = i, S0 = j)).

4. The probability to be in statej just after an arbitrary selected transition is1
λ

∑

i πiCi,j. The
probability to be in statei just before an arbitrary selected transition is1

λ
πi

∑

j Ci,j.

EXAMPLE 7.16:QUEUING NETWORK IN FIGURE 8.24. There are two stations, called “Gate” and
“Think Time”, one class of customers; we assume to simplify that the service times in both stations
are exponentially distributed with parameters µ (at “Gate”) and ν (at “Think Time”). The system
can be described as a continuous time Markov chain with state = number of customers at station
“Gate”, so that n ∈ {0, ..,K} where K is the total population size. This is a single class product
form network, and from Theorem 8.5.1, the stationary probability is

p(n|K) =
1

η(K)

1

µn
1

(K − n)!νK−n
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where we explicitly wrote the dependency on the total population size and η(K) is a normalizing
constant.

Consider as selected transitions the arrivals at station “Gate”. The matrix of selected transitions is
given by

Cn,n+1 = (K − n)ν and Cn,n′ = 0 if n′ 6= n+ 1

The probability that the number of customers is n just after an arrival is, by item 4 of Theorem 7.5.1:

p0(n) =
1

λ
p(n− 1)C(n− 1, n) =

1

λη(K)

1

µn−1

1

(K − n)!νK−n

This is the same as p(n− 1|K − 1) if we ignore the normalizing constants, more precisely:

p0(n) =
η(K − 1)

λη(K)
p(n− 1|K − 1) (7.53)

Since
∑K

n=1 p
0(n) =

∑K
n=1 p(n− 1|K − 1) = 1, the constant η(K−1)

λη(K) is 1. i.e.

p0(n) = p(n− 1|K − 1) (7.54)

In other words, an arriving customer samples the network in the same way as if this customer
would be removed (this is an instance of the Arrival Theorem 8.6.6). It follows also that

λ =
η(K − 1)

η(K)
(7.55)

which is an instance of the Throughput Theorem 8.6.2.

7.5.2 PASTA

Consider a system that can be modeled by a stationary Markov chainS(t) in discrete or continuous
time (in practice any simulation that has a stationary regime and is run long enough). We are
interested in a matrix ofC ≥ 0 of selected transitions such that

IndependenceFor any statei of S(t),
∑

j Ci,j
def
= λ is independent ofi.

i.e. the rate of occurrence of a selected transition is independent of the global simulation state.
Further, this assumption implies that the Point process of selected transitions is a Bernoulli process
(discrete time) or a Poisson process (continuous time) withintensityλ (see Section 7.6 for the
definition of Poisson and Bernoulli processes).

THEOREM 7.5.2 (PASTA).Consider a point process of selected transitions as defined above. The
Palm probability just before a transition is the stationaryprobability.

The theorem says that, in stationary regime, the Bernoulli,or Poisson clock of selected transitions
sees the system in the same way as the standard clock.

InterpretC as external arrivals into a queuing system. The theorem is known as “Poisson Arrivals
See Time Averages”, hence the acronym. Note however that this denomination is misleading:
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Poisson alone is not sufficient, we need that the point process of selected transition has a rate
independent of the state (see Example 7.19).

EXAMPLE 7.17:ARP REQUESTSWITHOUT REFRESHES. IP packets delivered by a host are pro-
duced according to a Poisson process with λ packets per second in average. When a packet
is delivered, if an ARP request was emitted not more than ta seconds ago, no ARP request is
generated. Else, an ARP request is generated. What is the rate of generation of ARP requests ?

Call Tn the point process of ARP request generations, µ its intensity and p the probability that an
arriving packet causes an ARP request to be sent. First, we have µ = pλ (to see why, assume
time is discrete and apply the definition of intensity).

Second, let Z(t) = 1 if the ARP timer is running, 0 if it has expired. Thus p is the probability that an
arriving packet sees Z(t) = 0. The PASTA property applies, as the IP packet generation process
is independent of the state of the ARP timer. (You may establish a formal link with Theorem 7.5.2
as follows. Think in discrete time. The system can be modeled by a Markov chain with X(t) = i =
the residual value of the timer. We have Qi,i−1 = 1 for i > 0, Q0,ta = λ, Q0,0 = 1− λ. The selected
transitions are IP packet deliveries, and the probability that one IP packet is delivered in one slot
is λ, and does not depend on the state i.)

By the inversion formula:

p = P(Z(t) = 0) = µE0(T1 − ta) = µ

(

1

µ
− ta

)

= 1− µta (7.56)

Combining with µ = pλ gives p = 1
λta+1 , and the rate of generation of ARP requests is µ = λ

1+λta
.

EXAMPLE 7.18:M/GI/1 QUEUE. A similar reasoning shows that for a queuing system with Poisson
arrivals and independent service times, an arriving customer sees the system (just before its own
arrival) in the same way as an external observer arriving at an arbitrary instant.

EXAMPLE 7.19:A POISSON PROCESS THAT DOES NOTSATISFY PASTA. The PASTA theorem re-
quires the event process to be Poisson or Bernoulli and independence on the current state. Here
is an example of Poisson process that does not satisfy this assumption, and does not enjoy the
PASTA property.

Construct a simulation as follows. Requests arrive as a Poisson process of rate λ, into a single
server queue. Let Tn be the arrival time of the nth request. The service time of the nth request
is assumed to be 1

2(Tn+1 − Tn). The service times are thus exponential with mean 1
2λ , but not

independent of the arrival process. Assuming the system is initially empty, there is exactly 1
customer during half of the time, and 0 customer otherwise. Thus the time average distribution of
queue length X(t) is given by P(X(t) = 0) = P(X(t) = 1) = 0.5 and P(X(t) = k) = 0 for k ≥ 2. In
contrast, the queue is always empty when a customer arrives. Thus the Palm distribution of queue
length just before an arrival is different from the time average distribution of queue length.

The arrival process does not satisfy the independence assumption: at a time t where the queue
is not empty, we know that there cannot be an arrival; thus the probability that an arrival occurs
during a short time slot depends on the global state of the system.
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APPLICATION TO MEASUREMENTS . The PASTA property shows that sampling a system at
random observation instants, distributed like a Poisson orBernoulli process, independent of the
system state, provides an unbiased estimator of the time average distribution.

7.6 APPENDIX : QUICK REVIEW OF M ARKOV CHAINS

7.6.1 MARKOV CHAIN IN DISCRETE T IME

Let S be afinite set. A discrete time stochastic processS(t) is a Markov chain onS if the future
evolution ofS given all past up to timet is entirely determined byS(t). Thetransition matrix is
the matrix of probabilitiesQi,j defined by

Qi,j = P(S(t+ 1) = j|S(t) = i) (7.57)

for all i andj in S.

The state space can be partitioned incommunication classes as follows: two statesi andj are
in the same communication class ifi = j or if the chainS(t) can go fromi to j in a finite number
of transitions (each transition must have a positive probability), and vice-versa, fromj to i. A
communication class is eitherrecurrent (once the chainS(t) has entered the class it will remain in
the class forever) or not, also calledtransient. If a class is transient, with probability 1, the chain
will leave it and never return. States that belong to a transient class are also called transient.

Let π(t) be the row vector of probabilities at timet, i.eπi(t) = P(S(t) = i). Then for allt ∈ N:

π(t) = π(0)Qt (7.58)

For the chainS(t) to be stationary, we needπ(t) independent oft, which implies thatπ satisfies
the linear system

{

π = πQ
∑

i∈S πi = 1
(7.59)

It turns out that this also sufficient, i.e ifπ(0) is solution of Eq.(7.59), thenS(t) is stationary. A
solution of Eq.(7.59) is called astationary probability of the Markov chain.

Note that, becauseQ is a stochastic matrix, any solutionπ ∈ R
S of Eq.(7.59) is necessarily non-

negative. SinceS is finite the situation is simple: stationary probabilitiescorrespond to recurrent
classes. More precisely

• There is at least one recurrent class.
• For every recurrent classc there is one stationary probability vectorπc, such thatπc

i > 0 if
i ∈ c andπc

i = 0 otherwise; any stationary probability is a weighted average of theπc’s.
• If there is only one recurrent class, the chain is calledirreducible. If the chain is irreducible,

there is exactly one stationary probability, and vice-versa, i.e. if Eq.(7.59) has only one
solution the chain is irreducible.

• The chain isergodic in the wide sense5 if it is irreducible, and vice-versa.

5Some authors use a more restrictive definition and say that a finite space markov chain is “ergodic” if it is irre-
ducible and aperiodic, see later. We prefer to use the general definition, which is that time averages tend to expecta-
tions.
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• If there is more than one recurrent class, the chain will eventually enter one recurrent class
and remain there forever. The probability that the chain enters recurrent classc depends on
the initial condition.

• If π is a stationary probability vector andi is a transient state,πi = 0.

Thus, whenS is finite, there is always at least one stationary regime. If the chainS(t) is not
irreducible (i.e. not ergodic) there may be several stationary regimes, and the stationary regime
that the chain eventually enters may be random. This happensfor example for systems that may
have several failure modes.

Consider an ergodic chain (with finite state space). It is stationary if the initial distribution of state
is the stationary probability. Otherwise, it becomes stationary ast → ∞, but there is a technicality
due to periodicity. A recurrent classc is calledperiodic with periodd if all cycles in the class have
a length multiple of somed ≥ 2 (i.e. wheneverX(t) = i, X(t+ s) = i for i ∈ c ands > 0, s must
be a multiple ofd); otherwise, the class is aperiodic. A chain with a single recurrent class is said
periodic [resp. aperiodic] if its unique recurrent class isperiodic [resp. aperiodic].

If the chain is ergodic and aperiodic then

lim
t→∞

π(t) = π

whereπ is the unique stationary probability and thus the chain becomes stationary for larget. Else,
if the chain is periodic with periodd

lim
t→∞

1

d
(π(t) + π(t + 1) + . . .+ π(t+ d− 1)) = π

which can be interpreted as follows. Change the time origin randomly uniformly in{0, 1, . . . , d−
1}. Then ast → ∞, the chain becomes stationary.

If the state space is enumerable but infinite, the situation is more complex; there may not exist a
recurrent class, and even if there is, there may not exist a stationary probability (the chain “escapes
to infinity”). However, there is a simple result. If the chainis irreducible, then Eq.(7.59) has0 or
1 solution. If it has1 solution, then it is ergodic and all statements above for an ergodic chain over
a finite space continue to hold.

7.6.2 MARKOV CHAIN IN CONTINUOUS T IME

In continuous time, the definition of the Markov Chain is similar, i.e. S is an enumerable set and
the continuous time stochastic processS(t) is a Markov chain onS if the future evolution ofS
given all past up to timet is entirely determined byS(t). We assume as usual thatS(t) is right-
continuous, i.e.S(t+) = S(t), so that if there is a transition at timet, S(t) is the state just after the
transition6. Note that some authors reserve the term Markovchain to discrete time, whereas some
others reserve it to discrete or continuous time processes over a discrete state space (as we do).

The transition matrix is replaced by a matrix of rates, called therate transition matrix, or gener-
ator matrix, A. It has the property that

P(S(t+ dt) = j|S(t) = i) = Ai,jdt+ o(dt) (7.60)

6Transitions in continuous time are often called “jumps”
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for i 6= j. ThusAi,j is interpreted as the rate of transition from statei to j and is necessarily
nonnegative. If the state space is infinite, we need to assumethat the process is not explosive,
which means here that for alli ∈ S:

∑

j 6=i

Ai,j < ∞ (7.61)

It is customary to pose

Ai,i = −
∑

j 6=i

Ai,j (7.62)

so thatA has non-negative entries everywhere except on the diagonaland
∑

j Ai,j = 0. It can be
shown that the time until the next jump given thatS(t) = i is an exponential random variable with
parameter−Ai,i.

Let π(t) be the row vector of probabilities at timet, i.eπi(t) = P(S(t) = i). Then for allt ≥ 0:

π(t) = π(0)etA (7.63)

(the exponential of a matrix is defined like for complex numbers byeA =
∑∞

n=0A
n/n!).

A stationary probability is a row vectorπ that satisfies
{

πA = 0
∑

i∈S πi = 1
(7.64)

which is the replacement for Eq.(7.59). Otherwise, the restof Section 7.6.1 applies, mutatis mu-
tandi, with one simplification: there is no issue of periodicity. Thus, in particular, a continuous
time Markov chain over a finite state space becomes stationary ast → ∞.

For more details about Markov chains in continuous time, see[94].

7.6.3 POISSON AND BERNOULLI

Those are the two memoriless stationary point processes.

A Bernoulli process with intensityq ∈ [0, 1] is a point processTn ∈ Z in discrete time, such that
the points are independently drawn. In other words, at everytimet, toss a coin and with probability
q decide that there is a point, otherwise there is not. With theterminology of Section 7.2, the
sequenceN(t) is iid. The time intervals between points,Sn = Tn+1 − Tn, are independent and are
such thatSn − 1 has a geometric distribution with parameterq. The same holds for the time from
now to the next point.

A Poisson process Tn ∈ R with intensityλ > 0 is the continuous time equivalent of a Bernoulli
process. We do not define it here formally, but, instead, giveits main properties:

• The probability that there is a point in[t, t+ dt] is λdt+ o(dt)
• The number of points in disjoint time intervals are independent random variables.
• The number of points in an interval of durationt is a random variable with distribution

Poisson(λt)
• The time intervals between points,Sn = Tn+1−Tn, are independent and have an exponential

distribution with parameterλ. The time from now to the next point has the same distribution
(but see also Example 7.7).
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It can be shown that the Poisson process with intensityλ is the limit, in various senses, when
dt → 0, of the Bernoulli process with intensityq = λdt, when we map the time slot of the
Bernoulli process to a continuous time interval of durationdt.

7.7 PROOFS

Except for Theorem 7.4.2 and Theorem 7.5.1, we give the proofs in discrete time, as they are simple and require only
a first course on probability. The proofs in continuous time that are not given can be found in [4], [88] or [70].

THEOREM 7.2.1 Let N(t) = 1 if the point process has a point at timet, 0 otherwise. We show only that

E(X(0)) = λE0
(

∑T1

s=1X(s)
)

, as the second equality is similar. By definition of a conditional probability and ofλ:

λE0

(

T1
∑

s=1

X(s)

)

= E

(

T1
∑

s=1

X(s)N(0)

)

Now for s > 0, the event “s ≤ T1” is equivalent to “N(1, s− 1) = 0” thus

λE0

(

T1
∑

s=1

X(s)

)

= E

( ∞
∑

s=1

X(s)N(0)1{N(1,s−1)=0}

)

= E

( ∞
∑

s=1

X(0)N(−s)1{N(1−s,1)=0}

)

= E

(

X(0)

∞
∑

s=1

N(−s)1{N(1−s,1)=0}

)

where the last line is by stationarity. LetT−(−1) be the most recent time at which a selected event occured before or
at time−1. This time is finite with probability 1, by stationarity. We haveN(−s)1{N(1−s,1)=0} = 1 if and only if
T−(−1) = −s, thus, with probability1:

1 =

∞
∑

s=1

N(−s)1{N(1−s,1)=0}

which shows the formula.

THEOREM 7.3.1 X(t) is jointly stationary withTn, thus its distribution is independent oft, and we can apply
the inversion formula. For anys ≥ 0 we have

P(X(0) = s) = E(1{X(0)=s}) = λE0

(

T1−1
∑

u=0

1{X(u)=s}

)

Given that there is a point at0 and0 ≤ u ≤ T1 − 1, we haveX(u) = T1 − u, thus

P(X(0) = s) = λE0

(

T1−1
∑

u=0

1{T1=u+s}

)

Now the sum in the formula is1 if T1 > s and0 otherwise. Thus

P(X(0) = τ) = λE0
(

1{T1>s}
)

= λP0(T1 > s)

which shows the formula forX(t). The formula forY (t) is similar, usingYu = u for 0 ≤ u ≤ T1 − 1.

ForZ(t), apply the inversion formula and obtain

P(Z0 = s) = λE0

(

T1−1
∑

u=0

1{Zu=s}

)
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Now underP 0, Zu = T1 does not depend onu for 0 ≤ u ≤ T1 − 1 thus

P(Z0 = s) = λE0

(

1{T1=s}

T1−1
∑

u=0

1

)

= λE0
(

T11{T1=s}
)

= λsP0(T1 = s)

THEOREM 7.3.5 Apply the inversion formula to theB point process and toX(t)NA(t) whereNA(t) is 1 if
there is anA point att and0 otherwise. Note that

∑

n∈Z

X (An)1{B0≤An<B1} =

B1−1
∑

s=B0

XsN
A(s)

thus

λ(B)E
(

X(0)NA(0)
)

= E
0
B

(

∑

n∈Z

X (An)1{B0≤An<B1}

)

λ(B)
E
0
A (X(0))

λ(A)
= E

0
B

(

∑

n∈Z

X (An)1{B0≤An<B1}

)

λ(B)E0
A (X(0)) = λ(A)E0

B

(

∑

n∈Z

X (An)1{B0≤An<B1}

)

(7.65)

Apply the last equation toX(t) = 1 and obtain Eq.(7.43). Combine Eq.(7.65) with Eq.(7.43) andobtain Eq.(7.44).

THEOREM 7.4.2 First note that the expectation ofN(t0) is
∑

n≥1

P(S0 + . . .+ Sn−1 ≤ t) (7.66)

Pick some arbitrary, fixeds > 0; by Markov’s inequality:

P(S0 + . . .+ Sn−1 ≤ t0) ≤ est0E
(

e−s(S0+...+Sn−1)
)

= est0G(s)n

whereG(s) := E
(

e−sS0
)

is the Laplace-Transform ofS0. We haveG(s) = 1 if and only if sS0 = 0 with probability
1. Thus, by hypothesis,G(s) < 1 sinces > 0. By Eq.(7.66):

E (N(t0)) ≤ est
∑

n≥1

(G(s))n <∞

THEOREM 7.4.3 Let φ be an arbitrary bounded test function ofZ(t), S(t). Apply Palm’s inversion formula:

E (φ(Z(t), S(t)) = λE0

(

∫ T1

0

φ(Z0, T1)dt

)

= λE0 (T1φ(Z0, T1)) = λE0 (S0φ(Z0, S0))

= λ

∫

Z×(0,∞)

φ(z, s)sf0
Z,S(z, s)dµ(z)ds

from where item 1 follows, withη = λ.

Since the knowledge ofE (φ(Z(t), S(t))ψ(T+(t))) for anyφ, ψ determines the joint distribution of(Z(t), S(t), T+(t)),
to show item 2, it is sufficient to show that for any bounded, test functionψ of T+(t) and any bounded test function
of Z(t), S(t), we have:

E
(

φ(Z(t), S(t))ψ(T+(t))
)

=

∫

z∈Z,s>0

φ(z, s)sf0
Z,S(z, s)

(
∫ s

0

1

s
ψ(t)dt

)

dµ(z)ds
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which, is equivalent to

E
(

φ(Z(t), S(t))ψ(T+(t))
)

=

∫

z∈Z,s>0

φ(z, s)f0
Z,S(z, s)

(∫ s

0

ψ(t)dt

)

dµ(z)ds (7.67)

Apply Palm’s inversion formula again:

E
(

φ(Z(t), S(t)ψ(T+(t))
)

= λE0

(

∫ S0

0

φ(Z0, S0)ψ(S0 − u)du

)

= λE0

(

sφ(Z0, S0)
1

s

∫ S0

0

ψ(S0 − u)du

)

= λ

∫

z∈Z,s>0

φ(z, s)f0
Z,S(z, s)

(∫ s

0

ψ(s− u)du

)

dµ(z)ds

which, after the change of variablet = s− u in the inner integral is the same as Eq.(7.67).

THEOREM 7.5.1 By the strong markov property:

Ji,j = P
0(XT1 = j|XT0 = i) = P(XT+(0) = j|X0 = i)

Condition with respect to the next transition, selected or not:

Ji,j =
∑

k:(i,k)∈F

Qi,k +
∑

k:(i,k) 6∈F

Qi,kP(XT+(0) = j|X1 = k and X0 = i)

Now, for (i, k) 6∈ F , given thatX0 = i,X1 = k, we haveT+(0) = T+(1). Thus, the last term in the previous
equation is

∑

k:(i,k) 6∈F

Qi,kP(XT+(1) = j|X1 = k and X0 = i) =
∑

k:(i,k) 6∈F

Qi,kJk,i

Combining the two givesJ = C + (Q − C)J which shows item 1.

Now, by definition of an intensity,λ =
∑

(i,j)∈F P(X0 = j,X−1 = i) andP(X0 = j,X−1 = i) = πiQi,j , which
shows item 2.

By definition of the Palm probability:

P
0(X−1 = i,X0 = j) =

1

λ
E(1{X−1=j}1{X0=i}1{(i,j)∈F}) =

1

λ
P(X−1 = j,X0 = i)1{(i,j)∈F}

which shows item 3. Item 4 follows immediately.

THEOREM 7.5.2 The probability that there is a transition at time1, given thatX0 = i, is λ, independent ofi.
ThusN(1) is independent of the state at time0. Since we have a Markov chain, the state at time1 depends on the past
only through the state at time0. ThusN(1) is independent ofN(t0) for all t ≥ 0. By stationarity, it follows thatN(t)
is iid, i.e. is a Bernoulli process.

The relation between Palm and stationary probabilities follows from Theorem 7.5.1, item 4. The Palm probability to
be in statei just before a transition is

1

λ0
πi
∑

i

C(i, j) =
λ

λ0
πi

whereλ0 is theλ of Theorem 7.5.1. The sum of probabilities is 1, thus necessarily λ
λ0

= 1.
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7.8 REVIEW QUESTIONS

QUESTION 7.8.1. Consider the Surge model with one user equivalent in Section3.5.5. Assume the
average inactive off period idZ, the average active off period isZ ′, the average number of URLs
requested per active period isV , and the average response time for a URL request isR. What is
the throughput of requetsλ ? 7

QUESTION 7.8.2. A distributed protocol establishes consensus by periodically having one host
send a message ton other hosts and wait for an acknowledgement [5]. Assume the times to send
and receive an acknowledgement are iid, with distributionF (t). What is the number of consensus
per time unit achieved by the protocol ? Give an approximation using the fact that the mean of the
kth order statistic in a sample ofn is approximated byF−1( k

n+1
). 8

QUESTION 7.8.3. (ARP protocolwith refreshes) IP packets delivered by a host are produced
according to a stationary point process withλ packets per second in average. Every packet causes
the emission of an ARP if the previous packet arrived more than ta seconds ago (ta is the ARP
timer). What is the average number of ARP requests generatedper second ?9

QUESTION 7.8.4. Consider the notation of Theorem 7.3.1. Is the distributionof Z(t) equal to the
convolution of those ofX(t) andY (t) ? 10

7Using the large time heuristic, one findsλ = 1
V (R+Z′)+Z

8Call Tn the point process of the starting points for consensus rounds. The required answer is the intensityλ of
Tn. We haveλ = E

0(T1). Now assuming that a round starts at time0, we haveT1 = maxi=1...n Si whereSi ∼ iid
with distributionF (). Thus

P
0(T1 < t) = P

0(S1 < t and ... and Sn < t) = F (t)n

thus

E
0(T1) =

∫ +∞

0

(1− F (t)n)dt

and

λ =
1

∫ +∞
0 (1− F (t)n) dt

The Palm distribution ofT1 is that of the maximum ofn iid random variables, thusE0(T1) ≈ F−1
(

n
n+1

)

.
9Apply Neveu’s exchange formula to : first process = ARP request emissions (intensityλ1); second process =

all packet arrivals (intensityλ) andXs = 1. This givesλ1 = λE0(N1(0,
T
1 ]), whereE0 is the Palm probability

for the second point process andN1 is the number of ARP requests. Given that there is a packet arrival at time0,
N1(0,

T
1 ] = 1{T1−T0>ta}. Thus the required throughput isλ1 = λP0(T1 > ta). It depends only on the tail of the

packet inter-arrival time.
10On one hand,Z(t) = X(t) + Y (t), so it seems tempting to say yes. It is true for a Poisson process. However,

consider the case whereTn+1 − Tn is constant equal to someT under Palm. ThenX(t) andY (t) are uniform on
[0, T ], the convolution has a positive density on(0, 2T ), whereasZ(t) is constant equal toT . The answer is no;X(t)
andY (t) are not independent, in general.



CHAPTER 8

QUEUING THEORY FORTHOSE WHO

CANNOT WAIT

Queuing phenomena are very frequent in computer and communication systems, and explain a
large number of performance patterns. There is a large body of available results in queuing theory;
in this chapter, we focus on results and concepts that are very broadly applicable, some of them
are little known. We present four topics, which constitute agood coverage of all the techniques
required in practice.

First, we start with simple,deterministic results; they provide results on transient phenomenons,
and also some worst case bounds. These are often overlooked,but they do provide a first, some-
times sufficient, insight. Second we presentoperational lawsfor queuing systems; in some sense
they are the “physical laws” of queuing: Little’s formula, the DASSA property, network and forced
flows law. Here we make frequent use of Palm calculus (Chapter7). These results also provide
tools and bounds for fast analysis. Third, we give a series ofsimple, though important results for

237
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single queueswith one or several servers and for the processor sharing queue; these can be taken
as models for systems without feedback. Fourth, we discussnetwork of queues, which can be
used to model systems with feedback, and also complex interactions. Here we made the topic as
simple as possible, but the result is not too simple, as thereis some description complexity.

We give a unified treatment of queuing networks; we discusseditems such as the MSCCC station,
a powerful model for concurrency in hardware or software, orWhittle networks, which are used
to model bandwidth sharing in the Internet. This latter typeof network is traditionally presented
as a type of its own, a non product form queuing network. We show that it must not be so: all of
these are instances of the general theory of multi-class product form queuing networks. Presenting
these results in this way simplifies the student’s job, as there is a single framework to learn, instead
of several disparate results. It is also more powerful as it provides new ways to combine existing
building blocks.

Last, we illustrate on a example how the four different topics can be articulated and provide differ-
ent insights on the same performance question.
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8.1 DETERMINISTIC ANALYSIS

8.1.1 DESCRIPTION OF A QUEUING SYSTEM WITH CUMULATIVE FUNC-
TIONS

A deterministic analysis is often very simple, and providesfirst insights of a queuing system.
Perhaps the simplest, and most efficient tool in this toolboxis the use of cumulative functions for
arrival and departure counts, which we explain now. For a deeper treatment, see [55, 23].

Consider a system which is viewed as a black box. We make no specific assumptions about its
operation; it may be a network node, an information system, etc. The cumulative functions are:

• A(t) (input function): amount of work that arrives into the system in the time interval [0, t]
• D(t) (output function): amount of work done in the time interval[0, t]
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Assume that there is some timet0 ≤ 0 at whichA(t0) = D(t0) = 0. We interprett0 as an instant
at which the system is empty. The main observations are:

• Q(t) := A(t)−D(t) is the backlog (unfinished work) at timet.
• Defined(t) = min {u ≥ 0 : A(t) ≤ (D(t+ u)} (horizontal deviation on Figure 8.1). If

there is no loss of work (no incoming item is rejected) and if the system is first in, first out
(FIFO), thend(t) is the response time for a hypothetical atom of work that would arrive at
time t.

The next example shows how this can be used for worst case analysis.

A(t) D(t)

time

bits

d(t)

t

Q(t)

Figure 8.1:Use of cumulative functions to describe a queuing system.

EXAMPLE 8.1:PLAYOUT BUFFER. Consider a packet switched network that carries bits of infor-
mation from a source with a constant bit rate r (Figure 8.2) as is the case for example, with circuit
emulation. We have a first system S, the network, with input function A(t) = rt. The network
imposes some variable delay, because of queuing points, therefore the output A′() does not have
a constant rate r. What can be done to re-create a constant bit stream ? A standard mechanism

A(t) A’(t) D(t)

time

bits

d(0)d(0) -∆ d(0) + ∆

(D
1)
: 
r(
t 
 
-
d(
0)
 +
 ∆)
 

(D
2)
: 
r 
(t
  -
d(
0)
 -

∆)
 d(t)

A(t) A’(t) D(t)

S S’

Figure 8.2:A Simple Playout Buffer Example

is to smooth the delay variation in a playout buffer. It operates as follows. When the first bit of data
arrives, at time d(0), it is stored in the buffer until some initial delay has elapsed. Then the buffer is
served at a constant rate r whenever it is not empty. This gives us a second system S ′, with input
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A′() and output D(). What initial delay should we take ? We give an intuitive, graphical solution.
For a formal development, see [55, Section 1.1.1].

The second part of Figure 8.2 shows that if the variable part of the network delay (called delay
jitter) is bounded by some number ∆, then the output A′(t) is bounded by the two lines (D1)
and (D2). Let the output D(t) of the playout buffer be the function represented by (D2), namely
D(t) = rt− d(0) −∆. This means that we read data from the playout buffer at a constant rate r,
starting at time d(0) + ∆. The fact that A′(t) lies above (D2) means that there is never underflow.
Thus the playout buffer should delay the first bit of data by an amount equal to ∆, a bound on
delay jitter.

QUESTION 8.1.1. What is the required playout buffer size ?1

8.1.2 REICH ’ S FORMULA

This is a formula for describing the backlog in a single server queue. Consider a lossless, FIFO,
system, with a constant service ratec, and with unlimited buffer size.

THEOREM 8.1.1 (Reich). The backlog at timet in the system defined above is

Q(t) = max
s≤t

(A(t)− A(s)− c(t− s))

EXAMPLE 8.2:SCALING OF INTERNET DELAY. We are interested in knowing whether queuing
delays are going to disappear when the Internet grows to broadband. The following analysis is
due to Norros [74] and Kelly [45].

Assume traffic on an internet link grows according to three scale parameters: volume (v), speedup
(s) and number of users (u). This is captured by the relation:

A(t) = v
u
∑

i=1

Ai(st) (8.1)

We are interested in the delay; assuming the link is a constant rate server with rate c, this is the
backlog divided by c. We also assume that the capacity of the link is scaled with the increase in
volume: c = c0vsu. The question is now: how does the delay depend on v, s, u ?

The maximum delay, D(v, s, u) is derived from Reich’s formula:

D(v, s, u) = max
t≥0

(

A(t)

c
− t

)

The dependence on v and s is simple to analyze. It comes

D(v, s, 1) = max
t≥0

(

vA1(st)

c
− t

)

= max
t≥0

(

A1(t)

c0s
− t

s

)

=
1

s
D(1, 1, 1)

and similarly for u 6= 1 we have D(v, s, u) = 1
sD(1, 1, u). Thus the delay is independent of volume

scaling, and is inversely proportional to the speedup factor s. The dependence on u requires more

1A bound on buffer size is the vertical distance betweenA(t) andA′(t); from Figure 8.2, we see that it is equal to
2r∆.
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assumptions. To go further, we assume a stochastic model, such that the queue length process
Q(t) is stationary ergodic. We can use Reich’s formula:

Q(0) = max
t≥0

(A(−t)− ct)

where A(−t) is now the amount of work that has arrived in the interval [−t, 0]. We assume that
Eq.(8.1) continues to hold. Further, we model Ai(−t) by a fractional brownian traffic [74]. This is a
simplified model which captures long range dependence, i.e. the often observed property that the
auto-correlation function does not decay exponentially. This means that

Ai(−t) = λt+
√
λaBi

H(t)

where Bi
H is fractional brownian motion, λ the traffic intensity, and a a variance parameter. Frac-

tional brownian motion is a gaussian process, with mean λt and variance λat2H . BH(t) is self-
similar in the sense that the process BH(kt) has the same distribution as kHBH(t).

Assume that the Ais are independent. It follows from the properties of fractional brownian motion
that A(−t) is also fractional brownian traffic. Its mean is uλ and its variance is uλat2H , thus it has
intensity uλ and same variance parameter a.

By Reich’s formula

D(1, 1, u) = max
t≥0

(

A(t)

cou
− t

)

= max
t≥0

[(

λ

c0
− 1

)

t+
√
λaBH(t)

1

c0
√
u

]

Do the change of variable t = kτ . It comes

D(1, 1, u) ∼ max
τ≥0

[(

λ

c0
− 1

)

kτ +
√
λakHBH(τ)

1

c0
√
u

]

where ∼ means same distribution. Take k such that k = kH√
u

, i.e. k = u
− 1

2(1−H) . Then we have

D(1, 1, u) ∼ u
− 1

2(1−H)D(1, 1, 1)

In summary, the delay scales according to

D(v, s, u) =
1

sub
D(1, 1, 1)

with b = 1
2−2H . In practice, we expect the Hurst parameter usually lies in the range [0.67, 0.83] thus

1.5 ≤ b ≤ 3. In summary, delay decreases with speedup, and more rapidly with number of users.

8.2 OPERATIONAL L AWS FOR QUEUING SYSTEMS

These are robust results, i.e. which are true with very few assumptions on the queuing system.
other than stability. Many of them directly derive from Chapter 7, such as the celebrated Little’s
law. The laws apply to a stationary system; for a single queue, they are true if the utilization is
less than1. This type of analysis was pioneered in [34]; an original, stand-alone treatment can be
found in [35].
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8.2.1 DEPARTURES AND ARRIVALS SEE SAME AVERAGES (DASSA)

THEOREM 8.2.1. (DASSA) Consider a system where individual customers come in and out. As-
sume that the arrival processAn and the departure processDn are stationary point processes, and
that they have no point in common (thus there are no simultaneous arrivals or departures).
LetN(t) ∈ N be the number of customers present in the system at timet. Assume thatN(t), An

andDn are jointly stationary (see Section 7.2).
Then the probability distribution ofN(t) sampled just before an arrival is equal to the probability
distribution ofN(t) sampled just after a departure.

The proof is given in Section 8.10; it is a direct applicationof the Rate Conservation law in Theo-
rem 7.3.2.

EXAMPLE 8.3:INTER-DEPARTURE TIME IN M/GI/1 QUEUE. We want to compute the distribution
of inter-departure time in the stable M/GI/1 queue defined in Section 8.3 (i.e. the single server
queue, with Poisson arrival and general service time distribution), and would like to know in which
case it is the same as the inter-arrival distribution.

First note that the time between two departures is equal to one service time if the first departing
customer leaves the system non-empty, and, otherwise, the same plus the time until the next
arrival. The time until next arrival is independent of the state of the system and is exponentially
distributed, with parameter the arrival rate λ. Thus the Laplace Stieltjes transform2 of the inter-
departure time is

LD(s) = (1− p)LS(s) + pLS(s)
λ

λ+ s

where LS is the Laplace Stieltjes transform of the service time and p is the probability that a
departing customer leaves the system empty.

By DASSA, p is also the probability that an arriving customer sees an empty system. By PASTA
(Example 7.18), it is equal to the probability that the queue is empty at an arbitrary point in time,
which is also equal to 1− ρ, with ρ = λS̄ and S̄ = mean service time. Thus

LD(s) = LS(s)

(

ρ+
(1− ρ)λ

λ+ s

)

which entirely defines the probability distribution of inter-departure times.

The inter-departure times have the same distribution as the inter-arrival times if and only if LD(s) =

λ/(λ + s). Solving for LS gives LS(s) = λ/ρ
λ/ρ+s , i.e. the service time must be exponentially dis-

tributed and the M/GI/1 queue must be an M/M/1 queue.

2The Laplace-Stieltjes transform of a non-negative random variableX is defined byLX(s) = E
(

e−sX
)

. If X
andY are independent,LX+Y (s) = LX(s)LY (s); X is exponentially distributed with parameterλ if and only if
LX(s) = λ

λ+s
.
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8.2.2 LITTLE ’ S L AW AND APPLICATIONS

THEOREM 8.2.2 (Operational Law).Consider a stationary system that is visited by a flow of cus-
tomers (for a formal definition, see Theorem 7.3.4).

• [Throughput] The throughput, defined as the expected number of arrivals per second, is
also equal to the inverse of the expected time between arrivals.

• [Little]
λR̄ = N̄

whereλ is the expected number of customers arriving per second,R̄ is the expected response
time seen by an arbitrary customer and̄N is the expected number of customers observed in
the system an arbitrary time

• [Utilization Law] If the system is a single server queue with arrival rateλ and expected
service timēS:

P(server busy) = ρ := λS̄

If it is a B-server queue:

E(number of busy servers) = sρ

with ρ := λS̄
s

.

QUESTION 8.2.1. Consider a single server queues that serves only one customer at a time. What
is the average number of customers not in service (i.e. in thewaiting room ?)3

THE I NTERACTIVE USER M ODEL The interactive user model is illustrated inFigure 8.3.n
users send jobs to a service center. Thethink time is defined as the time between jobs sent by one
user. CallR̄ the expected response time for an arbitrary job at the service center,Z̄ the expected
think time andλ the throughout of the system. A direct application of Little’s law to the entire
system gives:

THEOREM 8.2.3 (Interactive User).
λ(Z̄ + R̄) = n

EXAMPLE 8.4:SERVICE DESK. A car rental company in a large airport has 10 service attendants.
Every attendant prepares transactions on its PC and, once completed, send them to the database
server. The software monitor finds the following averages: one transaction every 5 seconds,
response time = 2 s. Thus the average think time is 48 s.

8.2.3 NETWORKS AND FORCED FLOWS

We often find systems that can be modeled as a directed graph, called a network. We consider
models of the form illustrated on Figure 8.4. If the total number of customers is constant, the

3N̄w = N̄ − ρ, this follows from items 2 and 3 in Theorem 8.2.2.
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Service

Center

λ

Z R

n users

Figure 8.3:The Interactive User Model

network is called “closed”, otherwise “open”. In Section 8.4, we will study such networks in more
detail.

node kλ
λk

λ

Figure 8.4:Network Model

THEOREM 8.2.4 (Network Laws).Consider a stationary network model whereλ is the total arrival
rate.

• [Forced Flows] λk = λVk, whereλk is the expected number of customers arriving per
second at nodek andVk is the expected number of visits to nodek by an arbitrary customer
during its stay in the network.

• [Total Response Time] Let R̄ [resp. R̄k] be the expected total response timeR̄ seen by an
arbitrary customer [resp. by an arbitrary visit to nodek].

R̄ =
∑

k

R̄kVk

EXAMPLE 8.5:Transactions on a database server access the CPU, disk A and disk B (Figure 8.5).
The statistics are: VCPU = 102, VA = 30, VB = 68 and R̄CPU = 0.192 s, R̄A = 0.101 s, R̄B =
0.016 s

The average response time for a transaction is 23.7 s.
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8.2.4 BOTTLENECK ANALYSIS

Common sense and the guidelines in Chapter 1 tell us to analyze bottlenecks first. Beyond this,
simple performance bounds in stationary regime can be foundby using the so-called bottleneck
analysis. It is based on the following two observations:

1. waiting time is≥ 0
2. a server utilization is bounded by1

CPU

A

B

n users 

in think time

Figure 8.5:Network example used to illustrate bottleneck analysis. n attendants serve customers. Each
transaction uses CPU, disk A or disk B. Av. numbers of visits per transaction: VCPU = 102, VA = 30, VB =

17; av. service time per transaction: S̄CPU = 0.004 s, S̄A = 0.011 s, S̄B = 0.013 s; think time Z = 1 s.

We illustrate the method on Figure 8.5. The network is a combination of Figure 8.3 and Figure 8.4.
Transactions are issued by a pool ofn customers which are either idle (in think time) or using the
network. In addition, assume that every network node is a single server queue, and let̄Sk be the
average service time per visit at nodek. ThusR̄k − S̄k is the average waiting time per visit at node
k. The throughputλ is given by the interactive user model:

λ =
n

Z +
∑

k VkR̄k

(8.2)

and by forced flows, the utilization of the server at nodek is ρk = λVkS̄k. Applying the two
principles above gives the constraints onλ:

{

λ ≤ n
Z̄+

∑

k VkS̄k

λ ≤ 1
maxk VkS̄k

(8.3)

Similarly, using Eq.(8.2) and Eq.(8.3), we find the following constraints on the response time
R̄ =

∑

k VkR̄k:
{

R̄ ≥∑k VkS̄k

R̄ ≥ n
(

maxk VkS̄k

)

− Z̄
(8.4)

Figure 8.6 illustrates the bounds. See also Figure 8.15.

A nodek that maximizesVkS̄k is called, in this model, abottleneck. To see why a bottleneck
determines the performance, consider improving the systemby decreasing the value ofVkS̄k (by
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n/(Z+  VkSk)throughput

B0

1/(VA SA)

1/(VCPU SCPU)
0

B2

B1

n

Figure 8.6: Throughput bound (B0) obtained by bottleneck analysis for the system in Figure 8.5, as a
function of the number of users n. B1, B2: typical throughput values for a system without [resp. with]
congestion collapse.

reducing the number of times the resource is used, or by replacing the resource by a faster one). If
k is not a bottleneck, this does not affect asymptote on Figure8.6, and only marginally increases
the slope of the bound at the origin, unlike ifk is a bottleneck. On Figure 8.6, we see that the
bottleneck is the CPU.

Among the two bounds in Eq.(8.3), the former is accurate at low load (when there is no queuing),
and the latter is expected to be true at high load (when the bottleneck is saturated). This is what
makes bottleneck analysis appealing, as the two bounds cover both ends of the spectrum. Note
however that, at high loads, congestion collapse might occur, and then performance would be
worst than predicted by the bound.

QUESTION 8.2.2.What happens to the example of Figure 8.5 if the CPU processing time is reduced
from0.004 to 0.003 ? to0.002 ? 4

8.3 CLASSICAL RESULTS FOR A SINGLE QUEUE

The single queue has received much attention, and there are analytical results available for a large
class of systems with random arrivals and service. We give here a minimal, but useful set of result.
For more details on some topics, the classical reference is [46, 47]; a more compact and up to date
textbook is [71]. We start with some notation and a generic result.

8.3.1 KENDALL ’ S NOTATION

The classical notation for a queue, in its simplest form, is of the typeA/S/s/K where:

• A (character string) describes the type of arrival process: Gstands for the most general
arrival process,A =GI means that the arrival process is a point process with iid interarrival
times, M is for a Poisson arrival process.

4The disk A becomes the bottleneck. Decreasing the CPU processing time to0.002 does not improve the bound
significantly.
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• S (character string) describes the type of service process: Gfor the most general service
process,S =GI means that the service times are iid and independent of thearrival process,
S =M is the special case of GI with exponential service times,S =D with constant service
times.

• B andK are integers representing the number of servers and the capacity (maximum number
of customers allowed in the system, queued + in service). WhenK = ∞, it may be omitted.

• Let An be the arrival time andSn the service time of thenth customer, labeled in order
of arrival. We assume that the sequence(An, Sn) is stationary with respect to the indexn
and that it can be interpreted as a stationary marked point process (i.e. the expectation of
An+1 − An is finite, see Theorem 7.4.1).

• The service discipline is by default FIFO, otherwise it is mentioned explicitly.

8.3.2 THE SINGLE SERVER QUEUE

STABILITY

We consider the most general queue with one single server andwith infinite capacity. Note that
we do not assume Poisson arrivals, and we allow service timesto depend on the state of the
system. We assume that the system is work conserving. More precisely, letW (t) be the backlog
process, i.e. the sum of the service times of all customers that are present in the system at time
t. When a customer arrives,W (t) increases by the (future) service time of this customer. The
work conserving assumption means thatW (t) decreases at rate1 over any time interval such that
W (t) > 0.

An important issue in the analysis of the single server queueis stability. In mathematical terms, it
means whether the backlogW (t) is stationary. When the system is unstable, a typical behaviour
is that the backlog grows to infinity.

The following is the general stability condition for the single server queue. Let̄S be the expectation
of the service time,λ the intensity of the arrival process (expected number of arrivals per second)
andρ = λS̄ the utilization factor.

THEOREM 8.3.1. (Loynes [3, Thm 2.1.1])
If ρ < 1 the backlog process has a unique stationary regime. In the stationary regime, the queue
empties infinitely often.
Furthermore, for any initial condition, the waiting time ofthenth customer converges in distribu-
tion asn → ∞ to the waiting time for an arbitrary customer computed in thestationary regime.
If ρ > 1 the backlog process has no stationary regime.

A heuristic explanation for the necessary condition is that, if the system is stable, all customers
eventually enter service, thus the mean number of beginnings of service per second isλ. From
Little’s law applied to the server (see Section 8.2), we haveρ = the probability that the server
is busy, which is≤ 1. For ρ = 1 there may or may not be stability, depending on the specific
queue. Be careful that this intuitive stability result holds only for a single queue. For networks of
interconnected queues, there is no such general result, as discussed in Section 8.4. The theorem is
for a queue with infinite capacity. For a finite capacity queue, there is, in general, stability for any
value ofρ (but forρ > 1 there must be losses).

QUESTION 8.3.1. Consider a queuing system of the form G/G/1 where the servicetime Sn of
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customern is equal to the inter-arrival timeAn+1 − An. What are the values ofρ and of the
expected number of customersN̄ ? 5

QUESTION 8.3.2. Give an example of stable and of an unstable single server queue withρ = 1. 6

M/GI/1 Q UEUE The arrival process is Poisson with parameterλ and the service times and
independent of each other and of the arrival process, with a general distribution. Forρ < 1 the
queue is stable and forρ ≥ 1 is is unstable. Using the rate conservation law as in Example7.9,
we obtain the Laplace Stieltjes transform of the waiting time (Pollaczek-Khinchine formula for
transforms):

LW (s) =
s(1− ρ)

s− λ+ LS(s)
(8.5)

whereLS is the Laplace Stieltjes transform of the service time. Notethat, by PASTA, the waiting
time has the same distribution as the workload sampled at an arbitrary point in time.

QUESTION 8.3.3. Give the Laplace Stieltjes transformLR of the response time.7

The distribution of the number of customersN(t), at an arbitrary point in time, is obtained by first
computing the distribution of the number of customers seen at a departure times, and then using
DASSA ([46, Section 5.6]). The distribution is known via itsz-transform8:

GN(t)(z) = (1− ρ) (1− z)
LS(λ− λz)

LS(λ− λz)− z
(8.6)

(this formula is also called aPollaczek-Khinchine formula for transforms). The mean values of
number of customers in system or in waiting room and the mean response times and waiting times
are easily derived and are given below:























N̄ = ρ2κ
1−ρ

+ ρ with κ = 1
2

(

1 +
σ2
S

S̄2

)

= 1
2
(1 + CoVS)

N̄w = ρ2κ
1−ρ

R̄ = S̄(1−ρ(1−κ))
1−ρ

W̄ = ρS̄κ
1−ρ

(8.7)

Note the importance of the coefficient of variation (CoV) of the service time.

QUESTION 8.3.4. Which of the quantities̄N, N̄w, R̄, W̄ are Palm expectations ?9

M/M/1 Q UEUE This is a special case of the M/GI/1 queue where the service times are exponen-
tially distributed. Here it is possible to obtain all stationary probabilities in explicit (and simple)
form, by directly solving the equilibrium equations of the Markov process. One finds that the
distribution of the number of customers at an arbitrary point in time is, whenρ < 1:

P(N(t) = k) = (1− ρ)ρk (8.8)

5λ = 1
S̄

thusρ = 1. There is always exactly one customer in the queue. ThusN̄ = 1.
6The example in Question 8.3.1 is stable withρ = 1. The M/M/1 queue withρ = 1 is unstable.
7The response time is the sum of the service time and the waiting time, and they are independent. ThusLR(s) =

LS(s)LW (s).
8Thez-transform,GN (z) of an integer random variableN is defined byGN (z) = E

(

zN
)

.
9R̄, W̄
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and the distribution of the service time of an arbitrary customer is given by

P
0(R0 ≤ x) = 1− e−(1−ρ) x

S̄ (8.9)

Furthermore, Eq.(8.7) applies withκ = 1.

M/M/1/K Q UEUE This is a modification of the M/M/1 queue where the total number of cus-
tomers is limited toK. If a customer arrives when the queue is fulled, it is dropped. The M/GI/1
formulas cannot be applied, but, instead, one can directly solve the equilibrium equations of the
Markov process.

The system has a stationary regime foranyvalue ofρ. The distribution of the number of customers
at an arbitrary point in time is

P(N = k) = ηρk1{0≤k≤K}

with η =
1− ρ

1− ρK+1
if ρ 6= 1, η =

1

K + 1
if ρ = 1

By PASTA, the probability that the system is full is equal to the loss probability and is

P
0( arriving customer is discarded) = P(N(t) = K) =

(1− ρ)ρK

1− ρK+1

GI/GI/1 Q UEUE This is the general single server queue where inter-arrivaland service times
are independent of each other and are i.i.d. In general, no closed form solution exists, but numerical
procedures are available.

One approach is based on a the following equation, which is a stochastic recurrence:

Wn = (Wn−1 + Sn−1 −An + An−1)
+

where the notation(x)+ meansmax(x, 0) andWn = W (A−
n ) is the workload in the system just

before thenth arrival, i.e. the waiting time for thenth customer (hereAn is the arrival time and
Sn the service time of thenth customer). LetCn = An − An−1 + Sn. Note thatCn is i.i.d. and
independent ofWn−1 thus

Wn
distrib
= (Wn−1 − Cn)

+ (8.10)

If ρ < 1 the system has a stationary regime, and the stationary distribution of waiting timeW must
satisfy

W
distrib
= (W − C)+ (8.11)

whereC is a random variable with same distribution asAn − An−1 + Sn. This equation is called
Lindley’s equation. It is classical to use CDFs, which gives the following equivalent form of
Eq.(8.11):

FW (x) =

{

0 if x < 0
∫ x

−∞ FW (x− y)fC(y)dy
(8.12)

whereFW is the CDF of waiting times andfC is the PDF ofAn − An−1 + Sn. Eq.(8.11) is an
equation of the Wiener-Hopf type and can be solved, at least in many cases, using the theory of
analytical functions; see [46, Section 8.2].



8.3. CLASSICAL RESULTS FOR A SINGLE QUEUE 251

A second approach consists in solving Eq.(8.10) directly bydiscretization. Pick a time stepδ and
let, forn ∈ N andk ∈ Z

wn
k = P (W n ∈ [kδ, (k + 1)δ)) (8.13)

sk = P (Sn ∈ [kδ, (k + 1)δ)) (8.14)

ak = P (−An + An−1 ∈ [kδ, (k + 1)δ)) (8.15)

Note thatwk = sk = 0 for k < 0 andak = 0 for k > 0 and that the arrayss anda are independent
of n. Eq.(8.10) can be approximated by







wn
k = (wn−1 ∗ s ∗ a)k if k > 0

wn
0 =

∑

i≤0(w
n−1 ∗ s ∗ a)i

wn
k = 0 if k < 0

(8.16)

where∗ is the discrete convolution. The error we are making is due todiscretization and should
decrease withδ. In fact, Eq.(8.16) is exact for the modified system where we replaced the service
times inter-arrival times by approximations that are multiples ofδ; such an approximation is by
default for the service time, Eq.(8.14), and by excess for the inter-arrival time, Eq.(8.15); thus the
approximating system has aρ value less than the original system. If the original system is stable,
so is the approximating one, and by Loynes’ theorem, the iteration converges to the stationary
distribution of waiting time. The method thus consists in numerically evaluating Eq.(8.16) until
the norm of the differencewn − wn−1 becomes small; the convolution can be computed using the
fast Fourier transform. See [39] for an example where this method is used.

A third type of methods uses mixtures of exponentials to approximate the distributions of inter-
arrival and service times as in Section 8.8.1. Then the stationary distributions can be computed
explicitly; see [52, 72].

WHAT THIS TELLS US

Though most practical systems are unlikely to exactly fit theassumptions of any of the models in
this section, the analytical formulas do explain patterns that are observed in practice. The models
in this section are for systems without feedback, since the arrival process is not influenced by the
state of the queuing system. Important features of such systems are:

• Non Linearity of Response Time: At low values of the utilization factorρ, the response
time tends to increase slowly, and linearly withρ. In contrast, asρ approaches1, the response
time grows to∞ (Figure 8.7). Thus the impact of a small traffic increase is dramatically
different, depending on the initial value of the utilization factor.
QUESTION 8.3.5. What happens for the system in Figure 8.7 if the traffic volumeincreases
by 20% ?10

• Variability Considered Harmful : The Pollacezk-Khinchine formula for the mean in Eq.(8.7)
shows that response time and queue sizes increase with the variability of the service time.
See also Figure 8.8.

10The system becomes unstableρ > 1; in practice it will lose requests, or enter congestion collapse.
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Figure 8.7:Average response time versus requests per second for a database server modeled as M/GI/1
queue. The time needed to process a request is 0.1 second and its standard deviation is estimated to 0.03.
The maximum load that can be served if an average response time of 0.5 second is considered acceptable
is 8.8 requests per second. If the traffic volume increases by 10%, the response time becomes 1.75, thus
is multiplied by a factor of 3.5.
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Figure 8.8:Mean response time for M/GI/1 queue, relative to service time, for different values of coefficient
of variation CoVS = σS

S̄
: from top to bottom: CoVS = 1.4, CoVS = 1 (M/M/1 queue) and CoVS = 0 (M/D/1

queue).
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8.3.3 THE PROCESSOR SHARING QUEUE, M/GI/1/PS

This is a special case of the single server queue, with theProcessor Sharing (PS) service dis-
cipline instead of FIFO. Here we assume that the server divides itself equally into all present
customers; this is an idealization whenδ → 0 of the round robin service discipline, where the
server allocates times slices of durationδ in turn to each present customer. If there areN customers
in the queue, the residual service time for each of them decreases at a rate1/N . This is also called
egalitarian processor sharing. Loynes’s theorem applies and the system is stable whenρ < 1.

The workload processW (t) is the same as for FIFO queues, but the distribution of waiting times
and of customers is not the same. We give results for the simple case where arrival are Poisson and
service times are i.i.d. and independent of the arrival process. They are both simple and striking.
We assumeρ < 1. First, the stationary probability is [92]:

P (N(t) = k) = (1− ρ)ρk (8.17)

which shows in particular that it depends on the service timedistribution only through its mean
(this insensitivityproperty is common to many queues in the theory of networks presented in
Section 8.4). It follows that

{

N̄ = ρ
1−ρ

R̄ = S̄
1−ρ

(8.18)

Second, the average response timeR0 of an arbitrary customer, conditional to its service timeS0

satisfies [47]

E
0 (R0 |S0 = x) =

x

1− ρ
(8.19)

i.e. it is as if an arbitrary customers sees a server for herself alone, but with a rate reduced by the
factor1/(1− ρ). Eq.(8.18) and Eq.(8.19) can be simply deduced from resultsin Section 8.4 if the
distribution of service times can be decomposed as a mixtureof exponentials; see [100]. Eq.(8.17)
is a special case of results for product-form queuing networks, see Section 8.4.

WHAT THIS TELLS US

Compare the M/M/1 and M/M/1/PS queues, where it is implicit that the M/M/1 queue is FIFO.
The stationary distribution of numbers of customers are identical, therefore (by Little’s law) the
mean response times are identical, too. However, the conditional mean response time, given the
service time, are very different. For M/M/1/PS, it is given by Eq.(8.19). For the M/M/1 queue, the
response time is the sum of waiting time plus service time, and the waiting time is independent of
the service time. The mean waiting time is given in Eq.(8.7) with κ = 1, therefore, for the FIFO
queue:

E
0 (R0 |S0 = x) = x+

ρS̄

1− ρ
(8.20)

Figure 8.9 plots the conditional response time for both FIFOand PS queues, and several values
of x.

PS and FIFO have the same capacity and the same mean response time. However, the PS queue
penalizes customers with a large service time, and the penalty is proportional to the service time.
This is often considered as afairnessproperty of the PS service discipline.
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Figure 8.9:Expected response time given that the service time of this customer is x versus utilization ρ, for
M/M/1 queues with FIFO (dashed) and PS (plain) service disciplines, for various values of x. Mean service
time S̄ is 1 time unit

QUESTION 8.3.6. For which value of the service timex are the expected response times for M/M/1
and M/M/1/PS equal ?11

8.3.4 SINGLE QUEUE WITH B SERVERS

The multiple server queue is defined by the fact that at mostB customers can be served in parallel.
Thus, the workload process decreases at a rate equal tomin(N(t), 1) whereN(t) is the number of
customers present in the queue. The utilizationρ is now defined byρ = λS̄

B
. The stability condition

is less easy than for single server queues. Whenρ < 1 there is a stationary regime but it many not
be unique [3, 2.3]. Whenρ > 1 there is no stationary regime.

M/M/B Q UEUE

For more specific system, one can say more. A frequently used system is the M/M/B queue, i.e.
the system with Poisson arrivals,B servers, exponential service times and FIFO discipline. The
system can be studied directly by solving for the stationaryprobability. Here whenρ < 1 there
is a unique stationary regime, which is also reached asymptotically when we start from arbitrary
initial conditions; forρ ≥ 1 there is no stationary regime.

Whenρ < 1 the stationary probability is given by

P(N(t) = k) =

{

η (Bρ)k

k!
if 0 ≤ k ≤ B

ηBBρk

B!
if k > B

(8.21)

11When the service timex is equal to the mean service timēS.
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with η−1 =
B−1
∑

i=0

(Bρ)i

i!
+

(Bρ)B

B!(1 − ρ)

and the stationary CDF of the waiting time for an arbitrary customer is

P
0(W0 ≤ x) = 1− pe−B(1−ρ) x

S̄

with p =
1− u

1− ρu
and u =

∑B−1
i=0

(Bρ)i

i!
∑B

i=0
(Bρ)i

i!

The probability of finding all servers busy at an arbitrary point in time or at a customer arrival is
(Erlang-C formula):

P(all servers busy) = P(N(t) ≥ B) = p (8.22)

Average quantities can easily be derived:


















N̄ = pρ
1−ρ

+Bρ

N̄w = pρ
1−ρ

R̄ = pS̄
B(1−ρ)

+ S̄

W̄ = pS̄
B(1−ρ)

M/GI/B/B Q UEUE This is the system with Poisson arrivals,B servers, arbitrary (but indepen-
dent) service times and no waiting room. An arriving customer that finds allB servers busy is
dropped.

The system is stable for any value ofρ and the stationary probability of the number of customers
is given by

P(N(t) = k) = η1{0≤k≤B}
(Bρ)k

k!
with η−1 =

B
∑

k=0

(Bρ)k

k!

The probability that an arriving customer is dropped is (Erlang Loss Formula, or Erlang-B
Formula):

P
0(arriving customer is dropped) = P(N(t) = B) = η

(Bρ)B

B!
(8.23)

WHAT THIS TELLS US

The simple M/M/B model can be used to understand the benefit ofload sharing. Consider the
systems illustrated in Figure 8.10.

Assume processing times and job inter-arrival times can be modeled as independent iid exponential
sequences. Thus the first [resp. second] case is modeled as one M/M/2 queue [resp. a collection
of two parallel M/M/1 queues]. Assume load is balanced evenly between the two processors. Both
systems have the same utilizationρ. The mean response for the first system is obtained from
Section 8.3.4; we obtainS̄

1−ρ2
. For the second system it is simplyS̄

1−ρ
(Figure 8.10).

We see that for very small loads, the systems are similar, as expected. In contrast, for large loads,
the response time for the first system is much better, with a ratio equal to1 + ρ. For example, for
ρ = 0.5, the second system has a response time1.5 times larger.

However, the capacity is the same for both systems: the benefit of load sharing may be important
in terms of response time, but does not change the capacity ofthe system.
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Figure 8.10:Mean response time over service time for systems 1 (bottom) and 2 (top), versus utilization
factor ρ.

8.4 DEFINITIONS FOR QUEUING NETWORKS

Realistic models of information and communications systems involve interconnected systems,
which can be captured by a queuing networks. In general, not much can be said about a queu-
ing network. Even the stability conditions are not known in general, and there is no equivalent of
Loynes’theorem for networks. Indeed, the natural condition that the utilization factor is less than 1
is necessary for stability but may not be sufficient – see [16]for an example of a multi-class queu-
ing network, with FIFO queues, Poisson arrivals and exponential service times, which is unstable
with arbitrarily small utilization factor.

Fortunately, there is a broad class of queuing networks, theso calledmulti-class product form
queuing networks for which there are simple and exhaustive results, given in this and the follow-
ing section. These networks have the property that their stationary probability has product form.
They were developed asBCMP networks in reference to the authors of [10] orKelly networks
in reference to [44]. When there is only one class of customers they are also calledJackson
networks in the open case [42] and Gordon and Newell networksin the closed case [37]. For a
broader perspective on this topic, see the recent books [94]and [24]. This latter reference presents
in particular extensions to other concepts, including the “negative customers” introduced in [36].
A broad treatment, including approximate analysis for non product form queuing networks can
also be found in [101].

We now give the common assumptions required by multi-class product form queuing networks
(we defer a formal definition of the complete process that describes the network to Section 8.8).

8.4.1 CLASSES, CHAINS AND M ARKOV ROUTING

We consider a network of queues, labeleds = 1, ..., S, also calledstations. Customers visit
stations and queue or receive service according to the particular station service discipline, and
once served, move to another station or leave the network. Transfers are instantaneous (delays
must be modeled explicitly by means of delay stations, see below).

Every customer has an attribute calledclass, in a finite set{1, ..., C}. A customer may change
class in transit between stations, according to the following procedure (calledMarkov routing
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in [103]).There is a fixed non-negativerouting matrix Q =
(

qs,s
′

c,c′

)

s,s′,c,c′
such that for alls, c:

∑

s′,c′ q
s,s′

c,c′ ≤ 1. When a class−c customer leaves stations (because her service time is com-

pleted), she does a random experiment such that: with probability qs,s
′

c,c′ she joins stations′ with

classc′; with probability1 −∑s′,c′ q
s,s′

c,c′ she leaves the network. This random experiment is per-
formed independently of all the past and present states of the network. In addition, there are fresh
independent Poisson arrivals, also independent of the pastand present states of the network;νs

c is
the intensity of the Poisson process of arrivals of class−c customers at stations. We allowνs

c = 0
for some or alls andc.

We say that two classesc, c′ are chain equivalent if c = c′ or if it is possible for a classc-
customer to eventually become a classc′ customer, or vice-versa. This defines an equivalence
relation between classes, the equivalence classes are calledchains. It follows that a customer may
change class but always remains in the same chain.

A chain C is calledclosed if the total arrival rate of customers
∑

c∈C,s λ
s
c is 0. In such a case

we require that the probability for a customer of this chain to leave the network is also0, i.e.
∑

c′,s′ q
s,s′

c,c′ = 1 for all c ∈ C and alls. The number of customers in a closed chain is constant.

A chain that is not closed is calledopen. We assume that customers of an open chain cannot cycle
forever in the network, i.e. every customer of this chain eventually leaves the network.

A network where all chains are closed is called aclosed network, one where all chains are open
is called anopen network and otherwise it is amixed network.

We define the numbersθsc (visit rates) as one solution to

θsc =
∑

s′,c′

θs
′

c′q
s′,s
c′,c + νs

c (8.24)

If the network is open, this solution is unique andθsc can be interpreted12 as the number of arrivals
per time unit of class-c customers at stations. If c belongs to a closed chain,θsc is determined only
up to one multiplicative constant per chain. We assume that the array(θsc)s,c is one non identically
zero, non negative solution of Eq.(8.24).

Chains can be used to model different customer populations while a class attribute may be used to
model some state information, as illustrated in Figure 8.11.

It is possible to extend Markov routing to state-dependent routing, for example, to allow for some
forms of capacity limitations; see Section 8.8.6.

8.4.2 CATALOG OF SERVICE STATIONS

There are some constraints on the type of service stations allowed in multi-class product form
queuing networks. Formally, the service stations must satisfy the property called “local balance in
isolation” defined in Section 8.8, i.e., the stationary probability of the station in the configuration
of Figure 8.4.3 must satisfy Eq.(8.96) and Eq.(8.97).

In this section we give a catalog of station types that are known to satisfy this property. There
are only two categories of stations in our list (“insensitive”, and “MSCCC”), but these are fairly
general categories, which contain many examples such as Processor Sharing, Delay, FIFO, Last

12This interpretation is valid when the network satisfies the stability condition in Theorem 8.5.1



258 CHAPTER 8. QUEUING THEORY FOR THOSE WHO CANNOT WAIT

ISPS

Station s=1

MSCCC

Station s=2Station s=3

Class 4

p
3
,class 3

p
1
,class 1

p
2
,class 2

1
+

1

1

1

3

2

Figure 8.11:A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

Come First Serve etc. Thus, in practice, if you have to determine whether a given station type is
allowed in multi-class product form queuing networks, a simple solution is to look up the following
catalog.

We use the following definitions. Every station type is defined by

• adiscipline: this specifies how arriving customers are queued, and whichcustomers receive
service at any time. We also assume that there is astation buffer: this is where customers
are placed while waiting or receiving service, and is represented with some form of data
structure such that every position in the station buffer canbe addressed by an indexi ∈ I
whereI is some enumerable set. IfB is the state of the station buffer at a given time,Bi is
the class of the customer present at positioni (equal to−1 if there is no customer present).
Further we will make use of two operations.
B′ = add(B, i, c) describes the effect of adding a customer of classc at position indexed by
i into the station buffer described byB.
B′ = remove(B, i) describes the effect of removing the customer present at position i, if any
(if there is no customer at positioni, remove(B, i) = B).
For example, if the service discipline is FIFO: the data structure is a linear list such asB =
(c1, c2, ..., cn) whereci is the class of theith customer (labeled in arrival order); the index set
isI = N; add(B, i, c) = (c1, ...ci−1, c, ci, ..., cn) andremove(B, i) = (c1, ...ci−1, ci+1, ..., cn).
We call |B| the number of customers present in the buffer; we assume thatit is always finite
(but unbounded).

• a service requirement, also calledservice time. For example, if a customer is a job, the
service requirement may be the number of CPU cycles required; if it is a packet or a block
of data, it may be the time to transmit it on a link. We assume that service requirements
are random and drawn independently from anything else when acustomer joins the service
station. Unless otherwise specified, the distribution of service requirements may depend
on the station and the class. Allowing service requirementsto depend on the class is very
powerful: it allows for example to model service times that are correlated from one visit to
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the next.
• a service rate: this is the speed at which the server operates, which may depend on the

customer class. If the service rate is1, the service duration is equal to the service requirement
(but the response time may be larger, as it includes waiting time). The service rate may be
used to model how resources are shared between classes at a station.

CATEGORY 1: Insensitive Station OR Kelly-Whittle STATIONS

This category of stations is called “insensitive” or “Kelly-Whittle”, for reasons that become clear
below. We first give a formal, theoretical definition, then list the most frequent instances.

FORMAL DEFINITION.

1. The service requirement may be any phase type distribution; in practice, this may approxi-
mate any distribution, see Section 8.8.1. The service distribution may be dependent on the
class.

2. (Insertion Probability) There is an array of numbersγ(i,B) ≥ 0 defined for any index
i ∈ I and any station buffer stateB, such that: when a classc customer arrives and finds the
station buffer in stateB just before arrival, the position at which this customer is added is
drawn at random, and the probability that this customer is added at position indexed byi is

γ (i, add (B, i, c)) (8.25)

The same happens whenever a customer finishes a service phase(from the phase type service
distribution), at which time the customer is treated as a newarrival.
We assume to avoid inconsistencies that

∑

i∈I γ (i, add (B, i, c)) = 1 andγ(i,B) = 0 if
there is no customer at positioni in B.

3. (Whittle Function) There is a functionΨ(), called the Whittle Function, defined over the set
of feasible station buffer states, such thatΨ(B) > 0 and the service rate allocated to a user
in positioni of the station buffer is

γ(i,B)Ψ (remove (B, i))
Ψ (B) (8.26)

if there is a customer present at positioni, and0 otherwise. Note that any positive function
may be taken as Whittle function; the converse is not true, i.e. any rate allocation algorithm
does not necessarily derive from a Whittle function.
One frequently considers the case where

Ψ(B) = Φ(~n) (8.27)

where~n = (n1, ..., nC) with nc the number of class-c customers inB, andΦ() is an arbitrary
positive function defined onNC . In other words, the Whittle function in such cases depends
on the state of the station only through the numbers of customers (not their position in the

buffer). The functionΦ is called thebalance function; the quantityΦ(~n−~1c)
Φ(~n)

is the rate
allocated to classc. As with Whittle function, any positiveΦ may be taken as balance
function, but the converse is not true, any rate allocation does not necessarily derive from a
balance function.
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4. We assume that for any indexi, classc and station buffer stateB
{

remove (add (B, i, c) , i) = B
if Bi is not empty:add (remove(B, i), i,Bi) = B (8.28)

i.e. a state remains unchanged if one adds a customer and immediately removes it, or vice-
versa.

This formal definition may seem fairly appalling, but, as we show next, it is rarely necessary to
make use of the formal definition. Instead, it may be easier tolook up the next list of examples.

EXAMPLES OF INSENSITIVE STATIONS.

For each of these examples, the service requirement distribution may be any phase type distribu-
tion, and may be class dependent.

Global PS (Processor Sharing) The station is as in the Processor Sharing queue of Section 8.3.3.
All customers present in the station receive service, at a rate equal to1

n
when there aren cus-

tomers of any class present at the station.
This is a Kelly-Whittle station by taking as station buffer the ordered list of customer classes
B = (c1, ..., cn). Adding a customer at positioni has the effect that existing customers at
positions≥ i are shifted by one position, thus Eq.(8.28) holds. When a customer arrives, it
is added at any position1 to n + 1 with equal probability 1

n+1
, i.e. γ(i,B) = 1

|B| (recall that
|B| is the total number of customers in when the buffer state isB). The Whittle function is
simplyΨ(B) = 1 for everyB. Thus the service rate allocated to a customer is1

n
, as required.

Global LCFSPR This service station isLast Come First Serve, Preemptive Resume (LCF-
SPR). There is one global queue; an arriving customer is inserted at the head of the queue,
and only this customer receives service. When an arrival occurs, the customer in service is
preempted (service is suspended); preempted customers resume service where they left it,
when they eventually return to service.
This is a Kelly-Whittle station by taking as station buffer the ordered list of customer classes
B = (c1, ..., cn) as in the previous example. When a customer arrives, it is added at position
1, i.e. γ(i,B) = 1{i=1}. The Whittle function is alsoΨ(B) = 1 for everyB. Thus the service
rate allocated to a customer is1 to the customer at the head of the queue, and0 to all others,
as required.

Per-Class Processor Sharing This is a variant of the Processor Sharing station, where theser-
vice rate is divided between customers of the same class, i.e. a customer receives service at
rate 1

nc
, wherenc is the number of classc customers present in the system.

This is a Kelly-Whittle station by taking as station buffer acollection ofC lists, one per class.
Only customers of classc may be present in thecth list. An index is a couplei = (c, j) where
c is a class index andj an integer. Adding a customer at positioni = (c, j) has the effect
that existing customers in thecth list at positions≥ j are shifted by one position, and others
do not move thus Eq.(8.28) holds.
When a classc customer arrives, it is inserted into thecth list, at any position1 to nc + 1,
with equal probability. Thusγ((c, j),B) = 0 if the customer at position(c, j) is not of class
c, and 1

nc
otherwise. We take as Whittle functionΨ(B) = 1 for everyB. It follows that the

service rate allocated to a customer of classc is 1
nc

as claimed above.
Per-Class LCFSPR This is a variant of the LCFSPR station, where one customer per class may

be served, and this customer is the last arrived in this class.



8.4. DEFINITIONS FOR QUEUING NETWORKS 261

This is a Kelly-Whittle station by taking as station buffer acollection ofC lists, one per class
as for per-class PS. When a classc customer arrives, it is added at the head of thecth queue,
thusγ(i,B) = 1 if i = (c, 1) and the class at the head of thecth queue inB is c, otherwise
0. It follows that the service rate allocated to a customer is0 unless it at the head of a queue,
i.e. this customer is the last arrived in its class. We take asWhittle functionΨ(B) = 1 for
everyB. It follows that this station is equivalent to a collection of C independent LCFSPR
service stations, one per class, with unit service rate in each.

Infinite Server (IS) or Delay station There is no queuing, customers start service immediately.
This is a Kelly-Whittle station by taking the same station buffer and insertion probability as
for Global PS, but with Whittle functionΨ(B) = 1

n!
wheren = |B| is the total number of

customers present in the station. It follows that the service rate allocated to any customer
present in the station is1, as required.

PS, LCFSPR and IS withclass dependent service rate Consider any of the previous exam-
ples, but assume that the service rate is class dependent, and depends on the number of
customers of this class present in the station (callrc(nc) the service rate for classc).
Thus, for Global PS, the service rate allocated to a classc customer isrc(nc)

n
; for Per-Class

PS, it is rc(nc)
nc

. For Global LCFSPR, the service rate allocated to the uniquecustomer in
service isrc(nc); for Per Class LCFSPR, the service rate allocated to the class c customer in
service isrc(nc). For IS the rate allocated to every classc customer isrc(nc).
This fits in the framework of Kelly-Whittle stations as follows. For PS and LCFSPR (per-
class or global) replace the Whittle function by:

Ψ(B) =
C
∏

c=1

1

rc(1)rc(2)...rc(nc)

so that
Ψ (remove (B, i))

Ψ (B) = rc(nc)

as required. For IS, replaceΨ byΨ(B) = 1
n!

∏C
c=1

1
rc(1)rc(2)...rc(nc)

in order obtain the required
service rate.

PS, LCFSPR and IS withqueue size dependent service rate Consider any of the first five pre-
vious examples, but assume that the service rate is class independent, and depends on the
total number of customersn present in the station (callr(n) the service rate ). Thus for
Global PS, the service rate allocated to one customer isr(n)

n
if this customer is of classc; for

Per-Class PS, it isr(n)
nc

. For Global LCFSPR, the service rate allocated to the uniquecus-
tomer in service isr(n); for Per Class LCFSPR, the service rate allocated to every customer
ahead of its queue isr(n). For IS, the service rate for every customer isr(n).
This fits in the framework of Kelly-Whittle stations as follows. For PS and LCFSPR (per-
class or global) replace the Whittle function by:

Ψ(B) = 1

r(1)r(2)...r(n)

so that
Ψ (remove (B, i))

Ψ (B) = r(n)

as required. For IS, replaceΨ byΨ(B) = 1
n!

1
r(1)r(2)...r(n)

in order obtain the required service
rate.
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Symmetric Station, also calledKelly station: This is a generic type introduced by Kelly in [44]
under the name of “symmetric” service discipline.
The station buffer is an ordered list as in the first example above. For an arriving customers
who findsn customers present in the station, the probability to join position i is p(n + 1, i),
where

∑n+1
i=1 p(n + 1, i) = 1 (thusγ(B, i) = p(|B| , i)). The rate allocated to a customer in

positioni is p(n, i) when there aren customers present. The name “symmetric” comes from
the fact that the same function is used to define the insertionprobability and the rate.
This fits in the framework of Kelly-Whittle stations, with Whittle function equal to 1. The
global PS and global LCFSPR stations are special cases of Kelly stations.

Whittle Network This is a Per-Class Processor Sharing station where the Whittle function is a
balance function, i.e.Ψ(B) = Φ(~n). It follows that the service rate for a classc customer is

1

nc

Φ(~n−~1c)

Φ(~n)
(8.29)

where~1c = (0, ..1, ...0) with a 1 in positionc. This type of station is used in [13] to model
resource sharing among several classes.
A network consisting of a single chain of classes and one single Whittle Station is called
a Whittle Network. In such a network, customers of classc that have finished service may
return to the station, perhaps with a different class.
A Whittle network can also be interpreted as a single class, multi-station network, as fol-
lows. There is one station per class, and customers may join only the station of their class.
However, class switching is possible. Since knowing the station at which a customer resides
entirely defines its class, there is no need for a customer to carry a class attribute, and we
have a single class network.
In other words, a Whittle Network is a single class network with PS service stations, where

the rate allocated to stationc is Φ(~n−~1c)
Φ(~n)

. The product form network in Theorem 8.5.1 implies
that the stationary probability that there arenc customers in stationc for all c is

P (~n) =
1

η
Φ(~n)

C
∏

c=1

S̄nc
c θnc

c (8.30)

whereS̄c is the expected service requirement at stationc, θc the visit rate andη a normalizing
constant.

Note that the stationary probability in Eq.(8.30) depends only on the traffic intensityρc = S̄cθc,
not otherwise on the distribution of service times. This is the insensitivity property; it applies not
only to Whittle networks, but more generally to all service stations of Category 1, hence the name.

CATEGORY 2: MSCCC Station

This second category of station contains as special case theFIFO stations with one or any fixed
number of servers. It is calledMultiple Server with Concurrent Classes of Customers in
reference to [26, 51, 11]. A slightly more general form than presented here can be found in [2].

The service requirementmust beexponentially distributed with the same parameter for all classes
at this station (but the parameter may be different at different stations). If we relax this assumption,
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this station is not longer admissible for multi-class product form queuing networks. Thus, unlike
for category 1, this station type issensitiveto the distribution of service requirements.

The service discipline is as follows. There areB servers andG token pools. Every class is
associated with exactly one token pool, but there can be several classes associated to the same
token pool. The size of token poolg is an integerTg ≥ 1.

A customer is “eligible for service” when both one of theB servers becomes available and there
is a free token in the poolg that this customer’s class is associated with. There is a single queue
in which customers are queued in order of arrival; when a server becomes idle, the first eligible
customer in the queue, or to arrive, starts service, and busies both one server and one token of the
corresponding pool. The parameters such asG, B and the mappingG of classes to token pools
may be different at every station.

The FIFO queue withB servers is a special case withG = 1 token pool, andT1 = B.

In addition, this station may have a variable service rate which depends on the total number of
customers in the station. The rate must be the same for all classes (rates that depend on the
population vector are not allowed, unlike for Category 1 stations).

EXAMPLE 8.6:A DUAL CORE MACHINE. Figure 8.11 illustrates a simple model of dual core pro-
cessor. Classes 1, 2 or 3 represent internal jobs and class 4 internal jobs. All jobs use the dual
core processor, represented by station 1. External jobs can cycle through the system more than
once. Internal jobs undergo a random delay and a variable delay due to communication.

The processor can serve up to 2 jobs in parallel, but some jobs require exclusive access to a
critical section and cannot be served together. This is represented by an MSCCC station with 2
servers and 2 token pools, of sizes 1 and 2 respectively. Jobs that require access to the critical
section use a token of the first pool; other jobs use tokens of the second pool (the second pool
has no effect since its size is as large as the number of servers, but is required to fit in the general
framework of multi-class product form queuing networks).

The delay of internal jobs is represented by station 2 (an “infinite server” station) and the com-
munication delay is represented by station 3 (a “processor sharing” station, with a constant rate
server).

Internal jobs always use the critical section. External jobs may use the critical section at most
once. This is modelled by means of the following routing rules.

• Jobs of classes 1, 2 or 3 are internal jobs. Jobs of class 1 have never used the critical
section in the past and do not use it ; jobs of class 2 use the critical section; jobs of class 3
have used the critical section in the past but do not use it any more.
After service, a job of class 1 may either leave or return immediately as class 1 or 2. A job of
class 2 may either leave or return immediately as class 3. A job of class 3 may either leave
or return immediately as class 3.

• Jobs of class 4 represent internal jobs. They go in cycle through stations 1, 2, 3 forever.
• At station 1, classes 2 and 4 are associated with token pool 1 whereas classes 1 and 3 are

associated with token pool 2, i.e. G(1) = 2,G(2) = 1,G(3) = 2 and G(4) = 1. The constraints
at station 1 are thus: there can be up to 2 jobs in service, with at most one job of classes 2
or 4.
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The routing matrix is






























q1,11,1 = α1; q1,11,2 = β1;

q1,12,3 = α2;

q1,13,3 = α3;

q1,24,4 = 1; q2,34,4 = 1; q3,14,4 = 1;

qs,s
′

c,c′ = 0 otherwise

where all numbers are positive, αi ≤ 1 and α1 + β1 ≤ 1.

There are two chains: {1, 2, 3} and {4}. The first chain is open, the second is closed, so we have
a mixed network.

Let ν be the arrival rate of external jobs and pi the probability that an arriving job is of class i. The
visit rates are

Class 1: θ11 = ν p1
1−α1

; θ21 = 0; θ31 = 0;

Class 2: θ12 = ν
(

p2 + β1
p1

1−α1

)

; θ22 = 0; θ32 = 0;

Class 3: θ13 = ν 1
1−α3

(

p3 + α2p2 + α2β1
p1

1−α1

)

; θ23 = 0; θ33 = 0;

Class 4: θ14 = 1; θ24 = 1; θ34 = 1.

Note that the visit rates are uniquely defined for the classes in the open chain(1, 2 and 3); in
contrast, for class 4, any constant can be used (instead of the constant 1).

8.4.3 THE STATION FUNCTION

PS

PS

PS

…

Auxiliary Station

Station
S

Class 1

Class 2

Class C

Figure 8.12:Station s in isolation.
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STATION IN I SOLATION

The expression of the product form theorem uses thestation function, which depends on the
parameter of the station as indicated below, and takes as argument the vector~n = (n1, ..., nC)
wherenc is the number of class-c customers at this station. It can be interpreted as the stationary
distribution of numbers of customers in the station in isolation, up to a multiplicative constant.

More precisely, imagine a (virtual) closed network, made ofthis station and one external, auxiliary
Per Class PS station with mean service time1 and service rate1 for all classes, as in Figure 8.12.
In this virtual network there is one chain per class and everyclassc has a constant number of cus-
tomersKc. The product form theorem implies that, for any values of thevector ~K = (K1, ..., KC),
this network has a stationary regime, and the stationary probability that there aren1 customers of
class 1, ...nC customers of classC is

P isol(~n) =

{

0 if nc > Kc for some c
f(~n) 1

η( ~K)
otherwise (8.31)

whereη( ~K) is a normalizing constant (independent of~n).

It is often useful to consider thegenerating function G() of the station function, defined as theZ
transform of the station function, i.e. for~Z = (Z1, ..., ZC):

G(~Z) =
∑

~n≥0

f(~n)
C
∏

c=1

Znc
c (8.32)

(Note that, in signal processing, one often usesZ−1 instead ofZ; we use the direct convention,
called the “mathematician’sz-transform”). The following interpretation of the generating function
is quite useful. By Theorem 8.5.2,G(~Z) is the normalizing constant for the open network made of
this station alone, fed by independent external Poisson processes of ratesZc, one for each classc.
Upon finishing service at this station, customers leave the network and disappear.

In the rest of this section we give the station functions for the different stations introduced earlier.

STATION FUNCTION FOR CATEGORY 1

Let pop(B) def
= (n1, ..., nC) wherenc is the number of classc customers at this station when the

station buffer is in stateB (i.e. nc =
∑

i∈I 1{Bi=c}). The station function is

f(~n) =
∑

pop(B)=~n

Ψ(B)
C
∏

c=1

S̄nc
c (8.33)

where the summation is over all station buffer statesB for which the vector of populations is~n, S̄c

is the mean service time for classc at this station, andΨ is the Whittle function of this station.

Note that that the station function isindependent of the insertion probabilitiesγ. For example,
the stationary probability is the same whether the station is PS or LCFSPR, since they differ only
by the insertion probabilities.

In the case where the Whittle function is a balance function,i.e. Ψ(B) = Φ(~n), the summation
may in some cases be computed.
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1. If the station uses global queuing as in the Global PS and Global LCFSPR examples, there
are n!

n1!...nC !
station buffer states for a given population vector, withn = |~n| =∑C

c=1 nc. The
station function is

f(~n) =
n!

∏C
c=1 nc!

Φ(~n)
C
∏

c=1

S̄nc
c (8.34)

2. If the station uses per class queuing as in the Per Class PS and Per Class LCFSPR examples,
there is one station buffer state for one population vector and the station function is

f(~n) = Φ(~n)

C
∏

c=1

S̄nc
c (8.35)

Global PS/Global LCFSPR/Kelly Station with constant rate. In these cases we can assume
that the service rate is 1; for all of these disciplines the station function is given by Eq.(8.34) with
Φ(~n) = 1. The generating function is

G(~Z) =
1

1−∑C
c=1 S̄cZc

(8.36)

Per Class PS/Per Class LCFSPR with constant rate.Here too we can assume that the service
rate is 1; the station function is given Eq.(8.35) withΦ(~n) = 1. The generating function is

G(~Z) =

C
∏

c=1

1

1− S̄cZc

(8.37)

IS with constant rate. Here too we can assume that the service rate is 1; the station function is
given by Eq.(8.34) withΦ(~n) = 1/n!. The generating function is

G(~Z) = exp

(

C
∑

c=1

S̄cZc

)

(8.38)

STATION FUNCTION FOR CATEGORY 2

For the general station in this category, the station function is a bit complex. However, for the
special case of FIFO stations with one or more servers, it hasa simple closed form, given at the
end of this section.

General MSCCC StationRecall that the station parameters are:

• r(i): service rate when the total number of customers isi
• S̄: the mean service time (independent of the class)
• B: number of servers
• G: number of token pools;Tg: size of token poolg; G: mapping of class to token pool, i.e.
G(c) = g when classc is associated with token poolg.

The station function is

f(~n) = d(~x)
S̄ |~n|

∏|~n|
i=1 r(i)

∏G
g=1 xg!

∏C
c=1 nc!

(8.39)
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with |~n| =∑C
c=1 nc, ~x = (x1, ..., xG) andxg =

∑

c:G(c)=g nc (the number of customers associated
with token poolg). The functiond is a combinatorial function of~x ∈ Z

G, recursively defined by
d(~x) = 0 if xg ≤ 0 for someg, d(0, ..., 0) = 1 and

d(~x)× bs(~x) =
G
∑

g=1

d(~x−~1g) (8.40)

wherebs(~x)
def
= min

(

B,
∑G

g=1min (xg, Tg)
)

is the number of busy servers and~1g = (0, ..1...0)

with a1 in positiong. Note that

if
∑

g

min (xg, Tg) ≤ B then d(~x) =

G
∏

g=1

1
∏xg

i=1min(i, Tg)

In general, though, there does not appear to be a closed form for d, except when the station is a
FIFO station (see below).

For the MSCCC station, the generating function cannot be computed explicitly, in general, but
when the service rate is constant, i.e.r(i) = 1 for all i, one may use the following algorithm. Let
D be the generating function ofd, i.e.

D( ~X) =
∑

~x∈NG

d(~x)
G
∏

g=1

Xxg
g (8.41)

with ~X = (X1...XG). For~τ ∈ {0...T1} × ...× {0...TG}, let

D~τ ( ~X)
def
=

∑

~x≥0,min(xg,Tg)=τg ,∀g
d(~x)

G
∏

g=1

Xxg
g

so thatD( ~X) =
∑

~τ∈{0...T1}×...×{0...TG}D~τ ( ~X). One can computeD~τ () iteratively, usingD~0(
~X) =

1, D~τ ( ~X) = 0 if τg < 0 for someg and the following, which follows from Eq.(8.40):

D~τ ( ~X) =
1

bs(~τ )−∑g:τg=Tg
Xg

∑

g:τg>0

XgD~τ−~1g
( ~X) (8.42)

It is sometimes useful to note that

D~τ ( ~X) =

G
∏

g=1

X
τg
g

τg!
(

1− Xg

Tg
1{τg=Tg}

) if ~τ ≥ 0 and bs(~τ) < B (8.43)

The generating function of the MSCCC station with constant service rate is then given by

G(~Z) = D(X1, ..., XG) (8.44)

with Xg = S̄
(

∑

c such that G(c)=g Zc

)

for all token poolg.

FIFO with B servers.This is a special case of MSCCC, with much simpler formulas than in the
general case. Here the parameters are
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• r(i): service rate when the total number of customers isi
• S̄: the mean service time (independent of the class)
• B: number of servers

The station function is derived from Eq.(8.39) withG = 1. One finds~x = (|~n|) andd(j) =
1

∏j
i=1 min(B,i)

for j ≥ 1. Thus:

f(~n) =
S̄ |~n|

∏|~n|
i=1 [r(i)min(B, i)]

|~n|!
∏C

c=1 nc!
(8.45)

In the constant rate case, the generating function follows from Eq.(8.43):

G(~Z) = 1 +X +
X2

2!
+ ...+

XB−1

(B − 1)!
+

XB

B!
(

1− X
B

) (8.46)

with X = S̄
∑C

c=1Zc.

In particular, for theFIFO station with one server and constant rate, the station function is

f(~n) =
S̄ |~n| |~n|!
∏C

c=1 nc!
(8.47)

and the generating function is

G(~Z) =
1

1− S̄
∑C

c=1 Zc

(8.48)

EXAMPLE 8.7:DUAL CORE PROCESSOR INFIGURE 8.11. The station functions are (we use the
notation ni instead of n1i ):

f1(n1, n2, n3, n4) = d(n2 + n4, n1 + n3)
(n1 + n3)!(n2 + n4)!

n1!n2!n3!n4!
(S̄1)n1+n2+n3+n4

f2(n24) = (S̄2)n
2
4
1

n24!

f3(n34) = (S̄3)n
3
4

In the equation, d corresponds to the MSCCC station and is defined by Eq.(8.40). The generating
functions for stations 2 and 3 follow immediately from (8.38) and (8.37):

G2(Z1, Z2, Z3, Z4) = eS̄
2Z4

G3(Z1, Z2, Z3, Z4) =
1

1− S̄3Z4

For station 1, we need more work.

First we compute the generating function D(X,Y )
def
=
∑

m≥0,n≥0 d(m,n)X
mY n, using Eq.(8.40).

One finds

D0,0(X,Y ) = 1

D1,0(X,Y ) =
X

1−X
D0,1(X,Y ) = Y
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D1,1(X,Y ) =
1

2− Y
(XD0,1 + Y D1,0) =

XY

1−X

D0,2(X,Y ) =
1

2−X
YD0,1 =

Y 2

2− Y

D1,2(X,Y ) =
1

2−X − Y
(XD0,2 + Y D1,1) =

XY 2(3−X − Y )

(2−X − Y )(2 − Y )(1 −X)

and D is the sum of these 6 functions. After some algebra:

D(X,Y ) =
1

1−X

(

1 + Y +
Y 2

2−X − Y

)

(8.49)

Using Eq.(8.44), it follows that the generating functions of station 1 is

G1(Z1, Z2, Z3, Z4) = D(S̄1(Z2 + Z4), S̄
1(Z1 + Z3)) (8.50)

QUESTION 8.4.1. Compare the station function for an IS station with constantservice rate and
equal mean service time for all classes with a FIFO station with constant rate andB → ∞. 13

QUESTION 8.4.2. What is the station functionf aux() for the auxiliary station used in the definition
of the station in isolation ?14

QUESTION 8.4.3. Verify thatD(X, 0) [resp.D(0, Y )] is the generating function of a FIFO station
with one server [resp. 2 servers] (whereD() is given by Eq.(8.49)); explain why.15

8.5 THE PRODUCT-FORM THEOREM

8.5.1 PRODUCT FORM

The following theorem gives the stationary probability of number of customers in explicit form;
it is the main available result for queuing networks; the original proof is in [10]; extension to any
service stations that satisfies the local balance property is in [78] and [44]; the proof that MSCCC
stations satisfy the local balance property is in [51, 11]. The proof that all Kelly-Whittle stations
satisfy the local balance property is novel and is given in Section 8.10 (see Section 8.8 for more
details).

13Both are the same: Eq.(8.45) and Eq.(8.34) withΦ(~n) = 1/n! give the same result:f(~n) = S̄|~n|
∏

C
c=1 nc!

.
14It is a Per Class PS station with̄Sc = 1 for all c thusfaux(~n) = 1. The product form theorem implies that the

stationary probability to seenc customers in the station of interest isηf(~n).
15We find 1

1−X
and1 + Y + Y 2

2−Y
as given by Eq.(8.46).

The generating functionD(X,Y ) is thez-transform of the station function with one class per token group, and is
also equal to the normalizing constant for the station fed bya Poisson process with rateX for group 1 andY for group
2. If Y = 0 we have only group 1 customers, therefore the station is the same as a single server FIFO station with
arrival rateX ; if X = 0, the station is equivalent to a FIFO station with 2 servers and arrival rateY .
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THEOREM 8.5.1. Consider a multi-class network as defined above. In particular, it uses Markov
routing and all stations are Kelly-Whittle or MSCCC. Assumethat the aggregation condition in
Section 8.8.3 holds.
Letns

c be the number of classc customers present in stations and~ns = (ns
1, ..., n

s
C). The stationary

probability distribution of the numbers of customers, if itexists, is given by

P (~n1, ...~nS) =
1

η

S
∏

s=1

(

f s(~ns)
C
∏

c=1

(θsc)
ns
c

)

(8.51)

whereθsc is the visit rate in Eq.(8.24),f s() is the station function andη is a positive normalizing
constant.
Conversely, letE be the set of all feasible population vectors~n = (~n1, ..., ~nS). If

∑

~n∈E

S
∏

s=1

(

f s(~ns)

C
∏

c=1

(θsc)
ns
c

)

< ∞ (8.52)

there exists a stationary probability.

In the open network case, any vector(~n1, ...~nS) is feasible, whereas in the closed or mixed case, the
set of feasible population vectorsE is defined by the constraints on populations of closed chains,
i.e.

∑

c∈C

S
∑

s=1

ns
c = KC

for any closed chainC, whereKC is the (constant) number of customers in this chain.

Note that the station function depends only on the traffic intensities. In particular, the stationary
distribution is not affected by the variance of the service requirement, for stations of Category 1
(recall that stations of Category 2 must have exponential service requirement distributions).

QUESTION 8.5.1. What is the relationship between the sum in Eq.(8.52) andη ? 16

8.5.2 STABILITY CONDITIONS

In the open case, stability is not guaranteed and may depend on conditions on arrival rates. How-
ever, the next theorem says that stability can be checked at every station in isolation, and corre-
spond to the natural conditions. In particular, pathological instabilities as discussed in the intro-
duction of Section 8.4 cannot occur for multi-class productform queuing networks.

16They are equal.
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THEOREM 8.5.2 (Open Case).Consider a multi-class product form queuing network as defined
above. Assume that it isopen. For every stations, ~θs = (θs1, ..., θ

s
C) is the vector of visit rates,

f s the station function andGs() its generating function, given in Equations (8.36), (8.38), (8.44),
and (8.46).
The network has a stationary distribution if and only if for every stations

Gs(~θs) < ∞ (8.53)

If this condition holds, the normalizing constant of Theorem 8.5.1 isη =
∏S

s=1G
s(~θs). Further,

letP s(~ns) be the stationary probability of the number of customers in stations. Then

P (~n1, ...~nS) =

S
∏

s=1

P s(~ns) (8.54)

i.e. the numbers of customers in different stations are independent. The marginal stationary prob-
ability for stations is :

P s(~ns) =
1

Gs(~θs)
f s(~ns) (8.55)

The proof follows from the fact that the existence of an invariant probability is sufficient for sta-
bility (as we assume that the state space is fully connected,by the aggregation condition). If the
network is closed or mixed, then the corollary does not hold,i.e. the states in different stations
arenot independent, though there is product-form. Closed networks are always stable but it may
not be as simple to compute the normalizing constant; efficient algorithms exist, as discussed in
Section 8.6.

For mixed networks, which contain both closed and open chains, stability conditions depend on
the rate functions, and since they can be arbitrary, not muchcan be said in general. In practice,
though, the following sufficient conditions are quite useful. The proof is similar to that of the
previous theorem.

THEOREM 8.5.3. (Sufficient Stability Condition for Mixed Networks.) Consider a multi-class
product form queuing network as defined above. Assume that the network is mixed, withCc classes
in closed chains andCo classes in open chains. Let~m = (m1, ..., mCc) be the population vector
of classes in closed chains, and~n = (n1, ..., nCo) the population vector of classes in open chains.
For every stations and ~m define

Ls(θ|~m) =
∑

~n∈NCo

f s(~m,~n)
Co
∏

c=1

(θsc)
ns
c (8.56)

wheref s(~m,~n) is the station function.
If

Ls(θ|~m) < ∞, ∀~m, ∀s
the network has a stationary distribution.

In simple cases, a direct examination of Eq.(8.52) leads to simple, natural conditions, as in the
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next theorem. Essentially, it says that for the networks considered there, stability is obtained when
server utilizations are less than 1.

THEOREM 8.5.4 (Stability of a Simple Mixed Network).Consider a mixed multi-class product
form queuing network and assume all stations are either Kelly stations (such as Global PS or
Global LCFS), IS or MSCCC with constant rates.
Let C be the set of classes that belong toopenchains. Define the utilization factorρs at stations
by

ρs =
S̄s

Bs

∑

c∈C
θsc if stations is MSCCC withBs servers, and mean service timeS̄s

ρs =
∑

c∈C
θsc S̄

s
c if stations is a Kelly station with mean service timēSs

c for classc.

The network has a stationary distribution if and only ifρs < 1 for every station Kelly or MSCCC
stations. There is no condition on IS stations. .

EXAMPLE 8.8:DUAL CORE PROCESSOR INFIGURE 8.11. Let q ∈ (0, 1] be the probability that an
external job uses the critical section and r > 0 be the average number of uses of the processor
outside the critical section by an external job. Thus θ11 + θ13 = νr and θ12 = νq. By Theorem 8.5.4,
the stability conditions are

ν(r + q)S̄1 ≤ 2

νqS̄1 ≤ 1

where S̄1 is the average job processing time at the dual core processor. Note that we need to
assume that the processing time is independent of whether it uses the critical section, and of
whether it is an internal or external job. Thus the system is stable (has a stationary regime) for
ν < 2

S̄1(q+max(r,q))
. Note that the condition for stability bears only on external jobs.

Let K be the total number of class 4 jobs; it is constant since class 4 constitutes a closed chain. A
state of the network is entirely defined by the population vector (n1, n2, n3, n4, n24); the number of
jobs of class 4 in station 3 is K − n4 − n24, and nsc = 0 for other classes. The set of feasible states
is

E =
{

(n1, n2, n3, n4, n
2
4) ∈ N

5 such that n4 + n24 ≤ K
}

The joint stationary probability is

P (n1, n2, n3, n4, n
2
4) =

1

η(K)
d(n2 + n4, n1 + n3)

×(n1 + n3)!(n2 + n4)!

n1!n2!n3!n4!
((θ11)

n1(θ12)
n2(θ13)

n3(S̄1)n1+n2+n3+n4(S̄2)n
2
4
1

n24!
(S̄3)K−n4−n2

4

where we made explicit the dependency on K in the normalizing constant. This expression, while
explicit, is too complicated to be of practical use. In Example 8.9 we continue with this example
and compute the throughput, using the methods in the next section.
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8.6 COMPUTATIONAL ASPECTS

As illustrated inExample 8.8, the product form theorem, though it provides an explicit form, may
require a lot of work as enumerating all states is subject to combinatorial explosion, and the nor-
malizing constant has no explicit form when there are closedchains. Much research has been
performed on providing efficient algorithms for computing metrics of interest for multi-class prod-
uct form queuing networks. They are based on a number of interesting properties, which we now
derive. In the rest of this section we give the fundamentals ideas used in practical algorithms; these
ideas are not just algorithmic, they are also based on special properties of these networks that are
of independent interest.

In the rest of this section we assume that the multi-class product form queuing network satisfies
the hypotheses of the product form theorem 8.5.1 as described in Section 8.4, and has a stationary
distribution (i.e. if there are open chains, the stability condition must hold – if the network is closed
there is no condition).

8.6.1 CONVOLUTION

THEOREM 8.6.1. (Convolution Theorem.)
Consider a multi-class product form queuing network with closed and perhaps some open chains,
and let ~K be thechain population vector of theclosedchains (i.e.~KC is the number of customers
of chainC; it is constant for a given network).
Let η( ~K) be the normalizing constant given in the product form theorem 8.5.1. Let~Y a formal
variable with one component per chain, and define

Fη(~Y )
def
=
∑

~K≥~0

η( ~K)
∏

C
Y KC
C

Then

Fη(~Y ) =
S
∏

s=1

Gs(~Zs) (8.57)

whereGs is the generating function of the station function for station s, and ~Zs is a vector with
one component per class, such that

Zs
c = YCθ

s
c wheneverc ∈ C and C is closed

Zs
c = θsc wheneverc is in an open chain

The proof is a direct application of the product form theorem, using generating functions. Eq.(8.57)
is in fact aconvolution equation, since convolution translates into product of generating func-
tions. It is the basis for theconvolution algorithm, which consists in adding stations one after
another, see for example [6] for a general discussion and [53] for networks with MSCCC stations
other than FIFO. We illustrate the method in Example 8.9 below.
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8.6.2 THROUGHPUT

Once the normalizing constants are computed, one may derivethroughputs for classc at stations,
defined as the mean number of classc arrivals at (or departures from) stations:

THEOREM 8.6.2. (Throughput Theorem [20]) The throughput for classc of the closed chainC
at stations is

λs
c( ~K) = θsc

η
(

~K −~1C

)

η( ~K)
(8.58)

It follows in particular that, for closed chains, the throughputs at some stationdepend only on the
throughput per class and the visit rates. Formally, choose for every closed chainC a station
s0(C) effectively visited by this chain (i.e.

∑

c∈C θ
s0
c > 0); define theper chain throughput C as

the throughput at this stationλC( ~K)
def
=
∑

c∈C λ
s0(C)
c ( ~K). Since for closed chains the visit ratesθsc

are determined up to a constant, we may decide to let
∑

c∈C θ
s0(C)
c = 1, and then for all classc ∈ C

and stations:
λs
c(
~K) = λC( ~K)θsc (8.59)

Also, the equivalent of Eq.(8.58) for the per chain throughput is

λC( ~K) =
η
(

~K −~1C

)

η( ~K)
(8.60)

(which follows immediately by summation onc ∈ C).

Note that the throughput for a classc of anopenchain is simply the visit rateθsc .

Last but not least, the throughput depends only on the normalizing constants and not on other
details of the stations. In particular, stations that are different but have the same station function
(such as FIFO with one server and constant rate Kelly function with class independent service
time) give the same throughputs.

The next example illustrates the use of the above theorems inthe study of a general case (a mixed
network with an MSCCC station). There are many optimizations of this method, see [22] and
references therein.

EXAMPLE 8.9:DUAL CORE PROCESSOR INFIGURE 8.11, ALGORITHMIC ASPECT. We continue
Example 8.8. Assume now that we let all parameters fixed except the arrival rate λ of external
jobs and the number K of internal jobs; we would like to evaluate the throughput µ of internal jobs
as a function of λ and K as well as the distribution of state of internal jobs.

We can use the throughput theorem and obtain that the throughput λ(K) for class 4 is (we drop
the dependency on λ from the notation)

λ(K) =
η(K − 1)

η(K)
(8.61)

We now have to compute the normalizing constant η(K) as a function of K. To this end, we use
the convolution equation Eq.(8.57):

Fη(Y ) = G1(~Z1)G2(~Z2)G3(~Z3) (8.62)
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Figure 8.13:Throughput λ of internal jobs for the dual core processor in Figure 8.11, in jobs per millisec-
ond, as a function of the number of internal jobs. Dotted curve: throughput that would be achieved if the
internal jobs would not use the critical section, i.e. any job could use a processor when one is idle. x is
the intensity of external traffic that uses the critical section and y of other external traffic. There are two
constraints : x + λ ≤ 1 (critical section) and x + y + λ ≤ 2 (total processor utilization). For the dotted line
only the second constraint applies. In the first panel, the first constraint is limiting and the difference in
performance is noticeable. In the last panel, the second constraint is limiting and there is little difference. In
the middle panel, both constraints are equally limiting. S̄1 = 1, S̄2 = 5, S̄3 = 1msec.
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with

~Z1 = (θ11, θ
1
2, θ

1
3, Y )

~Z2 = (0, 0, 0, Y )

~Z3 = (0, 0, 0, Y )

The generating functions G1, G2, G3 are given in Example 8.7. It comes:

Fη(Y ) = D(Y S̄1 + x, y)eS̄
2Y 1

1− S̄3Y
(8.63)

with x = νqS̄1, y = νrS̄1 and D() defined in Eq.(8.49).

We can compute η(K) by performing a power series expansion (recall thatFη(Y ) =
∑

K∈N η(K)Y K)
and find η(K) numerically. Alternatively, one can interpret Eq.(8.63) as a convolution equation

η = η1 ⋆ η2 ⋆ η3 with Fη1(Y ) =
∑

k∈N η1(k)Y
k def
= D(Y S̄1 + x, y), Fη2(Y ) = eS̄

2Y , Fη3(Y ) = 1
1−S̄3Y

and use fast convolution algorithms or the filter function as in Example 8.11. The throughput
for internal jobs follows from Eq.(8.61) and is plotted in Figure 8.13.

8.6.3 EQUIVALENT SERVICE RATE

This is a useful concept, which hides away the details of a station and, as we show in the next
section, can be used to aggregate network portions. Consider some arbitrary stations, of any
category, with station functionf s(). We callequivalent service rate for classc at stations the
quantity

µ∗s
c (~ns)

def
=

f s(~ns −~1c)

f s(~ns)
(8.64)

It can be shown thatµ∗s
c (~ns) is indeed the average rate at which customers of classc depart from

stations when stations is imbedded in a multi class queuing network and given that the numbers
of customers at stations is ~ns, i.e.

µ∗s
c (~ns) =

∑

~e∈E(s,~ns)

∑

~f∈E ′(s,~e)

P (~e)µ(~e, ~f)

where~e is a global micro state of the network (see Section 8.8.2 for adefinition),E(s, ~ns) is the
set of global micro-states for which the population vector at stations is ~ns, E ′(s, ~e) is the set of
of global micro-states such that the transition~e → ~f is a departure from stations, P () is the
stationary probability of the network andµ(~e, ~f) is the transition rate. This is true as long as the
network satisfies the hypotheses of the product form theorem, and is a direct consequence of the
local balance property.

To s we associate aper class PSstation with unit service requirement for all classes and with
balance functionf s(~ns). This virtual station is called theequivalent station of stations. By
construction, it is a category 1 station and, by Eq.(8.35) the station functions of this virtual station
and ofs are identical. Further, the rate of service allocated to customers of classc is alsoµ∗s

c (~ns).
Thus, as far as the stationary probability of customers is concerned, using the original station or
the equivalent station inside a network make no difference.We have an even stronger result.
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Stations Equivalent Service Rateµ∗s
c (~ns)

Kelly Stations with Class Dependent Service
Rate. Recall that this contains as special cases
Global PS and Global LCFSPR stations with
constant rate.

rsc(n
s
c)

ns
c

|~ns|
1
S̄s
c

Kelly Stations with Queue Size Dependent
Service Rate. rs(|~ns|) ns

c

|~ns|
1
S̄s
c

IS station with Class Dependent Service Rate] rsc(n
s
c)n

s
c

1
S̄s
c

IS station with Queue Size Dependent Service
Rate. rs(|~ns|)ns

c
1
S̄s
c

FIFO station withB servers and queue size de-
pendent service rate. Recall that this is a station
of Category 2 hence the service requirement is
exponentially distributed and has the same mean
S̄s for all classes.

1
S̄s min (B, |~ns|) r(|~ns|)

Table 8.1: Equivalent service rates for frequently used stations. Notation: ~ns = (ns
1, ..., n

s
C) with ns =

number of class c customers at station s; S̄s
c is the mean service requirement; rsc(n

s
c) is the rate allocated to

a class c customer when the service rate is class dependent; rs(|~ns|) is the rate allocated to any customer
when the service rate depends on queue size; |~ns| is the total number of customers in station s. For a
constant rate station, take rsc() = 1 or rs() = 1.

THEOREM 8.6.3. (Equivalent Station Theorem [78]) In a multi-class productform queuing net-
work any station can be replaced by its equivalent station, with equivalent service rate as in
Eq.(8.64) so that the stationary probability and the throughput for any class at any station are
unchanged.

Note that the equivalent station and the equivalent servicerate depend only on the station, not on
the network in which the station is imbedded. It is remarkable that it is thus possible to replace
anystation by a per class PS station. Note however that the equivalence is only for distributions
of numbers of customers and for throughputs, not for delay distributions; indeed, delays depend
on the details of the station, and stations with same stationfunction may have different delay
distributions.

The equivalent service rates for a few frequently used stations are given in Table 8.1. For some
stations such as the general MSCCC station there does not appear to be a closed form for the
equivalent service rate. The equivalent service rate is used in the following theorem.
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THEOREM 8.6.4. ([85])
Consider a multi-class product form queuing network with closed and perhaps some open chains,
and let ~K be thechain population vector of theclosedchains. For any classc of the closed chain
C and any stations, if ns

c ≥ 1:

P s
(

~ns
∣

∣

∣

~K
)

= P s
(

~ns −~1c

∣

∣

∣

~K −~1C

) 1

µ∗s
c (~ns)

λs
c(
~K) (8.65)

whereP s
(

.
∣

∣

∣

~K
)

is the marginal probability at stations andλs
c(
~K) is the throughput for classc

at stations.

This theorem is useful if the equivalent service rate is tractable or is numerically known. It can
be used if one is interested in the marginal distribution of one station; it requires computing the
throughputsλ( ~K), for example using convolution or MVA. Eq.(8.65) can be usedto compute

P s
(

~ns
∣

∣

∣

~K
)

iteratively by increasing the populations of closed chains[84]. Note that it does not

give the probability of an empty station; this one can be computed by using the fact that the sum
of probabilities is1.

EXAMPLE 8.10:DUAL CORE PROCESSOR INFIGURE 8.11, CONTINUED. We now compute the
stationary probability that there are n jobs in station 2 given that there are K internal jobs in total.
By Eq.(8.65):

P 2(n|K) = P 2(n − 1|K − 1)λ(K)
S̄2

n
(8.66)

since the equivalent service rate for station 2 (which is an IS station) is n
S̄2 when there are n

customers in the station. This gives P 2(n|K) for 1 ≤ 1 ≤ K if we know P 2(.|K − 1); P (0|K) is
obtained by the normalizing condition

K
∑

n=0

P 2(n|K) = 1

We compute P 2(.|K) by iteration on K, starting from P 2(0|0) = 1 and using the previous two
equations. The mean number of jobs is station 2 follows:

N̄2(K) =

K
∑

n=0

nP (n|K) (8.67)

Similarly for station 3, with

P 3(n|K) = P 3(n− 1|K − 1)λ(K)S̄3 (8.68)

since the equivalent service rate for station 3 (which is a PS station) is 1
S̄3 . The mean number of

internal jobs in station 1 follows: N̄1
4 (K) = K − N̄2(K)− N̄3(K).

We derive the mean response times for internal jobs in stations 1 to 3 by using Little’s law: R̄s
4(K) =

N̄s(K)
λ(K) for s = 1, 2, 3.

By Little’s law, (R1
4 +R2

4 +R3
4)λ = K; for large K, λ ≈ θmax = min(1 − x, 2 − x− y) and R2

4 ≈ S̄2,
R3

4 ≈ S̄3 (most of the queuing is at station 1), thus R̄1
4(K) ≈ K

θmax
− S̄2− S̄3 for large K. The results

are shown in Figure 8.14.
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Figure 8.14:First panel: Mean Response time for internal jobs at the dual core processor, in millisecond,
as a function of the number K of internal jobs. Second panel: stationary probability distribution of the
number of internal jobs at stations 1 to 3, for K = 10. (Details of computations are in Examples 8.10
and 8.11; S̄1 = 1, S̄2 = 5, S̄3 = 1msec, x = 0.7, y = 0.8.)
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8.6.4 SUPPRESSION OFOPEN CHAINS

In an open network, the product form theorem implies that allstations are independent in the
stationary regime, and thus the network is equivalent to a collection of stations in isolation. In the
mixed or closed case, this does not hold anymore, and stationstates are mutually dependent.

It is possible to simplify mixed networks by removing open chains. In the modified network, there
are only closed chain customers, with the same routing matrix qs,s

′

c,c′ for all c, c′ in closed chains;

the stations are the same, but with a modified station function. LetGs(~Z) be thez transform of
the station function andθsc the visit rates in the original network with open chains. In the modified
network, thez transform of the station function is

G′s(~Z) = Gs(~Z ′) with

{

Z ′
c = Zc if c is in a closed chain

Z ′
c = θsc if c is in an open chain

(8.69)

In the above,~Z is a vector with one component per class in a closed chain, whereas~Z ′ has one
component per class, in any open or closed chain.

THEOREM 8.6.5. (Suppression of Open Chains) Consider a mixed multi-class network that
satisfies the hypotheses of the product form theorem 8.5.1. Consider the network obtained by
removing the open chains as described above. In the modified network the stationary probability
and the throughputs for classes of closed chains are the sameas in the original network.

The proof is by inspection of the generating functions. Notethat the modified stations may not
be of the same type as the original ones; they are fictitious stations as in the equivalent station
theorem. Also, the equivalent service rates of the modified stations depend on the visit rates of the
open chains that were removed, as illustrated in the next example.

EXAMPLE 8.11:DUAL CORE PROCESSOR INFIGURE 8.11, CONTINUED. We now compute the
stationary probability at station 1. We suppress the open chains and compute the equivalent
service rate at station 1. We have now a single chain, single class network, with only customers
of class 4. Stations 2 and 3 are unchanged; station 1 is replaced by the station with generating
function:

G′1(Z) = G1(θ11, θ
1
2, θ

1
3, Z)

where G1 is given in Eq.(8.50). With the same notation as in Example 8.9, G′1(z) = D(ZS̄1+x, y)
with D given by Eq.(8.49), and thus

G′1(Z) =
1

1− x− ZS̄1

(

1 + y +
y2

2− x− y − ZS̄1

)

(8.70)

The station function f ′1(n) of the modified station 1 is obtained by power series expansionG′1(Z) =
∑

n≥0 f
′1(n)Zn. modified as follows. Since G′1 is a rational function (quotient of two polynomials),

its power series expansion can be obtained as the impulse response of a filter with rational z
transform (Section D.1.8). Consider the filter

1

1− x−BS̄1

(

1 + y +
y2

2− x− y −BS̄1

)

(8.71)

where B is the backshift operator. The sequence (f ′1(0), f ′1(1), f ′1(2)...) is the impulse response
of this filter, and can be obtained easily with the filter function of matlab. The equivalent service
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rate of station 1 for internal jobs is

µ′1(n) =
f ′1(n− 1)

f ′1(n)
(8.72)

Since we know the equivalent service rate, we can obtain the probability distribution P ′1(n) of
internal jobs at station 1 using Theorem 8.6.4 as in Example 8.10. The results are shown in
Figure 8.14.

8.6.5 ARRIVAL THEOREM AND MVA V ERSION 1

Mean Value Analysis (MVA) is a method, developed in [86], which does not compute the nor-
malizing constant and thus avoids potential overflow problems. There are many variants of it, see
the discussion in [6].

In this chapter we give two versions. The former, described in this section is very simple, but
applies only to some station types, as it requires to be able to derive the response time from the
Palm distribution of queue size upon customer arrival. The second, described in Section 8.6.7
is more general and applies to all stations for which the equivalent service rate can be computed
easily.

MVA version 1 is based on the following theorem, which is a consequence of the product form
theorem and the embedded subchain theorem of Palm calculus (Theorem 7.5.1).

THEOREM 8.6.6. (Arrival Theorem)
Consider a multi-class product form queuing. The probability distribution of the numbers of cus-
tomers seen by customer just before arriving at stations is the stationary distribution of

• the same network if the customer belongs to an open chain;
• the network with one customer less in its chain, if the customer belongs to a closed chain.

Consider now aclosednetwork where all stations are FIFO or IS with constant rate,or are equiv-
alent in the sense that they have the same station function asone of these (thus have the same
equivalent service rate). Indeed, recall that stationary probabilities and throughput depend only on
the station function. For example, a station may also be a global PS station with class independent
service requirement of any phase type distribution, which has the same station function as a FIFO
station with one server and exponential service time. In therest of this section we call “FIFO”
[resp. IS] station one that has the same station function as asingle server, constant rate FIFO [resp.
IS] station. Recall that at a FIFO station we need to assume that the mean service requirements are
the same for all classes at the same station; for the IS station, it may be class dependent.

First we assume the FIFO [resp. IS] stations are truly FIFO [resp.IS], not just equivalent stations
as defined above. We will remove this restriction later. LetN̄ s

c (
~K) be the mean number of classc

customers at stations when the chain population vector is~K. The mean response time for a class
c customer at a FIFO stations when the population vector is~K is

R̄s
c(
~K) =

(

1 +
∑

c

N̄ s
c (

~K −~1C)

)

S̄s
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whereC is the chain of classc. This is because of the exponential service requirement assumption:
an arriving customer has to wait for̄Ss multiplied by the number of customers present upon arrival;
in average, this latter number is

∑

c N̄
s
c ( ~K −~1C) by the arrival theorem. By Little’s formula:

R̄s
c(
~K)λs

c(
~K) = N̄ s

c (
~K)

Combining the two gives

N̄ s
c (

~K) = λs
c(
~K)

(

1 +
∑

c

N̄ s
c (

~K −~1C)

)

S̄s (8.73)

which is valid for FIFO stations. For a delay station one finds

N̄ s
c (

~K) = λs
c(
~K)S̄s

c (8.74)

This gives a recursion for̄N s
c (

~K) if one can get determineλs
c(
~K). The next observation is

Eq.(8.59), which says that if we know the throughput at one station visited by a chain, then we
know the throughputs for all stations and all classes of the same chain. The last observation is that
the sum of the numbers of customers across all stations and all classes of chainC is equal toKC.
Combining all this gives: for every chainC, if KC > 0 then

KC

λC( ~K)
=

∑

c∈C

[

∑

s:FIFO

θsc

(

1 +
∑

c′

N̄ s
c′(

~K −~1C)

)

S̄s +
∑

s:IS

θsc S̄
s
c

]

(8.75)

and
λC( ~K) = 0 if KC = 0 (8.76)

For every FIFO stations and classc:

N̄ s
c (

~K) = θscλC(c)( ~K)

(

1 +
∑

c′

N̄ s
c′(

~K −~1C(c))

)

S̄s if KC(c) > 0 (8.77)

= 0 if KC(c) = 0 (8.78)

Second, we observe that the resulting equations depend onlyon the station function, therefore they
apply to equivalent stations as well.

The MVA algorithm version 1 iterates on the total population, adding customers one by one.
At every step, the throughput is computed using Equation (8.75). Then the mean queue sizes at
FIFO queues are computed using Equation (8.77), which closes the loop. We give the algorithm
in the case of a single chain. For the multi-chain case, the algorithm is similar, but there are many
optimizations to reduce the storage requirement, see [6].

EXAMPLE 8.12:MEAN VALUE ANALYSIS OF FIGURE 8.5. We model the system as a single class,
closed network. The CPU is modelled as a PS station, disks A and B as FIFO single servers, and
think time as an IS station. We fix the visit rate θthinktime to 1 so that θCPU = VCPU, θA = VA and
θB = VB. Note that the routing probabilities need not be specified in detail, only the visit rates are
required.

The CPU station is not a FIFO station, but is has the same station function, therefore we may
apply MVA and treat it as if it would be FIFO.

Figure 8.15 shows the results, which are essentially as prediced by bottleneck analysis in Fig-
ure 8.6.
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Algorithm 7 MVA Version 1: Mean Value Analysis for a single chain closed multi-class product form
queuing network containing only constant rate FIFO and IS stations, or stations with same station functions.

1: K = population size
2: λ = 0 ⊲ throughput
3: Qs = 0 for all stations ∈ FIFO ⊲ total number of customers at stations, Qs =

∑

c N̄
s
c

4: Compute the visit ratesθsc using Eq.(8.24) and
∑C

c=1 θ
1
c = 1

5: θs =
∑

c θ
s
c for everys ∈ FIFO

6: h =
∑

s∈IS
∑

c θ
s
c S̄

s
c +

∑

s∈FIFO θsS̄s ⊲ constant term in Eq.(8.75)
7: for k = 1 : K do
8: λ = k

h+
∑

s∈FIFO θsQsS̄s ⊲ Eq.(8.75)

9: Qs = λθsS̄s(1 +Qs) for all s ∈ FIFO
10: end for
11: The throughput at station1 is λ
12: The throughput of classc at stations is λθsc
13: The mean number of customers of classc at FIFO stations is Qsθsc/θ

s

14: The mean number of customers of classc at IS stations is λθsc S̄
s
c
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Figure 8.15:Throughput in transactions per second versus number of users, computed with MVA for the
network in Figure 8.5. The dotted lines are the bounds of bottleneck analysis in Figure 8.6.
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8.6.6 NETWORK DECOMPOSITION
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S
~

Si

Sj
S

ÑS

Figure 8.16:Decomposition procedure: original network N , with subnetwork S; simplified network Ñ ;
equivalent station S̃; subnetwork in short-circuit ÑS .

A key consequence of the product form theorem is the possibility to replace an entire subnetwork
by an equivalent single station. This can be done recursively and is the basis for many algorithms,
such as MVA version 2.

Consider a multi-class product form networkN and a subnetworkS. The stations inS need not
directly connected and the network can be closed, mixed or open. If the network is mixed or open,
we consider that outside arrivals are from some fictitious station 0, and0 6∈ S. We create two
virtual networks:Ñ andÑS and a virtual statioñS as follows (Figure 8.16).

The virtual stationS̃, called theequivalent station of S, is obtained by isolating the set of stations
S from the networkN and collapsing classes to chains. InsideS̃, there is only one class per chain,
i.e. a customer’s attribute is its chainC; furthermore, the station is a “per class PS” station, with
service rate to be defined later17.

Ñ , called thesimplified network, is obtained by replacing all stations inS by the equivalent
stationS̃. In Ñ , routing is defined by the corresponding natural aggregation, i.e. is the same as if
the stations inS were still present but not observable individually. Thus the routing matrix̃q is:

q̃s,s
′

c,c′ = qs,s
′

c,c′ if s 6∈ S and s′ 6∈ S
17Observe that within one service station customers cannot change class, therefore if we aggregate a subnetwork

into a single station, we must aggregate classes of the same chain as well.
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q̃S,s
′

C,c′ =

{

0 if c′ 6∈ C
1
θ̃C

∑

s∈S,c∈C θ
s
cq

s,s′

c,c′ if c ∈ C

q̃s,Sc,C =

{

0 if c 6∈ C
∑

s′∈S,c′∈C q
s,s′

c,c′

q̃S,SC,C′ =

{

0 if C 6= C′

1
θ̃C

∑

s,s′∈S,c,c′∈C θ
s
cq

s,s′

c,c′

θ̃C =
∑

s∈S,c∈C
θsc

where, for example,̃qS,s
′

C,c′ is the probability that a chainC customer leaving statioñS joins station
s′ with classc′. If there are some open chains, recall thats = 0 represents arrivals and departures
and we assumed0 6∈ S; in such cases, the external arrival rate of chainC customers to the virtual
stationS̃ is

λS
C =

∑

s∈S,c∈C
λs
c

and the probability that a chainC customers leaves the network after visitingS̃ is

1

θ̃C

∑

s∈S,c∈C
θscq

s,0
c

whereqs,0c
def
= 1 −∑s′,c′ q

s,s′

c,c′ is the probability that a classc customer leaves the network after
visiting stations.

The visit rates inÑ are the same as inN for stations not inS; for the equivalent statioñS, the visit
rate for chainC is θ̃C given above. The station function of the equivalent stationS̃ is computed in
such a way that replacing all stations inS by S̃ makes no difference to the stationary probability of
the network. It follows, after some algebra, from the product form theorem; the precise formulation
is a bit heavy:

fS(~k) =
∑

(~ns)s∈S such that
∑

s∈S,c∈C ns
c=kC

∏

s∈S

[

f s(~ns)
∏

c

(

θsc
θSc

)ns
c

]

(8.79)

where~k is a population vector of closed or open chains. Note that it may happen that some chain
C0 be “trapped” inS, i.e customers of this chain never leaveS. The generating function of the
virtual stationS has a simple expression

GS(~Z) =
∏

s∈S
Gs( ~Xs) with Xs

c = ZC(c)
θsc
θ̃C

(8.80)

whereC(c) is the chain of classc. HereC spans the set of all chains, closed or open. Thus, the
equivalent statioñS is a per-class PS station, with one class per chain, and with balance function
fS(~k). In the next theorem, we will give an equivalent statement that is easier to use in practice.

The second virtual network,̃NS is called thesubnetwork in short-circuit. It consists in replacing
anything not inS by a short-circuit. InÑS , the service times at stations not inS are0 and customers
instantly traverse the complement ofS. This includes the virtual station0 which represents the
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outside, soÑS is a closed network18. The population vector~k remains constant iñNS; the visit
rates at stations inS are the same as in the original network for closed chains. Forclasses that
belong to a chain that is open in the original network, we obtain the visit rates by setting arrival
rates to1.

THEOREM 8.6.7. (Decomposition Theorem [78])
Consider a multi-class network that satisfies the hypotheses of the product form theorem 8.5.1.
Any subnetworkS can be replaced by its equivalent stationS̃, with one class per chain and station
function defined by Eq.(8.80). In the resulting equivalent networkÑ , the stationary probability
and the throughputs that are observable are the same as in theoriginal network.
Furthermore, ifC effectively visitsS, the equivalent service rate to chainC (closed or open) at the
equivalent statioñS is

µ∗S
C (~k) = λ∗S

C (~k) (8.81)

whereλ∗S
C (~k) is the throughput of chainC for the subnetwork in short-circuit̃NS when the popu-

lation vector for all chains (closed or open) is~k.

The phrase “that are observable” means: the numbers of customers of any class at any station not in
S; the total number of customers of chainC that are present in any station ofS; the throughputs of
all classes at all stations not inS; the throughputs of all chains. Recall that the per chain throughput
λC( ~K) (defined in Eq.(8.59)) is the throughput measured at some station sC effectively visited by
chainC. The stationsC is assumed to be the same in the original and the virtual networks, which
is possible since the visit rates are the same.

If C does not effectively visitS (i.e. if θ̃C
def
=
∑

s∈S,c∈C θ
s
c = 0) then the equivalent service rateµ∗S

C
is undefined, which is not a problem since we do not need it.

By the throughput theorem, Eq.(8.81) can also be writtenµ∗S
C (~k) = η∗(~k−~1C)

η∗(~k)
whereη∗(~k) is the

normalizing constant for the subnetwork in short-circuitÑS .

If S consists of a single station with one class per chain at this station, then the equivalent station
is the same as the original station, as expected. Also, the theorem implies, as a byproduct, that the
equivalent service rate for classc at a stations, as defined in Eq.(8.64), is equal to the throughput
for classc at the network made of this station and a short circuit for every class (i.e. every classc
customer immediately returns to the station upon service completion, with the same class).

EXAMPLE 8.13:DUAL CORE PROCESSOR INFIGURE 8.11,CONTINUED. We replace stations 2 and
3 by one aggregated station S̃ as in Figure 8.17. This station receives only customers of class 4
(internal jobs). Its equivalent service rate is

µ∗(n4) =
η∗(n4 − 1)

η∗(n4)
(8.82)

where η∗(n4) is the normalizing constant for the network ÑS obtained when replacing station 1 by
a short-circuit as in Figure 8.17; the z transform of η∗ is given by the convolution theorem 8.6.1:

Fη∗(Y ) = eS̄
2Y 1

1− S̄3Y
(8.83)

18Be careful that this is different from the procedure used when defining the station in isolation. IñNS , S is
connected to a short-circuit, i.e. a station where the service requirement is0; in contrast, in the configuration called
“S in isolation”,S is connected to a station with unit rate and unit service requirement.
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Figure 8.17:Aggregation of stations applied to the dual core processor example of Figure 8.11. First
panel: stations 2 and 3 are replaced by S̃. Bottom panel: the network in short-circuit ÑS used to compute
the equivalent service rate µ∗(n4) of S̃.
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One can compute a Taylor expansion and deduce η∗(n) or use filter as in the other examples,
but here one can also find a closed form

η∗(n) =
(

S̄3
)n

n
∑

k=0

(

S̄2

S̄3

)k
1

k!
(8.84)

Note that for large n, η∗(n) ≈
(

S̄3
)n

exp
(

S̄2

S̄3

)

and thus µ∗(n) ≈ 1
S̄3 , i.e. it is equivalent to station

3 (but this is true only for large n). We can deduce the equivalent service rate µ∗(n) and obtain
the probability distribution P ∗(n) of internal jobs at stations 2 or 3 using Theorem 8.6.4 as in
Example 8.10.

Note that internal jobs are either at station 1, or at stations 2 or 3. Thus we should have

P ∗(n|K) = P ′1(K − n|K) (8.85)

where P ′1(.|K) is the probability distribution for internal jobs at station 1, already obtained in
Example 8.11, and we can verify this numerically.

8.6.7 MVA VERSION 2

This is an algorithm which, like MVA version 1, avoids computing the normalizing constant, but
which applies to fairly general station types [84]. We give aversion for single chain (but multi-
class) networks. For networks with several chains, the complexity of this method is exponential in
the number of chains, and more elaborate optimizations havebeen proposed; see [27, 28] as well
as [6] and the discussion therein.

The starting point is the decomposition theorem, which saysthat one can replace a subnetwork
by a single station if one can compute its throughputs in short circuit. For example, using MVA
version 1, one can compute the throughputs of a subnetwork made of single server FIFO or IS
stations (or equivalent), therefore one can replace the setof all such stations in a network by one
single station.

MVA version 2 does the same thing for general stations in closed networks. This can be reduced to
the simpler problem of how to compute the throughput of a network of 2 stations, with numerically
known service rates. If we can solve this problem, we can replace the 2 stations by a new one, the
service rate is equal to the throughput (by Theorem 8.6.7), and we can iterate. This problem is
solved by the next theorem. It uses the concept of networks inshort-circuit.
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THEOREM 8.6.8. (Complement Network Theorem) Consider aclosedmulti-class product form
queuing networkN . LetS1,S2 be a partition ofN in two subnetworks and letNS1,NS2 be the
corresponding subnetworks in short circuit (inNS1, all stations inS2 are short circuited). Define:

• P 1(~k| ~K) = the stationary probability that the number of customers of chainC present inS1

is kC for all C when the total network population vector is~K;
• η1( ~K) = [resp. η2( ~K), η( ~K)] the normalizing constant ofNS1 [resp. NS2, N ] when the

total network population vector is~K;
• λ∗1

C ( ~K) = [resp. λ∗2
C ( ~K), λC( ~K)] the per chain throughput of chainC in NS1 [resp. NS2,

N ] when the total network population vector is~K.

Then for~0 ≤ ~k ≤ ~K:

P 1(~k| ~K) =
η1(~k)η2( ~K − ~k)

η( ~K)
(8.86)

and for any chainC such thatkC > 0:

P 1(~k| ~K) = P 1(~k −~1C|( ~K −~1C)
λC( ~K)

λ∗1
C (~k)

(8.87)

P 1(~k| ~K) = P 1(~k|( ~K −~1C)
λC( ~K)

λ∗2
C ( ~K − ~k)

(8.88)

The inequalities~0 ≤ ~k ≤ ~K are componentwise. The proof is by direct inspection: recognize in
Eq.(8.86) the convolution theorem; Eq.(8.87) and Eq.(8.88) follow from Eq.(8.86) and the through-
put theorem.

Note that Eq.(8.87) is an instance of the equivalent servicerate formula Eq.(8.65), sinceλ∗1
C (~k) =

µ∗1
C (~k) is also equal to the equivalent service rate ofS1. Eq.(8.88) is the symmetric of Eq.(8.87)

when we exchange the roles ofS1 andS2 sinceP 1(~k| ~K) = P 2( ~K − ~k| ~K).

S2 is called the complement network ofS1 in the original work [84], hence the name.

THE MVA C OMPOSITION STEP In the rest of this section we consider that there is only
one chain, and drop indexC. Assume that we know the throughputs of the two subnetworks
λ∗1(K), λ∗2(K); the goal of the composition step is to computeλ(K). We compute the distribu-
tion P 1(.|K) by iteration onK, starting withP 1(0|0) = 1, P 1(n|0) = 0, n ≥ 1. Eq.(8.87) and
Eq.(8.88) become

for k = 1...K : P 1(k|K) = P 1(k − 1|(K − 1)
λ(K)

λ∗1(k)
(8.89)

for k = 0...K − 1 : P 1(k|K) = P 1(k|(K − 1)
λ(K)

λ∗2(K − k)
(8.90)

None of the two equations alone is sufficient to advance one iteration step, but the combination
of the two is. For example, use the former fork = 1...K and the latter fork = 0. λ(K) is then
obtained by the condition

∑K
n=0 P

1(k|K) = 1.
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MVA V ERSION 2 The algorithm works in two phases. In phase 1, the throughputis computed.
The starting point is a networkN0; first, we compute the throughput of the subnetworkS0 made
of all stations to which MVA version 1 applies, as this fasterthan MVA version 1. We replaceS0

by its equivalent station; letN1 be the resulting network.

In one step we match stations 2 by 2, possibly leaving one station alone. For every pair of matched
stations we apply the MVA Composition Step to the network made of both stations in short circuit
(all stations except the two of the pair are short-circuited); we thus obtain the throughput of the pair
in short-circuit. Then we replace the pair by a single station, whose service rate is the throughput
just computed. This is repeated until there is only one aggregate station left, at which time the
phase 1 terminates and we have computed the throughputλ(K) of the original network.

In phase 2, the distributions of states at all stations of interest can be computed using the equivalent
service rate theorem (Eq.(8.65)) and normalization to obtain the probability of an empty station;
there is no need to use the complement network in this phase.

The number of steps in Phase 1 is order oflog2(N), whereN is the number of stations; the MVA
Composition Step is applied in total order ofN times (and not2N as wrongly assumed in [6]). The
complexity of one MVA Composition Step is linear inK, the population size.

In Algorithm 8 in Section 8.9.4 we give a concrete implementation.

8.7 WHAT THIS TELLS US

8.7.1 INSENSITIVITY

Multi-class product form queuing networks areinsensitiveto a number of properties:

• The distribution of service times is irrelevant for all insensitive stations; the stationary dis-
tributions of numbers of customers and the throughput depend only on traffic intensities (by
means of the visit ratesθsc) and on the station functions, which express how rates are shared
between classes. The service distribution depends on the class, and classes may be used to
introduce correlations in service times. The details of such correlations need not be modelled
explicitly, since only traffic intensities matter.
By Little’s law, the mean response times are also insensitive (but not the distribution of
response time, see Section 8.3.3).

• The nature of the service station plays a role only through its station function. Very different
queuing disciplines such as FIFO or global PS, or global LCFSPR with class independent
service times have the same station function, hence the samestationary distributions of num-
bers of customers, throughputs and mean response times alsoirrelevant as long

• The details of routings are also irrelevant, only the visit rates matter. For example, in Fig-
ure 8.11, it makes no difference if we assume that external jobs visit station 1 only once,
without feedback.

EXAMPLE 8.14:INTERNET MODEL [13]. Internet users as seen by an internet provider are mod-
elled by Bonald and Proutière in [13] as follows (they use a slightly different terminology as they
do not interpret a Whittle network as a product form station as we do).
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Figure 8.18:Product form queuing network used to model the Internet in [13].

Users sessions arrive as a Poisson process. A session alternates between active and think time.
When active, a session becomes a flow and acquires a class, which corresponds to the network
path followed by the session (there is one class per possible path). A flow of class c has a service
requirement drawn from any distribution with finite mean S̄c. The network shares its resources
between paths according to some “bandwidth” allocation strategy. Let µc(~n) be the rate allocated
to class c flows, where ~n = (n1, ..., nC ) and nc is the number of class c flows present in the network.
We assume that it derives from a balance function Φ, i.e.

µc(~n) =
Φ(~n−~1c)

Φ(~n)
(8.91)

All flows in the same class share the bandwidth allocated to this class fairly, i.e. according to
processor sharing.

When a flow completes, it either leaves the network, or mutates and becomes a session in think
time. The think time duration has any distribution with a finite mean S0. At the end of its think time,
a session becomes a flow.

This can be modelled as a single chain open network with two stations: a Per-Class PS station for
flow transfers and an IS station for think time, as in Figure 8.18.

A session in think time may keep the class it inherited from the flow. This means that we allow the
classes taken by successive flows to be non iid, as is probably the case in reality (for example the
next flow of this session might be more likely to take the same path). In fact, we may imagine any
dependence, it does not matter as long as the above assumptions hold, since we have a product
form queuing network; only the traffic intensities on each flow path matter, as we see next.

With the assumption in Eq.(8.91), flow transfers are represented by means of a per-class proces-
sor sharing station with Whittle function Φ(~n) (this is also called a Whittle network); think times
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are represented by a constant rate infinite server station; both are category 1 stations, thus the
network has product form.

More precisely, let θc be the visit rate at the Per-Class PS station, class c; it is equal to the number
of class c flow arrivals per time unit. Similarly, θ0 is the number of arrivals of sessions in think time
per time unit. Let n0 be the number of flows in think time; the stationary probability distribution of
(n0, ~n) is, by the product form theorem:

P (n0, ~n) = ηΦ(~n)

C
∏

c=1

(

S̄cθc
)nc
(

θ0S̄0
)n0

= ηΦ(~n)
C
∏

c=1

ρnc
c ρ

n0
0 (8.92)

where η is a normalizing constant and ρc = θcS̄c, ρ0 = θ0S̄0 are the traffic intensities.

Eq.(8.92) is a remarkably simple formula. It depends only on the traffic intensities, not on any
other property of the session think times or flow transfer times. It holds as long as bandwidth
sharing (i.e. the rates µc(~n)) derives from a balance function. In [13] it is shown that this is also a
necessary condition.

This is used by the authors in [13] to advocate that bandwidth sharing be performed using a
balance function. Bandwidth sharing is the function, implemented by a network, which decides
the values of µc(~n) for every c and ~n. The set R of feasible rate vectors (µc(~n))c=1...C is defined
by the network constraints. For example, in a wired network with fixed capacities, R is defined
by the constraints

∑

c∈ℓ µc < Rl where ℓ is a network link, Rl its rate, and “c ∈ ℓ” means that a
class c flow uses link ℓ. The authors define balanced fairness as the unique allocation of rates to
classes that (1) derives from a balance function and (2) is optimal in the sense that for any ~n, the
rate vector (µc(~n))c=1...C is at the boundary of the set of feasible rate vectors R. They show that
such an allocation is unique; algorithms to compute the balance function are given in [14].

8.7.2 THE I MPORTANCE OF M ODELLING CLOSED POPULATIONS

Closed chains give a means to account for feedback in the system, which may provide a different
insight than the single queue models in Section 8.3; this is illustrated in Section 8.9, where we see
that the conclusion (about the impact of capacity doubling)is radically different if we assume an
infinite population or a finite one.

Another useful example is the Engset formula, which we now describe. The Erlang loss formula
gives the blocking probability for a system withB servers, general service time and Poisson exter-
nal arrivals. If the population of tasks using the system is small, there is a feedback loop between
the system and the arrival process, since a job that is accepted cannot create an arrival. An alter-
native to the Erlang loss formula is the model in Figure 8.19,with a finite population ofK jobs,
a single class of customers, and two stations. Both stationsare IS; station 1 represents the service
center withB resources, station 2 represents user think time. If station1 hasB customers present,
arriving customers are rejected and instantly return to station 2 where they resume service. Service
requirements are exponentially distributed. This is equivalent to the form of blocking called partial
blocking in Section 8.8.6. This form of blocking requires that routing be reversible; since there are
only two stations, the topology is a bus and the routing is reversible, thus the network has product
form.
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Station 1

With Capacity B

Station 2

(IS station)

Station 1 full
K>B customers

in total

Figure 8.19:Model used to derive the Engset formula

It follows that the probabilityP (n|K) that there aren customers in service, given that the total
population isK ≥ B, is given by the product form theorem and the station functions for IS:

P (n|K) =
1

η

(

S̄1
)n

n!

(

S̄2
)K−n

(K − n)!
(8.93)

whereη is a normalizing constant,̄S1 is the average processing time andS̄2 the average think time.
Let ρ = S̄1

S̄2 ; it comes:

η =

B
∑

n=0

ρn

n!(K − n)!

The blocking probabilityP 0(B|K) for is equal to the Palm probability for an arriving customerto
findB customers in station1. By the arrival theorem, it is equal toP (B|K − 1). Thus forK > B

P 0(B|K) =

ρB

B!(K−B−1)!
∑B

n=0
ρn

n!(K−n−1)!

(8.94)

andP 0(B|K) = 0 for K ≤ B. Eq.(8.94) is called theEngset formula and gives the blocking
probability for a system withB resources and a population ofK. Like the Erlang-loss formula the
formula is valid for any distribution of the service time (and of the think time). WhenK → ∞,
the Engset formula is equivalent to the Erlang-loss formula.

8.8 MATHEMATICAL DETAILS ABOUT PRODUCT-FORM QUEU-
ING NETWORKS

8.8.1 PHASE TYPE DISTRIBUTIONS

For insensitive stations, the service time distribution isassumed to be aphase type distribution; this is also called
a mixture of exponentials or a mixture of gamma distribution and is defined next. Note that the product form
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theorem implies that the stationary distribution of the network is insensitive to any property of the distribution of
service requirement other than its mean; thus its seems plausible to conjecture that the product form network continues
to apply if we relax the phase type assumption. This is indeedshown for networks made of Kelly stations and of
“Whittle network” stations in [8].

A non negative random variableX is said to have a phase type distribution if there exists a continuous time Markov
chain with finite state space{0, 1, ..., I} such thatX is the time until arrival into state0, given some initial probability
distribution.

Formally, a phase type distribution withn stages is defined by the non negative sequence(αj)j=1...n with
∑

j αj = 1
and the non negative matrix(µj,j′ )j=1...n,j′=0...n. αj is the probability that, initially, the chain is in statej and
µj,j′ ≥ 0 is the transition rate from statej to j′, for j 6= j′. LetFj(s) be the Laplace-Stieltjes transform of the time
from now to the next visit to state0, given that the chain is in statej now. By the Markov property, the Laplace-
Stieltjes transform of the distribution we are interested in isE

(

e−sX
)

=
∑

j 6=0 αjFj(s) for all s > 0. To compute
Fj(s) we use the following equations, which also follow from the Markov property:

∀j ∈ {0, 1, ..., j} :



s+
∑

j′ 6=j

µj,j′



Fj(s) = µj,0 +
∑

j′ 6=j,j′ 6=0

µj,j′Fj′ (s) (8.95)
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Figure 8.20:Mixtures of Exponential: a Phase Type distribution is the distribution of the time until absorp-
tion into state 0 (state 0 represents the exit and is not shown). The Erlang and Hyperexponential are special
cases.

Consider for example theErlang-n andHyper-Exponential distributions, which correspond to the Markov chains
illustrated in Figure 8.20. The Laplace-Stieltjes transform of the Erlang-n distribution isF1(s), which is derived from
Eq.(8.95):

(λ+ s)F1(s) = λF2(s)

...

(λ+ s)Fn−1(s) = λFn(s)

(λ+ s)Fn(s) = λ

and is thus
(

λ
λ+s

)n

. This could also be obtained by noting that it is the convolution of n exponentials. (Note that

this is a special case of Gamma distribution). The PDF isf(x) = λn xn−1

(n−1)!e
−λx. The mean is̄S = n

λ
; if we set the

mean to a constant and letn → ∞, the Laplace Stieltjes transform converges, for everys > 0, to e−sS̄ , which is the
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Laplace Stieltjes transform of the constant concentrated at S̄. In other words, the Erlang-n distribution can be used to
approximate a constant service time.

Similarly, the Laplace Stieltjes transform of the Hyper-Exponential distribution follows immediately from Eq.(8.95)
and is

∑

j=1n
αjλj

λj+s
and the PDF isf(x) =

∑

j=1n αje
−λj′x. This can be used to fit any arbitrary PDF.

8.8.2 MICRO AND M ACRO STATES

The state of every station is defined by amicro-state, as follows.

Insensitive Station The micro state is(B,J ) whereB is the state of the station buffer introduced in Section 8.4.2
andJ is a data structure with the same indexing mechanism, which holds the service phase for the customer
at this position. In other words, for every indexi in the index set of the buffer,Bi is the class of the customer
present at this position, andJi is the service phase of the same customer (if there is no customer present at this
position, both are0). A customer at positioni receives a service rateρi(B) given by Eq.(8.26). This means that
the probability that this customer moves from the service phasej = Ji to a next phasej′ in a time interval of
durationdt is ρi(B)µc

j,j′dt + o(dt) wherec = Bi is this customer’s class andµc
j,j′ is the matrix of transition

rates at this station for classc customers, in the phase type representation of service requirement. If the next
service phase isj′ = 0, this customer will leave the station. When a classc customer arrives at this station,
it is inserted at positioni in the buffer with probability given in Eq.(8.25); the initial stage is set toj with
probabilityαc

j , the initial stage distribution probability for customersof this class at this station, andJi is set
to j.

MSCCC Station The micro-state is an ordered sequence of classes(c1, c2, ..., cM ) whereM is the number of cus-
tomers present in the station. When a customer arrives, it isadded at the end of the sequence. The cus-
tomers in service are the firstB eligible customers; a customer in positionm is eligible if and only if there
is a token available (i.e.

∑m−1
m′=0 1{G(cm′)=g} < Tg with g = G (cm)) and there is a server available (i.e.

∑

g min
(

Tg,
∑m−1

m′=0 1{G(cm′)=g}
)

< B). There is no state information about the service stage, since this cat-

egory of station requires that the service times be exponentially distributed, hence memoryless. The probability
that an eligible customer leaves the station in a time interval of durationdt is 1

S̄
r(M)dt + o(dt) wherer(M)

is the rate of this station whenM customers are present andS̄ is the mean service time (both are independent
of the class). Non eligible customers may not leave the station.

Theglobal micro stateof the network is the sequence(e1, e2, ..., eS) wherees is the micro-state of stations. With
the assumptions above, this defines a continuous time Markovchain. A network is defined by the population in closed
chains,KC. Theglobal micro state space, M, is the set of all(e1, e2, ..., eS) that are possible given the rules of
each station and

1. the total number of customers in chainC present anywhere in the network isKC , if C is a closed chain, and is
any non negative integer otherwise;

2. if the visit rateθsc is 0 for some stations and classc, then there may not be any customer of classc at stations.

The macro-state of stations is the vector~ns = (ns
1, ..., n

s
C) wherens

c is the number of class-c customers present
at this station. The global macro-state is the collection(~ns)s=1...S ; the global macro state does not define a Markov
chain as too much information is lost (for MSCCC stations, welost the order of customers; for insensitive stations,
we lost the service phase). The micro-state description is required to prove theorems, but most formulas of interest are
expressed in terms of macro-states. Theglobal macro state space, L, is the set of all(~ns)s=1...S ≥ ~0 such that

1.
∑

c∈C,s n
s
c = KC for every closed chainC;

2. if the visit rateθsc is 0 for some stations and classc, thenns
c = 0.

8.8.3 MICRO TO M ACRO : AGGREGATION CONDITION

All results in the previous sections apply to the macro-state description of the network. In the given form, they require
that the aggregation condition holds, which says that

aggregation of state from micro to macro does not introduce non feasible micro states.
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This is equivalent to saying that the setM is fully connected, i.e. any global micro state can be reached from any
initial condition in a finite number of transitions of the underlying Markov chain. This is generally true except in
pathological cases where the order of customers is preserved throughout the network lifetime. Consider for example a
cyclic network with only FIFO stations and one customer per class. The initial order of customers cannot be changed
and only states inM that preserve the initial ordering are feasible. In such a network, product form does hold, but
formulas for macro states are different than given in this chapter as the numbers of microstates that give one specific
macro-state is smaller.

8.8.4 LOCAL BALANCE I N I SOLATION

The station function can be defined both at the micro and macrolevels. Formally, thestation function at micro
level is a functionF (e), if it exists, of the micro statee of the function in isolation, such thatF (Ø) = 1, whereØ
is the empty state, and the stationary probability of statee in the station in isolation isη( ~K)F (e), whereη( ~K) is a
normalizing constant that depends on the total populationsof customersKc for every classc, in the station in isolation.

We say that a station satisfies the property ofLocal Balance In Isolation if the following holds.For every micro-state
e and classc:

departure rate out of statee due to a classc arrival
=

arrival rate into statee due to a classc departure
(8.96)

In this formula, the rates are with respect to the stationaryprobability of the station in isolation, as defined earlier.It
follows that one must also have

departure rate out of statee due to a departure or an internal transfer, of any class
=

arrival rate into statee due to an arrival or an internal transfer, of any class
(8.97)

where an internal transfer is a change of state without arrival nor departure (this is for insensitive stations, and is a
change of phase for one customer in service). The collectionof all these equations is the local balance in isolation. If
one finds a station function such that local balance in isolation holds, then this must be the stationary probability of
the station in isolation, up to a multiplicative constant.

For example, consider a FIFO station with 1 server and assumethat there is one class per chain in the network (i.e.
customers do not change class). LetF (c1, ..., cM ) be the stationary probability for the station in isolation.Local
balance here writes:

F (c1, ..., cM )1{∑M
m=1 1{cm=c}<Kc} = F (c, c1, ..., cM )µ for all classc

F (c1, ..., cM )µ = F (c1, ..., cM−1)1{
∑M−1

m=1 1{cm=cM}<KcM
}

whereKc is the number of classc customers in the system andµ = 1
S̄

. The functionF (c1, ..., cM ) = S̄M satisfies
both of these types of equations, therefore it is equal to thestationary probability of the station in isolation, up to a
multiplicative constant.F (c1, ..., cM ) = S̄M is the microscopic station function. The station functionf(~n) given ear-
lier follows by aggregation; indeed, letE(n1, ..., nC) be the set of micro-states of the FIFO station withnc customers
of classc, for everyc.

f(n1, ..., nC) =
∑

e∈E(n1,...,nC)

S̄(n1+...+nC) =
(n1 + ...+ nC)!

n1!...nC !
S̄(n1+...+nC)

since(n1+...+nC)!
n1!...nC ! is the number of elements ofE(n1, ..., nC). This is exactly the station function for the FIFO station

described in Eq.(8.47).

8.8.5 THE PRODUCT FORM THEOREM

The product form theorem in 8.5.1 is a direct consequence of the following main result.
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THEOREM 8.8.1. Consider a multi-class network with Markov routing andS stations. Assume allS stations satisfy
local balance in isolation, and letF s(es) be the station function at micro level for stations, wherees is the micro
state of stations. Then

p(e1, e2, ..., eS)
def
=

S
∏

s=1

F s(es) (8.98)

is an invariant measure for the network.

The theorem implies that, if appropriate stability conditions hold, the productp(e1, e2, ..., eS) must be equal to a
stationary probability, up to a normalizing constant. The proof can be found in [78]; see also [44, 10]. It consists in
direct verification of the balance equation. More precisely, one shows that, in the network:

departure rate out of statee due to a departure of any class
=

arrival rate into statee due to an arrival of any class
(8.99)

In this formula, the rates are with respect to the joint network probability of all stations at micro level, obtained by
re-normalizingp(). Note that the local balance property, as defined in Eq.(8.96), does not, in general, hold inside the
network at the micro level.

If the aggregation condition holds, then one can sum up Eq.(8.98) over all micro states for which the network popula-
tion vector is~n and obtain Eq.(8.51), which is the macro level product form result. Note that, at the macro-level, one
has, in the network, and for any classc:

departure rate out of statee due to a classc departure
=

arrival rate into statee due to a classc arrival
(8.100)

In this formula, the rates are with respect to the joint network probability of all stations at macro level. Note the
inversion with respect to local balance.

The resulting independence for the open case in Theorem 8.5.2 therefore also holds for micro-states: in an open
network, the micro-states at different stations are independent.

The proof of the product form theorem 8.5.1 follows immediately from Theorem 8.8.1 and the fact that all stations in
our catalog satisfy the property of local balance in isolation. The proof that MSCCC stations satisfy the local balance
property is in [51, 11]. For Kelly-Whittle stations, the result was known before for some specific cases. For the general
case, it is novel:

THEOREM 8.8.2. Kelly-Whittle stations satisfy local balance in isolation.

The proof is in Section 8.10.

8.8.6 NETWORKS WITH BLOCKING

It is possible to extend Markov routing to state-dependent routing, In particular, it is possible to allow for some
(limited) forms of blocking, as follows. Assume that there are some constraints on the network state, for example,
there may be an upper limit to the number of customers in one station. A customer finishing service, or, for an open
chain, a customer arriving from the outside, is denied access to a station if accepting this customer would violate any
of the constraints. Consider the following two cases:

Transparent Stations with Capacity Limitations The constraints on the network state are expressed byL capacity
limitations of the form

∑

(s,c)∈Hℓ

ns
c ≤ Γℓ, ℓ = 1...L (8.101)

wherens
c is the number of classc customers present at stationc, Hℓ is a subset of{1, ..., S} × {1, ...C} and

Γℓ ∈ N. In other words, some stations or groups of stations may put limits on the number of customers of
some classes or groups of classes.
If a customer is denied access to stations, she continues her journey through the network, using Markov routing
with the fixed matrixQ, until she finds a station that accepts her or until she leavesthe network.
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Partial Blocking with Arbitrary Constraints The constraints can be of any type. Further, If a customer finishes
service and is denied access to stations, she stays blocked in service. More precisely, we assume that service
distributions are of phase type, and the customer resumes the last completed service stage. If the customer was
arriving from the outside, she is dropped.
Further, we need to assume that Markov routing isreversible, which means that

θscq
s,s′

c,c′ = θs
′

c′ q
s′,s
c′,c (8.102)

for all s, s′, c, c′. Reversibility is a constraint on the topology; bus and starnetworks give reversible routing,
but ring networks do not.

Assume in addition that the service requirements are exponentially distributed (but may be class dependent at insensi-
tive stations). Then the product form theorem continues to apply for these two forms of blocking [80, 58, 44]. There
are other cases, too, see [6] and references therein.

There is a more general result: if the service distributionsare exponential and the Markov routing is reversible, then
the Markov process of global micro-states is also reversible [57]. LetXt be a continuous time Markov chain with
stationary probabilityp() and state spaceE . The process is calledreversible if p(e)µ(e, e′) = p(e′)µ(e′, e) for any
two statese, e′ ∈ E , whereµ(e, e′) is the rate of transition frome to e′. Reversible Markov chains enjoy the following
truncation property [44]. Let E ′ ⊂ E and define the processX ′

t by forcing the process to stay withinE ′; this is
done by taking some initial state spacee ∈ E ′ and setting to0 the rate of any transition frome ∈ E to e′ ∈ E ′. Then
the restriction ofp to E ′ is an invariant probability; in particular, ifE ′ is finite and fully connected, the stationary
probability of the truncated process is the restriction ofp to E ′, up to a normalizing constant.

Note that setting to0 the rates of transitions frome ∈ E to e′ ∈ E ′ is equivalent to saying that the we allow the
transition frome to e′ but then force an immediate, instantaneous return toe; this explains why we have product form
for networks with partial blocking with arbitrary constraints.

8.9 CASE STUDY

In this section we show how the four topics in the previous section can be combined to address
a queuing issue. Recently, one could read on the walls of the city where I live the following
advertisements for a ski resort: “capacity doubled, waiting time halved”. Does this statement
hold ? I was intrigued by this sweeping statement, and realized that it can be found repeatedly



8.9. CASE STUDY 299

in many different situations: doubling the processor speedor doubling the number of cores in a
computer, doubling the web front end in a server farm, etc. Inthe rest of this section we focus on
the ski resort example.

First we apply the principles in Chapter 1 and define the goalsand factors.

• Goal: evaluate impact of doubling the capacity of a skilift on the response time.
• Factors:c = capacity of skilift in people per second.
• Metrics: response time. A more detailed reflection leads to considering the waiting time, as

this is the one that affects customer’s perception.
• Load: we consider two load models : (1) heavy burst of arrival(after a train or a bus arrives

at the skilift) (2) peak hour stationary regime

8.9.1 DETERMINISTIC ANALYSIS

We can model the skilift as the queuing system illustrated inFigure 8.21. The first queue models
the gate; it is a single server queue. Its service time is the time between two passages through the
gate, when there is no idle period and is equal to1/c. The second queue represents the transporta-
tion time. It is an infinite server queue, with no waiting time. Since our performance metric is the
waiting time, we may ignore the second queue in the rest of theanalysis.

Gate Lift

Waiting room

Figure 8.21:Queuing Model of Skilift

bits
dmax

dmax/2

A(t)
B

b(t)=2ct

b0(t)=ct

time

Figure 8.22:Transient Analysis: A burst of skiers arrives at time 0. Impact of doubling the capacity of the
skilift.
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Assume the arrival of skiers is one single burst (all arrive at the same time). Also assume that
all skiers spend the same time to go through the gate, which isroughly true in this scenario. The
model in Section 8.1.1 applies, withA(t) = the number of skiers arriving in[0, t] andD(t) = the
number of skiers that entered the skilift in[0, t]. Thus the delayd(t) is the waiting time, excluding
the time spent on the skilift. We also haveβ(t) = ct, with c = the capacity of the skilift, in skiers
per second. We haveA(t) = B for t ≥ 0. Figure 8.22 shows that doubling the capacity does
divide the worst case waiting time by two.

Is the average waiting time also divided by 2 ? To answer this question we take the viewpoint
of an arbitrary customer. We see that the waiting time seen bya customer arriving as numbery
(0 ≤ y ≤ B) is linear iny, thus the average waiting time is equal to the worst case response time
divided by a2. Here too, doubling the capacity divides the average waiting time by 2.

QUESTION 8.9.1. In reality, even if the arrival of skiers is bursty, it may notbe as simultaneous as
we just described. We can account for this by takingA(t) = kct for 0 ≤ t ≤ t0 andA(t) = A(t0)
for t ≥ t0, with k ≥ 1. What is now the conclusion ?19

8.9.2 SINGLE QUEUE ANALYSIS

Assume now we are observing the system in the middle of the peak hour. We can model the gate as
a single queue, with one or perhaps several servers. It is difficult to give a more accurate statement
about the arrival process without performing actual measurements. Whatever the details, doubling
the capacity halves the utilization factorρ. A major pattern of single queue systems is the non
linearity of response time, as in Figure 8.7.

The effect on response time depends on where we stood on the curve. If the system was close to
saturation, as was probably the case, the effect is a large reduction of the average waiting time,
probably much larger than 2. With this model, doubling the capacity decreases the waiting time
by more than two.

8.9.3 OPERATIONAL ANALYSIS

It is probably unrealistic to assume that a reduction in waiting time has no effect on the arrival rate.
A better, though simplified, model is illustrated in Figure 8.23. It is a variant of the interactive
user model in Figure 8.3. Here we assume that the mean numberN̄ of skiers in the system is
independent ofc.

We apply bottleneck analysis. Letλ be the throughput of the skilift,̄S the time spent serving one
customer at the lift and̄Z the time spent going up on the lift or down on the slope andW̄ the
average waiting time at the lift. We have

{

λ(W̄ + S̄ + Z̄) = N̄
λ ≤ c

andS̄ is assumed to be negligible compared toZ̄, thus

W̄
≈
≥ max

(

N̄

c
− Z̄, 0

)

19The response time is reduced by a factor higher than2.
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Figure 8.23:First Panel: A Model that accounts for dependency of arrival rate and waiting time. Second
panel: Waiting time in minutes for this model versus 1

c
, where c is skilift capacity (in people per minute).

The solid line is the approximation by bottleneck analysis. The crosses are obtained by analytical solution
of the queuing network model in Figure 8.24, with the following parameters: population size K = 800 skiers;
number of servers at gate B ∈ {1, 2, ...7, 8}; service time at gate S̄ ∈ {2.5, 5, 10, 20} seconds; time between
visits to the gate Z̄ = 10 minutes.
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Figure 8.23 shows the approximate bound as a function of1
c

for the sake of comparison with
Figure 8.7. Points obtained by mean value analysis are also plotted and we see that the bound is in
fact a very good approximation.

This strongly suggests that the functionf that maps1
c

to the average response time is convex; the
graph of a convex function is below its chords, thus

f(
1

2c
) <

1

2
f(

1

c
)

and doubling the capacitydoes reduce the waiting time by more than 2.

We also see that a key value isc∗ = N̄
Z̄

. Note that1
Z

is the rate at which one customer would arrive
at the gate if there would be no queuing, thusc∗ is the rate of customers if the gate would not delay
them. Ifc is much larger thanc∗, the waiting time is small, so doubling the capacity has little effect
anyhow. Forc much smaller thanc∗, the waiting time increases at an almost constant rate. Thus
we should targetc of the order ofc∗, in other words, we should match the capacity of the gate to
the “natural” ratec∗.

QUESTION 8.9.2. Assume the system is highly congested before doubling the capacity. What is
the reduction in waiting time after doubling capacity ?20

8.9.4 QUEUING NETWORK ANALYSIS

Gate

(FIFO, B servers)

Slope = Think time

(IS station)

Figure 8.24:A Queuing Network model of Figure 8.23.

We can model the network in Figure 8.23 as a single class, closed product form queuing network
as in Figure 8.24. There is no specific assumption on the time spent on the slopes (“think time”);
in contrast we need to assume that the service time at the gateis exponentially distributed. Let̄S

20For a highly congested system (2cmuch smaller thanc∗) the offset at0 becomes negligible and the response time
is almost linear in1/c. Thus doubling the capacity does reduce the waiting time by2, roughly speaking – but the
system is still congested after doubling the capacity.
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be the mean service time at the gate andB the number of servers, so thatc = B/S̄. The mean
service time at the IS station is̄Z.

The total number of customers is fixed and equal toK. Let λ(K) andW̄ (K) be the throughput
and the average waiting time at the gate. By Little’s law

λ(K)
(

W̄ (K) + S̄ + Z̄
)

= K

thus

W̄ (K) =
K

λ(K)
− S̄ − Z̄ (8.103)

We computeλ(K) by mean value analysis, which avoids computing the normalizing constants
and the resulting overflow problems. LetP (n|K) be the stationary probability that there aren
customers present (in service or waiting) at the FIFO station, when the total number of customers
isK. The mean value analysis equations are (Section 8.6.5):

P (n|K) = P (n− 1|K − 1)
λ(K)

µ∗(n)
if n ≥ 1 (8.104)

P (0|K) = P (0|K − 1)
λ(K)

λ[1](K)
(8.105)

K
∑

n=0

P (n|K) = 1 (8.106)

whereµ∗(n) is the equivalent service rate of the FIFO station andλ[1](K) the throughput of the
complement of this station. By Table 8.1:

µ∗(n) =
min(n,B)

S̄

The complement network is obtained by short circuiting the FIFO station; it consists of the IS
station alone. Thus

λ[1](K) =
K

Z̄

The mean value algorithm is given in Algorithm 8. Figure 8.23and Figure 8.25 shows a few
numerical results. The capacityc = B/S̄ depends on both the number of FIFO serversB and the
service time at the gatēS. The points in Figure 8.23 are obtained by varying bothB andS̄. The
figure shows that the bottleneck analysis provides an excellent approximation. Thus this section
confirms the conclusions obtained by operational analysis.

8.9.5 CONCLUSIONS

Doubling the capacity does reduce the waiting time by a factor of 2 during bursts of arrivals, and
by a factor of 2 or more during the stationary regime. This is independent of whether the capacity
increase is by increasing the number of servers or by reducing the service time at the gate.

The findings assume that the arrival rate is not impacted by the capacity increase and does not
account for long term effects. Over the long term, a reduction in waiting time might attract more
customers and this will in turn increase the waiting time.
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Algorithm 8 Implementation of MVA Version 2 to the network in Figure 8.24.

1: K =: population size
2: p(n), n = 0...K: probability that there aren customers at the FIFO station
3: λ: throughput
4: p(0) = 1, p(n) = 0, n = 1...K
5: for k = 1 : K do
6: p∗(n) = p(n− 1)Z̄ / min (n,B), n = 1...k ⊲ Unnormalizedp(n|k), Eq.(8.104)
7: p∗(0) = p(0)Z̄/k ⊲ Unnormalizedp(0|k), Eq.(8.105)
8: λ = 1/

∑k
n=0 p

∗(n)
9: p(n) = p∗(n)/λ, n = 0...k

10: end for
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Figure 8.25:Throughput λ(K) in customers per minute and waiting times W (K) in minutes for the skilift
example in Figure 8.24 with B servers at the gate, versus number of customersK. The results are obtained
by analytical solution of the queuing network model (using the MVA algorithm). The dotted lines are the
maximum throughput B/S̄ and the waiting times predicted by bottleneck analysis. S̄ = 10sec and Z̄ =
10mn.
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There is an optimal capacityc∗, for any target customer population sizeK∗ (maximum number of
customers that the ski resort can accommodate on the slopes), given byc∗ ≈ K∗/Z̄ whereZ̄ is the
mean time between visits to the gate. If the capacity is belowc∗, waiting time is large; increasing
c beyondc∗ brings little benefit on waiting time.

8.10 PROOFS

THEOREM 8.2.1

Apply Theorem 7.3.2 toX(t) = N(t) and andTn = the superposition of arrivals and departures. The derivative of
N(t) is 0, and the jumps are+1 at instants of arrival, and−1 at instants of departures. ThusE0(∆N0) = 0. Now
E
0(∆N0) = +1p0a − 1p0d wherep0a is the probability that an arbitrary point is an arrival [resp. departure]. It follows

thatp0a = p0d and sincep0a + p0d = 1, it follows thatp0a = p0d = 0.5, which is not so surprising since there should be in
average as many departures as arrivals.

Apply again the theorem toX(t) = 1−zN(t)

1−z
wherez is some arbitrary number in(0, 1). X(t) is constant except at

arrival or departure times, thusX ′(t) = 0. Further,∆Xt = zN(t)−1 if t is an arrival instant and∆Xt = −zN(t) if t
is a departure instant. Thus

0 = E

(

zN(t)−1
∣

∣

∣ t is an arrival instant
)

p0a − E

(

zN(t)
∣

∣

∣ t is a departure instant
)

p0d

Now N(t) is right-handside continuous soN(t) − 1 is the number of customers just beforet whent is an arrival
epoch. Sincep0a = p0d, the distributions of the number of customers just before anarrival and just after a departure are
equal.

THEOREM 8.2.4

We apply Campbell’s formula. LetF (s, t) be the random function which returns1 if t ≥ s and the last customer who
arrived before or at−t is in nodek at times, else returns0. By definition of intensity:

λk = E

(

∑

n∈Z

F (−An, 0)

)

whereAn is the point process of customer arrivals. Campbell’s formula applied toF (−t, 0) gives:

E(
∑

n∈Z

F (−An, 0) = λ
∑

t∈N

E
−t(F (t, 0)) = λ

∑

t∈N

E
0(F (0, t))

where the last part is by stationarity. Thus

λk = λE0

(

∑

t∈N

F (0, t)

)

= λVk

(Total Response Time) Let̄N [resp.N̄k] be the expected number of customers in the service system [resp. in nodek].
We haveN̄ =

∑

k N̄k. Apply Little’ and the Forced Flows laws.

THEOREM 8.8.2

We consider a Kelly-Whittle station in isolation, i.e. connected to a unit rate per class station, withKc customers of
classc in total. We want to show that local balance holds (at the micro level). The micro state of the station is(B,J ),
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whereBi is the class of the customer in positioni ∈ I of the station buffer andJi is the phase for this customer, in
the phase type representation of service times. If there is no customer in positioni, we letBi = Ji = −1. We assume
that the index setI is enumerable, and that the initial number of occupied positions is finite, so that it remains finite
for ever.

Let αc
j andµc

j,j′ be the matrices of initial probabilities and transition rates in the phase type representation of service
rates for classc, with j = 1...Jc andj′ = 0...Jc. Without loss of generality we assumeJC = J . Recall thatj′ = 0
corresponds to an end of service. For everyc, let the arrayθcj , j = 1...J , be a solution of

1 =

J
∑

j=1

θcj
µc
j,0

µ̄c
j

θcj = αc
j +

J
∑

j′=1

θcj′
µc
j′,j

µ̄c
j′

with µ̄c
j =

J
∑

j′=0

µj,j′

so thatθcj is the mean number of visits to stagej during one classc customer’s service time. Note that the mean service
requirement for classc is

S̄c =

J
∑

j=1

θcj/µ̄
c
j (8.107)

We will show that the stationary probability of the station in isolation is proportional to

F (B,J )
def
= Ψ(B)

∏

i∈I,Bi 6=−1

θBi

Ji

µ̄Bi

Ji

(8.108)

whereΨ is the Whittle function. Clearly, this will imply thatF is the station function. Note that the product is
always finite. We now show that the equations of local balanceEq.(8.96) and Eq.(8.97) hold. Consider first Eq.(8.96).
The departure rate due to a classc arrival is simplyF (B,J )1{nc(B)<Kc}, by definition of the station in isolation,

wherenc(B) def
=
∑

i∈I 1{Bi=c} is the number of classc customers. The arrival rate due to a classc departure is0
if nc(B) < Kc (one cannot reach a state where all classc customers are in the station by a departure) and else, by
definition of the service rate:

=
∑

i∈I,j=1...J

F (add(B, i, c), add(J , j, c))γ(i, add(B, i, c))Ψ(remove(add(B, i, c), i))
Ψ(add(B, i, c)) µc

j,0

= F (B,J )
∑

i∈I,j=1...J

θcj
µ̄c
j

γ(i, add(B, i, c))µc
j,0

= F (B,J )

(

∑

i∈I
γ(i, add(B, i, c))

)





∑

i∈I,j=1...J

θcj
µ̄c
j

µc
j,0



 = F (B,J )

thus Eq.(8.96) holds. We now show Eq.(8.97). The left-hand side is

F (B,J )
∑

i∈B

C
∑

c=1

J
∑

j=1

γ(i,B)Ψ(remove(B, i)
Ψ(B) µ̄c

j1{Bi=c}1{Ji=j}

and the right-hand side isRHSa + RHSt where the former term corresponds to an arrival, the latter to an internal
transfer:

RHSa =
∑

i∈I

C
∑

c=1

J
∑

j=1

F (remove(B, i), remove(J , i))γ (i,B)αc
j1{Bi=c}1{Ji=j}

= F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j=1

Ψ(remove(B, i))
Ψ(B)

µ̄c
j

θcj
γ(i,B)αc

j1{Bi=c}1{Ji=j}
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We use the notationBi′,i def
= add(remove(B, i), i′,Bi). By hypothesis,Bi,i = B andBi′,i is the only buffer stateB′

such thatremove(B′, i′) = remove(B, i) andB′
i′ = c. Also note thatadd(remove(B, i), i,Bi) = B. Thus

RHSt =
∑

i,i′∈I

C
∑

c=1

J
∑

j,j′=1

F (Bi′,i, add(remove(J , i), i′, j′))γ(i′,Bi′,i)
Ψ(remove(Bi′,i, i′))

Ψ(Bi′,i)
µc
j′,j

×γ(i, add(remove(Bi′,i, i′), i, c))1{Bi=c}1{Ji=j}

=
∑

i,i′∈I

C
∑

c=1

J
∑

j,j′=1

F (Bi′,i, add(remove(J , i), i′, j′))γ(i′,Bi′,i)
Ψ(remove(B, i))

Ψ(Bi′,i)
µc
j′,j

×γ(i, add(remove(B, i), i, c))1{Bi=c}1{Ji=j}

= F (B,J )
∑

i,i′∈I

C
∑

c=1

J
∑

j,j′=1

θcj′ µ̄j

θcj µ̄j′
γ(i′, add(remove(B, i), i′,Bi))

Ψ(remove(B, i))
Ψ(B) µc

j′,j

×γ(i,B)1{Bi=c}1{Ji=j}

= F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j,j′=1

θcj′ µ̄j

θcj µ̄j′

Ψ(remove(B, i))
Ψ(B) µc

j′,j1{Bi=c}1{Ji=j}γ(i,B)

×
∑

i′∈I
γ(i′, add(remove(B, i), i′, c))

= F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j,j′=1

θcj′ µ̄j

θcj µ̄j′

Ψ(remove(B, i))
Ψ(B) µc

j′,j1{Bi=c}1{Ji=j}γ(i,B)

= F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j=1

µ̄j

θcj

Ψ(remove(B, i))
Ψ(B) 1{Bi=c}1{Ji=j}γ(i,B)

J
∑

j′=1

θcj′

µ̄j′
µc
j′,j

= F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j=1

µ̄j

θcj

Ψ(remove(B, i))
Ψ(B) 1{Bi=c}1{Ji=j}γ(i,B)

(

θcj − αc
j

)

Thus, combining the two:

RHSa + RHSt = F (B,J )
∑

i∈I

C
∑

c=1

J
∑

j=1

µ̄j

Ψ(remove(B, i))
Ψ(B) 1{Bi=c}1{Ji=j}γ(i,B)

which is equal to the right-hand side as required.

8.11 REVIEW

8.11.1 REVIEW QUESTIONS

QUESTION 8.11.1.Why are stations of category 1 called “insensitive” ?21

QUESTION 8.11.2. Consider a multi-class queuing network, with FIFO queues, Poisson arrivals
and exponential service times; under which condition does it satisfy the hypotheses of the product
form theorem ?22

21Their station function depends on the distribution of service time only through the mean.
22The service time distributions must be independent of the class.
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QUESTION 8.11.3.Explain Eq.(8.17) and Eq.(8.21) by the product form theorem. 23

QUESTION 8.11.4. Consider the network in Figure 8.24 and assume there is only one class of
customers. Assume that the service requirement at the bottom station is exponential(ν). Say
of which category each station is. Write the station functions for both functions and verify the
product-form theorem when the number of servers isB = 1. Compute the throughput and verify
the throughput theorem.24

QUESTION 8.11.5. In Section 8.4 we mention the existence of a network in [16] which is unstable
with utilization factor less than1. Can it be a product-form multi-class queuing network ? Why or
why not ?25

8.11.2 SUMMARY OF NOTATION

SINGLE SERVER QUEUE

Notation Definition
A/S/s/K Kendall notation: arrival process/service process/ number of servers/

capacity of queue including customers in service
λ arrival rate
B number of servers

S̄, σS,LS mean, standard deviation and Laplace Stieltjes transform of service time
ρ = λS̄

B
server utilization

N, N̄, σN number of customers in system, its mean and standard deviation
Nw, N̄w, σNw number of customers waiting, its mean and standard deviation
R, R̄, σR time spent in system (residence time), its mean and standarddeviation

Vk mean number of visits per customer to nodek
W, W̄ , σW waiting time, its mean and standard deviation

Z̄ av. think time in interactive user model

QUEUING NETWORKS

23The M/GI/1/PS queue is an open queuing network with one classof customers and one station, with visit rate
equal toλ. The station function for a constant rate PS station isf(n) = S̄n, thus the stationary probability of the
M/GI/1/PS queue isηρn. By normalization,η = 1/(1 − ρ), which is Eq.(8.17). Similarly for Eq.(8.21), using the
station function of the FIFO station withB servers.

24The ‘Gate” station is a FIFO station, therefore a station of Category 2. Its station function isf1(n) = 1
µn where

1/µ is its mean service time. The second station is a station of category 1 and its station function isf2(n) = 1
n!νn .

The stationary probability isp(n) = f1(n)f2(K−n)
η(K) when there areK customers. The balance equations are

p(n)(µ+ (K − n)ν) = (K − n+ 1)νp(n− 1)1{n≥1} + µp(n+ 1)1{n≤K−1}

The verification is by direct computation (the terms match bypair). For the throughput, see Example 7.16.
25It cannot be a product-form multi-class queuing network because they are stable when utilization is less than 1. It

violates the assumptions because of FIFO stations with class-dependent service rates.
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Notation Definition
B State of buffer in insensitive station, containing the listof customer classes
c customer class
C customer chain; does not change for a given customer

d(~n) combinatorial function used by MSCCC station, Eq.(8.40)
D(~Z) Z-transform ofδ, computed by Eq.(8.42)
f s(~ns) station function, Eq.(8.31)
Gs(~z) generating function of station function, Eq.(8.32)
G(c) token group of classc at an MSCCC station
λs
c(
~K) throughput of classc observed at stations

λC( ~K) throughput of chainC, Section 8.6.2
~K network population vector;KC: number of chainC customers in network
νs
c external arrival rate of class at stations

Φ(~n) Balance function at some Kelly-Whittle stations
Ψ(B) Whittle function at Kelly-Whittle station
qs,s

′

c,c′ routing probability, Section 8.4.1
S̄s
c mean service requirement at stations for classc customers

Tg isze of token poolg at MSCCC station
θsc visit rate to stations, classc (Eq.(8.24))
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APPENDIX A

TABLES

The following tables can be used to determine confidence intervals for quantiles (including me-
dian), according to Theorem 2.2.1. For a sample ofn iid data pointsx1, ..., xn, the tables give a
confidence interval at the confidence levelγ = 0.95 or 0.99 for theq-quantile withq = 0.5 (me-
dian),q = 0.75 (quartile) andq = 0.95. The confidence interval is[x(j), x(k)], wherex(j) is thejth
data point sorted in increasing order.

The confidence intervals forq = 0.05 and q = 0.25 are not given in the tables. They can be
deduced by the following rule. Let[x(j), x(k)] be the confidence interval for theq-quantile given
by the table. A confidence interval for the1− q-quantile is[x(j′), x(k′)] with

j′ = n+ 1− k

k′ = n+ 1− j

For example, withn = 50, a confidence interval for the third quartile (q = 0.75) at confidence
level 0.99 is [x(29), x(45)], thus a confidence interval for the first quartile (q = 0.25) at confidence
level0.99 is [x(6), x(22)].

For small values ofn no confidence interval is possible. For largen, an approximate value is given,
based on a normal approximation of the binomial distribution.

Note. The tables givep, the actual confidence level obtained, as it is not possible to obtain a confidence
interval at exactly the required confidence levels. For example, forn = 10 andγ = 0.95 the confidence
interval given by the table is

[

X(2), X(9)

]

; the table says that it is in fact a confidence interval at level
0.979.

The values ofj andk are chosen such thatj andk are as symmetric as possible aroundn+1
2 . For

example, forn = 31 the table gives the interval
[

X(10), X(22)

]

. Note that this is not the only interval
that can be obtained from the theorem. Indeed, we have:

j k P
(

X(j) < m0.5 < X(k)

)

9 21 0.959
10 22 0.971
11 23 0.959

Thus we haveseveralpossible confidence intervals. The table simply picked one for which the indices
are closest to being symmetrical around the estimated median, i.e. the indicesj andk are equally spaced

311
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aroundn+1
2 , which is used for estimating the median. In some cases, liken = 32, we do not find such

an interval exactly; we have for instance:

j k P
(

X(j) < m0.5 < X(k)

)

10 22 0.965
11 23 0.965

Here, the table arbitrarily picked the former.
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n j k p

n ≤ 5: no confidence interval possible.
6 1 6 0.969
7 1 7 0.984
8 1 7 0.961
9 2 8 0.961
10 2 9 0.979
11 2 10 0.988
12 3 10 0.961
13 3 11 0.978
14 3 11 0.965
15 4 12 0.965
16 4 12 0.951
17 5 13 0.951
18 5 14 0.969
19 5 15 0.981
20 6 15 0.959
21 6 16 0.973
22 6 16 0.965
23 7 17 0.965
24 7 17 0.957
25 8 18 0.957
26 8 19 0.971
27 8 20 0.981
28 9 20 0.964
29 9 21 0.976
30 10 21 0.957
31 10 22 0.971
32 10 22 0.965
33 11 23 0.965
34 11 23 0.959
35 12 24 0.959
36 12 24 0.953
37 13 25 0.953
38 13 26 0.966
39 13 27 0.976
40 14 27 0.962
41 14 28 0.972
42 15 28 0.956
43 15 29 0.968
44 16 29 0.951
45 16 30 0.964
46 16 30 0.960
47 17 31 0.960
48 17 31 0.956
49 18 32 0.956
50 18 32 0.951
51 19 33 0.951
52 19 34 0.964
53 19 35 0.973
54 20 35 0.960
55 20 36 0.970
56 21 36 0.956
57 21 37 0.967
58 22 37 0.952
59 22 38 0.964
60 23 39 0.960
61 23 39 0.960
62 24 40 0.957
63 24 40 0.957
64 24 40 0.954
65 25 41 0.954
66 25 41 0.950
67 26 42 0.950
68 26 43 0.962
69 26 44 0.971
70 27 44 0.959

n ≥ 71 ≈ ⌊0.50n −
0.980

√
n⌋

≈
⌈0.50n+1+
0.980

√
n⌉

0.950

n j k p

n ≤ 7: no confidence interval possible.
8 1 8 0.992
9 1 9 0.996
10 1 10 0.998
11 1 11 0.999
12 2 11 0.994
13 2 12 0.997
14 2 12 0.993
15 3 13 0.993
16 3 14 0.996
17 3 15 0.998
18 4 15 0.992
19 4 16 0.996
20 4 16 0.993
21 5 17 0.993
22 5 18 0.996
23 5 19 0.997
24 6 19 0.993
25 6 20 0.996
26 7 20 0.991
27 7 21 0.994
28 7 21 0.992
29 8 22 0.992
30 8 23 0.995
31 8 24 0.997
32 9 24 0.993
33 9 25 0.995
34 10 25 0.991
35 10 26 0.994
36 10 26 0.992
37 11 27 0.992
38 11 27 0.991
39 12 28 0.991
40 12 29 0.994
41 12 30 0.996
42 13 30 0.992
43 13 31 0.995
44 14 31 0.990
45 14 32 0.993
46 15 33 0.992
47 15 33 0.992
48 15 33 0.991
49 16 34 0.991
50 16 35 0.993
51 16 36 0.995
52 17 36 0.992
53 17 37 0.995
54 18 37 0.991
55 18 38 0.994
56 18 38 0.992
57 19 39 0.992
58 20 40 0.991
59 20 40 0.991
60 20 40 0.990
61 21 41 0.990
62 21 42 0.993
63 21 43 0.995
64 22 43 0.992
65 22 44 0.994
66 23 44 0.991
67 23 45 0.993
68 23 45 0.992
69 24 46 0.992
70 24 46 0.991
71 25 47 0.991
72 25 47 0.990

n ≥ 73 ≈ ⌊0.50n −
1.288

√
n⌋

≈
⌈0.50n+1+
1.288

√
n⌉

0.990

Table A.1:Quantile q = 50%, Confidence Levels γ = 95% (left) and 0.99% (right)
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n j k p

n ≤ 10: no confidence interval possible.
11 5 11 0.950
12 6 12 0.954
13 7 13 0.952
14 7 14 0.972
15 8 15 0.969
16 9 16 0.963
17 9 17 0.980
18 9 17 0.955
19 10 18 0.960
20 12 20 0.956
21 12 20 0.960
22 13 21 0.956
23 13 22 0.974
24 14 23 0.970
25 14 24 0.982
26 15 24 0.959
27 16 25 0.958
28 17 26 0.954
29 17 27 0.971
30 17 27 0.954
31 18 28 0.958
32 20 30 0.956
33 20 30 0.958
34 21 31 0.955
35 22 32 0.950
36 22 33 0.968
37 22 34 0.979
38 23 34 0.961
39 24 35 0.960
40 25 36 0.958
41 25 37 0.972
42 25 37 0.961
43 26 38 0.963
44 28 40 0.961
45 28 40 0.963
46 28 40 0.951
47 29 41 0.953
48 31 43 0.952
49 31 43 0.954
50 32 44 0.952
51 32 45 0.966
52 33 46 0.964
53 33 47 0.975
54 34 47 0.959
55 35 48 0.959
56 36 49 0.957
57 36 50 0.969
58 37 50 0.951
59 38 51 0.951
60 39 53 0.961
61 39 53 0.963
62 39 53 0.954
63 40 54 0.956
64 42 56 0.955
65 42 56 0.956
66 43 57 0.955
67 44 58 0.952
68 44 59 0.966
69 44 60 0.975
70 45 60 0.962
71 46 61 0.961
72 47 62 0.960
73 47 63 0.971
74 48 63 0.956
75 49 64 0.956

n ≥ 76 ≈ ⌊0.75n −
0.849

√
n⌋

≈
⌈0.75n+1+
0.849

√
n⌉

0.950

n j k p

n ≤ 16: no confidence interval possible.
17 7 17 0.992
18 8 18 0.993
19 9 19 0.993
20 10 20 0.993
21 11 21 0.991
22 11 22 0.995
23 12 23 0.994
24 13 24 0.992
25 13 25 0.996
26 13 25 0.993
27 15 27 0.992
28 15 27 0.993
29 16 28 0.992
30 16 29 0.995
31 17 30 0.994
32 18 31 0.993
33 18 32 0.996
34 19 32 0.991
35 20 33 0.990
36 21 35 0.991
37 21 35 0.993
38 21 35 0.990
39 23 37 0.990
40 23 37 0.991
41 23 39 0.997
42 24 39 0.994
43 25 40 0.993
44 26 41 0.992
45 26 42 0.995
46 27 42 0.990
47 28 44 0.993
48 29 45 0.991
49 29 45 0.993
50 29 45 0.990
51 31 47 0.990
52 31 47 0.991
53 31 49 0.996
54 32 49 0.993
55 33 50 0.993
56 34 51 0.992
57 34 52 0.995
58 35 52 0.991
59 36 53 0.990
60 37 55 0.992
61 37 55 0.993
62 37 55 0.991
63 39 57 0.991
64 39 57 0.991
65 40 58 0.991
66 41 59 0.990
67 41 60 0.993
68 42 61 0.993
69 42 62 0.995
70 43 62 0.992
71 44 63 0.991
72 45 64 0.991
73 45 65 0.994
74 45 65 0.992
75 47 67 0.992
76 48 68 0.991
77 48 68 0.992
78 48 68 0.991
79 50 70 0.991
80 50 70 0.991
81 51 71 0.990

n ≥ 82 ≈ ⌊0.75n −
1.115

√
n⌋

≈
⌈0.75n+1+
1.115

√
n⌉

0.990

Table A.2:Quantile q = 75%, Confidence Levels γ = 95% (left) and 0.99% (right)
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n j k p

n ≤ 58: no confidence interval possible.
59 50 59 0.951
60 52 60 0.951
61 53 61 0.953
62 54 62 0.955
63 55 63 0.957
64 56 64 0.958
65 57 65 0.959
66 58 66 0.961
67 59 67 0.962
68 60 68 0.963
69 61 69 0.964
70 62 70 0.964
71 63 71 0.965
72 64 72 0.965
73 65 73 0.966
74 66 74 0.966
75 67 75 0.966
76 68 76 0.966
77 69 77 0.966
78 70 78 0.966
79 71 79 0.966
80 72 80 0.965
81 73 81 0.964
82 74 82 0.964
83 75 83 0.963
84 76 84 0.962
85 77 85 0.961
86 78 86 0.960
87 79 87 0.959
88 80 88 0.957
89 81 89 0.956
90 82 90 0.954
91 83 91 0.952
92 84 92 0.950
93 84 93 0.974
94 85 94 0.973
95 86 95 0.972
96 87 96 0.971
97 88 97 0.970
98 89 98 0.969
99 90 99 0.967
100 91 100 0.966
101 91 100 0.952
102 92 101 0.953
103 93 102 0.953
104 94 103 0.954
105 95 104 0.954
106 96 105 0.954
107 97 106 0.954
108 98 107 0.954
109 99 108 0.954
110 100 109 0.954
111 101 110 0.954
112 102 111 0.953
113 103 112 0.953
114 104 113 0.952
115 105 114 0.951
116 106 115 0.950
117 107 117 0.965
118 108 118 0.963
119 109 119 0.961
120 110 120 0.959
121 110 120 0.967
122 111 121 0.966
123 112 122 0.966

n ≥ 124 ≈ ⌊0.95n −
0.427

√
n⌋

≈
⌈0.95n+1+
0.427

√
n⌉

0.950

n j k p

n ≤ 89: no confidence interval possible.
90 76 90 0.990
91 79 91 0.990
92 80 92 0.990
93 81 93 0.991
94 82 94 0.991
95 83 95 0.991
96 84 96 0.992
97 85 97 0.992
98 86 98 0.992
99 87 99 0.992
100 88 100 0.993
101 89 101 0.993
102 90 102 0.993
103 91 103 0.993
104 92 104 0.993
105 93 105 0.993
106 94 106 0.993
107 95 107 0.993
108 96 108 0.993
109 97 109 0.993
110 98 110 0.993
111 99 111 0.993
112 100 112 0.993
113 101 113 0.993
114 102 114 0.992
115 103 115 0.992
116 104 116 0.992
117 105 117 0.992
118 106 118 0.991
119 107 119 0.991
120 108 120 0.991
121 109 121 0.990
122 109 122 0.995
123 110 123 0.995
124 111 124 0.995
125 112 125 0.994
126 113 126 0.994
127 114 127 0.994
128 115 128 0.994
129 116 129 0.993
130 117 130 0.993
131 118 131 0.993
132 119 132 0.992
133 120 133 0.992
134 121 134 0.992
135 122 135 0.991
136 123 136 0.991
137 124 137 0.990
138 124 138 0.995
139 125 139 0.995
140 126 140 0.995
141 127 141 0.994
142 127 141 0.992
143 128 142 0.992
144 129 143 0.992
145 130 144 0.992
146 131 145 0.992
147 133 147 0.992
148 134 148 0.992
149 135 149 0.992
150 136 150 0.991
151 137 151 0.991
152 138 152 0.990
153 138 152 0.992
154 139 153 0.992

n ≥ 155 ≈ ⌊0.95n −
0.561

√
n⌋

≈
⌈0.95n+1+
0.561

√
n⌉

0.990

Table A.3:Quantile q = 95%, Confidence Levels γ = 95% (left) and 0.99% (right)
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APPENDIX B

PARAMETRIC ESTIMATION , LARGE SAMPLE

THEORY

B.1 PARAMETRIC ESTIMATION THEORY

In this appendix we give a large sample theory which is used for some asymptotic confidence inter-
val computations in Chapter 2 and for the general framework of likelihood ratio tests of Chapter 4.

B.1.1 THE PARAMETRIC ESTIMATION FRAMEWORK .

Consider a data setxi, i = 1..., n, which we view as the realization of a stochastic system (in
other words, the output of a simulator). The framework of parametric estimation theory consists
in assuming that the parameters of the stochastic system arewell defined, but unknown to the
observer, who tries to estimate it as well as she can, using the data set.

We assume here that the model has a density of probability, denoted withf(x1, ..., xn|θ), where
θ is the parameter. It is also called thelikelihood of the observed data. Anestimator of θ is any
functionT () of the observed data. A good estimator is one such that, in average,T (x1, ..., xn) is
“close” to the true valueθ.

EXAMPLE 2.1:I .I .D. NORMAL DATA . Assume we can believe that our data is iid and normal with
mean µ and variance σ2. The likelihood is

1
(√

2πσ
)n exp

(

−1

2

n
∑

i=1

(xi − µ)2

σ2

)

(B.1)

and θ = (µ, σ). An estimator of θ is θ̂ = (µ̂n, σ̂n) given by Theorem 2.2.3. Another, slightly different
estimator is θ̂1 = (µ̂n, sn) given by Theorem 2.2.2.

An estimator provides a random result: for every realization of the data set, a different estimation
is produced. The “goodness” of an estimator is captured by the following definitions. Here~X is

317
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the random data set,T ( ~X) is the estimator andEθ means the expectation when the unknown but
fixed parameter value isθ.

• Unbiased estimator: Eθ

(

T ( ~X)
)

= θ. For example, the estimator̂σ2
n of variance of a

normal i.i.d. sample given by Theorem 2.2.3 is unbiased.
• Consistent family of estimators: Pθ(|T ( ~X)− θ|) > ǫ) → 0 when the sample sizen goes

to∞. For example, the estimator(µ̂n, σ̂n) of Theorem 2.2.3 is consistent. This follows from
the weak law of large numbers.

B.1.2 MAXIMUM L IKELIHOOD ESTIMATOR (MLE)

A commonly used method for deriving estimators is that ofMaximum Likelihood. The maximum
likelihood estimator is the value ofθ that maximizes the likelihoodf(x1, ..., xn|θ). This definition
makes sense if the maximum exists and is unique, which is often true in practice. A formal set of
conditions is the regularity condition in Definition B.2.1.

In Section B.2, we give a result that shows that the MLE for an i.i.d. sample with finite variance is
asymptotically unbiased, i.e. the bias tends to0 as the sample size increases. It is also consistent.

EXAMPLE 2.2:MLE FOR I.I .D. NORMAL DATA . Consider a sample (x1, ..., xn) obtained from a
normal i.i.d. random vector (X1, ...,Xn). The likelihood is given by Eq.(B.1). We want to maximize
it, where x1, ..., xn are given and µ, v = σ2 are the variables. For a given v, the maximum is
reached when µ = µ̂n = 1

n

∑n
i=1 xi. Let µ have this value and find the value of v that maximizes

the resulting expression, or to simplify, the log of it. We thus have to maximize

−n
2
ln v − 1

2v
Sx,x + C (B.2)

where Sx,x
def
=
∑n

i=1(x− µ̂n)
2 and C is a constant with respect to v. This is a simple maximization

problem in one variable v, which can be solved by computing the derivative. We find that there is a
maximum for v =

Sx,x

n . The maximum likelihood estimator of (µ, v) is thus precisely the estimator
in Theorem 2.2.2.

We say that an estimation methodinvariant by re-parametrization if a different parametrization
gives essentially the same estimator. More precisely assume we have a method which produces
some estimatorT ( ~X) for θ. Assume we re-parametrize the problem by considering that the pa-
rameter isφ(θ), whereφ is some invertible mapping. For example, a normal i.i.d. sample can be
parametrized byθ = (µ, v) or byφ(θ) = (µ, σ), with v = σ2. The method is called invariant by
re-parametrization if the estimator ofφ(θ) is preciselyφ(T ( ~X)).

The maximum likelihood methodis invariant by re-parametrization. This is because the property
of being a maximum is invariant by re-parametrization. It isan important property in our context,
since the model is usually not given a priori, but has to be invented by the performance analyst.

A method that provides an unbiased estimator cannot be invariant by re-parametrization, in general.
For example,(µ̂n, σ̂

2
n) of Theorem 2.2.3 is an unbiased estimator of(µ, σ2), but(µ̂n, σ̂n) is abiased

estimator of(µ, σ) (because usuallyE(S)2 6= E(S2) except ifS is non-random). Thus, the property
of being unbiased is incompatible with invariance by re-parametrization, and may thus be seen as
an inadequate requirement for an estimator.
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Furthermore, maximum likelihood is alsoinvariant by reversible data transformation, i.e. the
MLE of θ is the same, whether we look at the data or at a one to one transform, independent of
θ. More precisely, assume~X = (Xi)i=1...n has a joint PDFf ~X(~x|θ), and let~Y = ϕ( ~X), with ϕ a
one-to-one, differentiable mapping independent ofθ.

Take ~X as data and estimateθ; we have to maximizef ~X(~x|θ) with respect toθ, where~x =
(xi)i=1...n is the available data. If, instead, we observeyi = ϕ(xi) for all i, we have to maximize

fY (~y) =
1

|ϕ′(~x)|f ~X(~x)

where|ϕ′(~x)| is the absolute value of the determinant of the differentialof ϕ (i.e. the Jacobian
matrix).

In particular, the MLE is invariant byre-scalingof the data. For example, ifYi is a log-normal
sample (i.e. ifYi = eXi andXi ∼ iid Nµ,σ2), then the MLE of the parametersµ, θ can be obtained
by estimating the mean and standard deviation ofln(Yi).

B.1.3 EFFICIENCY AND FISHER I NFORMATION

The efficiency of an estimatorT ( ~X) of the parameterθ is defined as the expected square error

Eθ(
∥

∥

∥
T ( ~X)− θ

∥

∥

∥

2

) (here we assume thatθ takes values in some spaceΘ where the norm is defined).

The efficiency that can be reached by an estimator is capturedby the concept of Fisher information,
which we now define. Assume first to simplify thatθ ∈ R. Theobserved information is defined
by

J(θ) = −∂2l(θ)

∂θ2

wherel(θ) is thelog-likelihood, defined by

l(θ) = ln lik(θ) = ln f(x1, ..., xn|θ)

TheFisher information, or expected information is defined by

I(θ) = Eθ(J(θ)) = Eθ

(

−∂2l(θ)

∂θ2

)

For an i.i.d. modelX1, ..., Xn, l(θ) =
∑

i ln f1(xi|θ) and thusI(θ) = nI1(θ), whereI1(θ) is the
Fisher information for a one point sampleX1. The Cramer-Rao theorem says that the efficiency of
anyunbiasedestimator is lower bounded by1

I(θ)
. Further, under the conditions in Definition B.2.1,

the MLE for an i.i.d. sample is asymptotically maximally efficient, i.e. E
(∥

∥

∥
T ( ~X)− θ

∥

∥

∥

)

/I(θ)

tends to1 as the sample size goes to infinity.

In general, the parameterθ is multi-dimensional, i.e., varies in an open subsetΘ of Rk. ThenJ
andI are symmetric matrices defined by

[J(θ)]i,j = − ∂2l(θ)

∂θi∂θj

and

[I(θ)]i,j = −Eθ

(

∂2l(θ)

∂θi∂θj

)



320 APPENDIX B. PARAMETRIC ESTIMATION, LARGE SAMPLE THEORY

The Cramer-Rao lower bound justifies the name of “information”. The variance of the MLE is of
the order of the Fisher information: the higher the information, the more the sample tells us about
the unknown parameterθ. The Fisher information is not the same as entropy, used in information
theory. There are some (complicated) relations – see [30, Chapter 16].

In the next section we give a more accurate result, which can be used to give approximate confi-
dence intervals for large sample sizes.

B.2 ASYMPTOTIC CONFIDENCE I NTERVALS

Here we need to assume some regularity conditions. Assume the sample comes from an i.i.d.
sequence of lengthn and further, that the following regularity conditions are met.

DEFINITION B.2.1. Regularity Conditions for Maximum Likelihood Asymptotics[32].

1. The setΘ of values ofθ is compact (closed and bounded) and the true valueθ0 is not on the
boundary.

2. (identifiability) for different values ofθ, the densitiesf(~x|θ) are different.
3. (regularity of derivatives) There exist a neighborhoodB of θ0 and a constantK such that

for θ ∈ B and for all i, j, k, n : 1
n
Eθ(|∂3l ~X(θ)/∂θi∂θj∂θk|) ≤ K

4. For θ ∈ B the Fisher information has full rank
5. For θ ∈ B the interchanges of integration and derivation in

∫ ∂f(~x|θ)
∂θi

dx = ∂
∂θi

∫

f(~x|θ)dx
and

∫ ∂2f(x|θ)
∂θi∂θj

dx = ∂
∂θi

∫ ∂f(~x|θ)
∂θj

dx are valid

The following theorem is proven in [32].

THEOREM B.2.1. Under the conditions in Definition B.2.1, the MLE exists, converges almost
surely to the true value. FurtherI(θ)

1
2 (θ̂−θ) converges in distribution towards a standard normal

distribution, asn goes to infinity. It follows that, asymptotically:

1. the distribution of̂θ − θ can be approximated byN
(

0, I(θ̂)−1
)

or N
(

0, J(θ̂)−1
)

2. the distribution of2
(

l(θ̂)− l(θ)
)

can be approximated byχ2
k (wherek is the dimension of

Θ).

The quantity2
(

l(θ̂)− l(θ)
)

is called thelikelihood ratio statistic.

In the examples seen in this book, the regularity conditionsare always satisfied, as long as : the
true valueθ lies within the interior of its domain, the derivatives ofl(θ) are smooth (for example,
if the densityf(~x|θ) has derivatives at all orders) and the matricesJ(θ) andI(θ) have full rank. If
the regularity conditions hold, then we have an equivalent definition of Fisher information:

[I(θ)]i,j
def
= −Eθ

(

∂2l(θ)

∂θi∂θj

)

= Eθ

(

∂l(θ)

∂θi

∂l(θ)

∂θj

)

this follows from differentiating with respect toθ the identity
∫

f(xθ)dx = 1.

Item 2 is more approximate than item 1, but does not require tocompute the second derivative of
the likelihood.
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Theorem B.2.1 also holds for non-i.i.d. cases, as long as theFisher information goes to infinity
with the sample size.

EXAMPLE 2.3:FISHER INFORMATION OF NORMAL I .I .D. MODEL. Assume (Xi)i=1...n is i.i.d. normal
with mean µ and variance σ2. The observed information matrix is computed from the likelihood
function; we obtain:

J =

(

n
σ2

2n
σ3 (µ̂n − µ)

2n
σ3 (µ̂n − µ) −n

σ2 + 3
σ4

(

Sxx + n(µ̂n − µ)2
)

)

and the expected information matrix (Fisher’s information) is

I =

(

n
σ2 0
0 2n

σ2

)

The following corollary is used in practice. It follows immediately from the theorem.

COROLLARY B.2.1 (Asymptotic Confidence Intervals).Whenn is large, approximate confidence
intervals can be obtained as follows:

1. For theith coordinate ofθ, the interval is:θ̂i ± η

√

[

I(θ̂)−1
]

i,i
or θ̂± η

√

[

J(θ̂)−1
]

i,i
, where

N0,1(η) =
1+γ
2

(for example, withγ = 0.95, η = 1.96).

2. If θ is in R: the interval can be defined implicitly as{θ : l(θ̂) − ξ
2
≤ l(θ) ≤ l(θ̂)}, where

χ2
1(ξ) = γ. For example, withγ = 0.95, ξ = 3.84.

EXAMPLE 2.4:LAZY NORMAL I .I .D.. Assume our data comes from an i.i.d. normal model Xi,
i = 1, ...n. We compare the exact confidence interval for the mean (from Theorem 2.2.3) to the
approximate ones given by the corollary.

The MLE of (µ, σ) is (µ̂n, sn). The exact confidence interval is

µ̂n ± η′
σ̂n√
n

with σ̂2n = Sx,x/(n − 1) and tn−1(η
′) = 1+γ

2 .

Now we compute the approximate confidence interval obtained from the Fisher information. We
have

I(µ, σ)−1 =

(

σ2

n 0

0 σ2

2n

)

thus the distribution of (µ− µ̂n, σ− sn) is approximately normal with 0 mean and covariance matrix
(

σ2

n 0

0 σ2

2n

)

. It follows that µ − µ̂n is approximately N(0, s
2
n
n ), and an approximate confidence

interval is
µ̂n ± η

sn√
n

with sn = sx,x/n and N0,1(η) =
1+γ
2 .
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n 30 60 120
Exact 0.7964− 1.3443 0.8476− 1.2197 0.8875− 1.1454
Fisher 0.7847− 1.3162 0.8411− 1.2077 0.8840− 1.1401

Table B.1: Confidence Interval for σ for an i.i.d., normal sample of n data points by exact method and
asymptotic result with Fisher information (Corollary B.2.1). The values are the confidence bounds for the
ratio σ

σ̂n
where σ is the true value and σ̂n the estimated standard deviation as in Theorem 2.2.3.

Thus the use of Fisher information gives the same asymptotic interval for the mean as Theo-
rem 2.2.2. This is quite general: the use of Fisher information is the generalization of the large
sample asymptotic of Theorem 2.2.2.

We can also compare the approximate confidence interval for σ. The exact interval is given by
Theorem 2.2.3: with probability γ we have

ξ2
n− 1

≤ σ̂n2
σ2

≤ ξ1
n− 1

with χ2
n−1(ξ2) =

1−γ
2 and χ2

n−1(ξ1) =
1+γ
2 . Thus an exact confidence interval for σ is

σ̂n

[
√

n− 1

ξ1
,

√

n− 1

ξ2

]

(B.3)

With Fisher information, we have that σ − sn is approximately N
0,σ

2

2n

Thus with probability γ

|σ − sn| ≤ η
σ√
2n

with N0,1(η) =
1+γ
2 .

Divide by σ and obtain, after some algebra, that with probability γ:

1

1 + η√
2n

≤ σ

sn
≤ 1

1− η√
2n

Taking into account that sn =
√

n−1
n σ̂n, we obtain the approximate confidence interval for σ

σ̂n

[

√

n− 1

n

1

1 + η√
2n

,

√

n− 1

n

1

1− η√
2n

,

]

(B.4)

For n = 30, 60, 120 and γ = 0.95, the confidence intervals are as shown in Table B.1, where we
compare to exact values; the difference is negligible already for n = 30.

QUESTION B.2.1. Which of the following are random variables:θ̂, θ, l(θ), l(θ̂), J(θ), I(θ), J(θ̂),
I(θ̂) ? 1

1In the classical, non Bayesian framework:θ̂, l(θ), l(θ̂), J(θ), J(θ̂), I(θ̂) are random variables;θ andI(θ) are
non-random but unknown.
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B.3 CONFIDENCE I NTERVAL IN PRESENCE OF NUISANCE PA -
RAMETERS

In many cases, the parameter has the formθ = (µ, ν), and we are interested only inµ (for example,
for a normal model: the mean) while the remaining elementν, which still needs to be estimated,
is considered a nuisance (for example: the variance). In such cases, we can use the following
theorem to find confidence intervals.

THEOREM B.3.1 ([32]). Under the conditions in Definition B.2.1, assume thatΘ = M×N , where
M,N are open subsets ofRp,Rq. Thus the parameter isθ = (µ, ν) with µ ∈ M andν ∈ N (p is
the “dimension”, or number of degrees of freedom, ofµ).
For anyµ, let ν̂µ be the solution to

l(µ, ν̂µ) = max
ν

l(µ, ν)

and define theprofile log likelihood pl by

pl(µ)
def
= max

ν
l(µ, ν) = l(µ, ν̂µ)

Let (µ̂, ν̂) be the MLE. If (µ, ν) is the true value of the parameter, the distribution of
2 (pl(µ̂)− pl(µ)) tends toχ2

p.
An approximate confidence region forµ at levelγ is

{µ ∈ M : pl(µ) ≥ pl(µ̂)− 1

2
ξ}

whereχ2
p(ξ) = γ.

The theorem essentially says that we can find an approximate confidence interval for the param-
eter of interestµ by computing the profile log-likelihood for all values ofµ around the estimated
value. The estimated value is the one that maximizes the profile log-likelihood. The profile log
likelihood is obtained by fixing the parameter of interestµ to some arbitrary value and compute
the MLE for the other parameters. A confidence interval is obtained implicitly as the set of values
of µ for which the profile log likelihood is close to the maximum. In practice, all of this is done
numerically.

EXAMPLE 2.5:LAZY NORMAL I .I .D. REVISITED. Consider the log of the data in Figure 2.12, which
appears to be normal. The model is Yi ∼ i.i.d.Nµ,σ2 where Yi is the log of the data. Assume
we would like to compute a confidence interval for µ but are too lazy to apply the exact student
statistic in Theorem 2.2.3.

For any µ, we estimate the nuisance parameter σ, by maximizing the log-likelihood:

l(µ, σ) = −1

2

(

n lnσ2 +
1

σ2

∑

i

(Yi − µ)2

)

It comes

σ̂2µ =
1

n

∑

i

(Yi − µ)2 =
1

n
SY Y + (Ȳ − µ)2
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and thus
pl(µ)

def
= l(µ, σ̂µ) = −n

2
(ln σ̂2µ + 1)

On Figure B.1 we plot pl(µ). We find µ̂ = 1.510 as the point that maximizes pl(µ). A 95%-
confidence interval is obtained as the set {pl(µ) ≥ pl(µ̂)−1

23.84}. We obtain the interval [1.106, 1.915].
Compare to the exact confidence interval obtained with Theorem 2.2.3, which is equal to [1.103, 1.918]:
the difference is negligible.

QUESTION B.3.1. Find an analytical expression of the confidence interval obtained with the profile log
likelihood for this example and compare with the exact interval. 2
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Figure B.1: Profile log-likelihood for parameter µ of the log of the data in Figure 2.12. The confidence
interval for µ is obtained by application of Theorem B.3.1.

EXAMPLE 2.6:RE-SCALING . Consider the data in Figure 2.12, which does not appear to be
normal in natural scale, and for which we would like to do a Box-Cox transformation. We would
like a confidence interval for the exponent of the transformation.

The transformed data is Yi = bs(Xi), and the model now assumes that Yi is i.i.d. ∼ Nµ,σ2 . We
take the unknown parameter to be θ = (µ, σ, s). The distribution of Xi, under θ is:

fXi(x|θ) = b′s(x)fYi (bs(x)|µ, σ) = xs−1h(bs(x)|µ, σ2)
2The profile log likelihood method gives a confidence intervaldefined by

(µ̂− µ)2

SY Y

n

≤ e
η
n − 1 ≈ η

n

Let t
def
= µ̂−µ

√

SY Y
n(n−1)

be the student statistic. The asymptotic confidence interval can be rewritten as

t2 ≤ (n− 1)(e
η
n − 1) ≈ η(n− 1)

n

An exact confidence interval is
t2 ≤ ξ2

whereξ = tn−1(1− α/2). For largen, ξ2 ≈ η andn−1
n

≈ 1 so the two intervals are equivalent.
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where h(x|µ, σ2) is the density of the normal distribution with mean µ and variance σ2.

The log-likelihood is

l(µ, σ, s) = C − n lnσ +
∑

i

(

(s− 1) lnxi −
(bs(xi)− µ)2

2σ2

)

where C is some constant (independent of the parameter). For a fixed s it is maximized by the
MLE for a Gaussian sample

µ̂s =
1

n

∑

i

bs(xi)

σ̂2s =
1

n

∑

i

(bs(xi)− µ̂)2

We can use a numerical estimation to find the value of s that maximizes l(µ̂s, σ̂s, s); see Figure B.2
for a plot. The estimated value is ŝ = 0.0041, which gives µ̂ = 1.5236 and σ̂ = 2.0563.

We now give a confidence interval for s, using the asymptotic result in Theorem B.3.1. A 95%
confidence interval is readily obtained from Figure B.2, which gives the interval [−0.0782, 0.0841].

QUESTION B.3.2. Does the confidence interval justify the log transformation? 3

Alternatively, by Theorem B.2.1, we can approximate the distribution of θ̂− θ by a centered normal
distribution with covariance matrix J(θ̂)−1. After some algebra, we compute the Fisher information
matrix. We compute the second derivative of the log-likelihood, and estimate the Fisher informa-
tion by the observed information (i.e. the value of the second derivative at θ = θ̂). We find:

J =





23.7 0 −77.1
0 47.3 −146.9

77.1 −146.9 1291.1





and

J−1 =





0.0605 0.0173 0.0056
0.0173 0.0377 0.0053
0.0056 0.0053 0.0017





The last term of the matrix is an estimate of the variance of ŝ − s. The 0.95 confidence interval
obtained from a normal approximation is ŝ± 1.96

√
0.0017 = [−0.0770, 0.0852].

3Yes, since0 is in the interval.
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Figure B.2:Profile log-likelihood for Example 2.6, as a function of the Box-Cox exponent s. The maximum
likelihood estimator of s is the value that maximizes the profile log likelihood: a confidence interval for s is
the set of s for which the profile log likelihood is below the horizontal dashed line.
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C.1 NOTATION AND A FEW RESULTS OF L INEAR ALGEBRA

C.1.1 NOTATION

Unless otherwise specified, we view a vector inR
n as a column vector, and denote identifiers of

vectors with an arrow, as in

~X =







X1
...

Xn







The identity matrix is denoted withId.

Matrix transposition is denoted withT , so, for example~XT = (X1, . . . , Xn) and ~X = (X1, . . . , Xn)
T .

The inner product of ~u,~v ∈ R
n is

~uT~v = ~vT~u =

n
∑

i=1

uivi

Thenorm of ~u is, otherwise specified, the euclidian norm, i.e.

‖~u‖ =
√
~uT~u

An orthogonal matrix U is one that satisfies any one of the following equivalent properties:

1. its columns have unit norm and are orthogonal
2. its rows have unit norm and are orthogonal
3. UUT = Id
4. UTU = Id
5. U has an inverse andU−1 = UT .

C.1.2 LINEAR ALGEBRA

If M is a linear subspace ofRn, theorthogonal projection onM is the linear mapping,ΠM , from
R

n to itself such thatΠM(~x) is the element ofM that minimizes the distance to~x:

ΠM(~x) = argmin
~y∈M

‖~y − ~x‖ (C.1)

ΠM(~x) is also the unique element~y ∈ M such that~y − ~x is orthogonal toM . ΠM is symmetric
(ΠM = ΠT

M ) and idempotent (Π2
M = ΠM ).

ΠM can always be put in diagonal form as follows:

ΠM = UTDU

with D =



















1 0 · · ·
. . .

· · · 0 1 0 · · ·
· · · 0 · · ·

. . .
· · · 0



















(C.2)
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where the number of1s on the diagonal is the dimension ofM andU is an orthogonal matrix.

Let H be ann × p matrix , with p ≤ n, andM the linear space spanned by the columns of the
matrixH, i.e.

M = {~y ∈ R
n : ~y = H~z for some~z ∈ R

p}
If H has full rank (i.e. has rankp) thenHTH has an inverse and

ΠM = H(HTH)−1HT (C.3)

C.2 COVARIANCE M ATRIX OF A RANDOM VECTOR IN R
n

C.2.1 DEFINITIONS

Let ~X be a random vector with values inRn. If each of the componentsX1, . . . , Xn has a well
defined expectation, thenE( ~X) is defined as

E( ~X) =







E(X1)
...

E(Xn)







For any non-random matricesH andK (with appropriate dimensions such that the matrix products
are valid):

E(H ~XK) = HE( ~X)K (C.4)

Further, ifE(X2
i ) < ∞ for eachi = 1, . . . , n, thecovariance matrix of ~X is defined by

Ω = E
(

( ~X − ~µ)( ~X − ~µ)T
)

(C.5)

with ~µ = E( ~X). This is equivalent to

Ωi,j = cov(Xi, Xj)
def
= E ((Xi − E(Xi))(Xj − E(Xj))) (C.6)

for all i, j ∈ {1, . . . , n}.

Further, for any~u,~v ∈ R
n:

E

(

(~uT ( ~X − ~µ))(~vT ( ~X − ~µ))
)

= ~uTΩ~v (C.7)

Also
Ωi,i = var(Xi) (C.8)

If ~X and~Y are random vectors inRn andRp with a well covariance matrices, thecross covari-
ance matrix of X andY is then× p matrix defined by

Γ = E
(

( ~X − ~µ)(~Y − ~ν)T
)

(C.9)

with ~µ = E( ~X) andE(~Y ) = ~ν.
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C.2.2 PROPERTIES OF COVARIANCE M ATRIX

The covariance matrix is symmetric (Ω = ΩT ) andpositive semi-definite. The latter means that
uTΩu ≥ 0 for all u ∈ R

n, which follows immediately from Eq.(C.7).

If ~X ′ = ~X + ν whereν ∈ R
n is a non-random vector, then the covariance matrices of~X ′ and ~X

are identical.

If ~X ′ = AX with ~X ′ a random vector inRn′
andA a non randomn′×n matrix, then the covariance

matrixΩ′ of ~X ′ is
Ω′ = AΩAT (C.10)

Any covariance matrix can be put in standard diagonal form asfollows:

Ω = UT



















λ1 0 · · ·
. . .

· · · 0 λr 0 · · ·
· · · 0 · · ·

. . .
· · · 0



















U (C.11)

whereU is an orthogonal matrix (UT = U−1), r is the rank ofΩ andλ1 ≥ . . . ≥ λr > 0.

It follows from this representation that the equation~xTΩ~x = 0 has a non zero solution (~x 6= ~0) if
and only ifΩ has full rank.

C.2.3 CHOLESKI ’ S FACTORIZATION

Eq.(C.11) can be replaced by a computationally much less expensive reduction, calledCholeski’s
Factorization. This is a polynomial time algorithm for finding a lower triangular matrixL such
thatΩ = LLT . Choleski’s factorization applies to positive semi-definite matrices and is readily
available in many software packages.

C.2.4 DEGREES OF FREEDOM

Let V = span(Ω) be the linear sub-space ofRn spanned by the columns (or rows, sinceΩ is
symmetric) ofΩ. Recall that~X is not necessarily gaussian.

PROPOSITION C.2.1. ~X is constrained to the affine sub-space parallel toV that contains~µ =
E( ~X), i.e. ~X − ~µ ∈ V with probability 1.

It follows that the number ofdegrees of freedom of ~X (defined in this case as the smallest
dimension of an affine space that~X can be imbedded in) is equal to the dimension ofV , namely,
the rank ofΩ. In particular, ifΩ does not have full rank,V has zero mass (its Lebesgue measure is
0) and the integral of any function onV is 0. Thus, it is impossible that~X has a probability density
function. Conversely:

COROLLARY C.2.1. If ~X has a probability density function (pdf) then its covariance matrixΩ is
invertible.
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EXAMPLE 3.1: In R
3, let the covariance matrix of ~X be

Ω =





a 0 a
0 b b
a b a+ b



 (C.12)

where a, b are positive constants. The rank is r = 2. The linear space generated by the columns
of Ω is the plane defined by x1 + x2 − x3 = 0. Thus the random vector ~X = (X1,X2,X3)

T is in the
plane defined by X1 +X2 −X3 = µ1 + µ2 − µ3 where ~µ = (µ1, µ2, µ3)

T .

C.3 GAUSSIAN RANDOM VECTOR

C.3.1 DEFINITION AND M AIN PROPERTIES

DEFINITION C.3.1. A random vector~X with values inRn is a gaussian vector if any of the
following is true:

1. For any non randomu ∈ R
n, uT ~X is a normal random variable.

2. ~X is a non random linear combination ofp iid normal random variables, for somep ∈ N

3. The expectation~µ and covariance matrixΩ of ~X are well defined and itscharacteristic
function is

φ ~X(~ω)
def
= E(ej~ω

T ~X) = ej~ω
T ~µ− 1

2
~ωTΩ~ω (C.13)

for all ~ω ∈ R
n

EXAMPLE: The vector (ǫ1, . . . , ǫn)T with ǫi ∼ N0,σ2 , and σ 6= 0 is a gaussian vector, called white
gaussian noise. It has ~µ = 0 and Ω = σ2Id.

The vector

~X =





√
aǫ1√
bǫ2√

aǫ1 +
√
bǫ2





is gaussian with ~µ = 0 and Ω as in Eq.(C.12).

The constant (non-random) vector ~X = ~µ is gaussian with covariance matrix Ω = 0.

It follows immediately that any (non-random) linear combination of gaussian vectors is gaussian.
In particular, if ~X is gaussian andA is a non random matrix, thenA ~X is gaussian.

Gaussian vectors are entirely defined by their first and second order properties. In particular:

THEOREM C.3.1 (Independence equals Non-Correlation).Let ~X [resp. ~Y ] be a gaussian random
vector inRn [resp. Rp]. ~X and ~Y are independent if and only if their cross-covariance matrix is
0, i.e.

cov(Xi, Yj) = 0 for all i = 1, . . . , n, j = 1, . . . , p
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Note that this is special to gaussian vectors. For non gaussian random vectors, independence
implies non correlation, but the converse may not be true.

THEOREM C.3.2 (Density).If Ω is invertible, ~X has a density, given by

f ~X(~x) =
1

√

(2π)n det Ω
e−

1
2
(~x−~µ)TΩ−1(~x−~µ)

Conversely, we know from Corollary C.2.1 that ifΩ is not invertible (as in the previous example),
~X cannot have a density. A frequent situation whereΩ is invertible is the following.

PROPOSITIONC.3.1. Let ~X = L~ǫ where ~X = (X1, . . . , Xp)
T , ǫ = (ǫ1, . . . , ǫn)

T is white gaussian
noise andL is a non-randomp × n matrix. The vector~X is gaussian with covariance matrix
Ω = LLT . The rank ofΩ is equal to the rank ofL.

We use this properties in the following case,which arises inthe analysis of ARMA and ARIMA
processes.

COROLLARY C.3.1.Letǫi, i = 1, . . . , n be white gaussian noise. Letm ≤ n andXn−m+1, . . . , Xn

be defined by

Xi =
i
∑

j=1

ci,jǫj for i = m+ 1, . . . , n (C.14)

with ci,i 6= 0. The covariance matrix of~X = (Xn−m+1, . . . , Xn) is invertible.

C.3.2 DIAGONAL FORM

Let whereU is the orthogonal transformation in Eq.(C.11) and define~X ′ = U ~X. The covariance
matrix of ~X ′ is

Ω′ =



















λ1 0 · · ·
. . .

· · · 0 λr 0 · · ·
· · · 0 · · ·

. . .
· · · 0



















(C.15)

thusX ′
r+1, . . . , X

′
n have0 variance and are thus non-random, andX ′

i, X
′
j are independent (as

cov(X ′
i, X

′
j) = 0 for i 6= j).

Since ~X = UTX ′, it follows that any gaussian random vector is a linear combination of exactly
r independent normal random variables, wherer is the rank of its covariance matrix. In practice,
one obtains such a representation by means of Choleski’s factorization. Let~ǫ be gaussian white
noise sequence with unit variance and let~Y = L~ǫ. Then~Y is a gaussian vector with covariance
matrixΩ and0 expectation (and~Y +~µ is a gaussian vector with expectation~µ, for any non random
vector~µ). This is used to simulate a random vector with any desired covariance matrix.

EXAMPLE: One Choleski fatorization of Ω in Eq.(C.12) is Ω = LLT with

L =





√
a 0 0

0
√
b 0√

a
√
b 0




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Let ǫ = (ǫ1, ǫ2, ǫ3) be gaussian white noise with unit variance, i.e. such that the covariance matrix
of ǫ is equal to Id. Let ~Y = L~ǫ+ ~µ, i.e.

Y1 = µ1 +
√
aǫ1

Y2 = µ2 +
√
bǫ2

Y3 = µ3 +
√
aǫ1 +

√
bǫ2

then ~Y has covariance matrix Ω and expectation ~µ. This gives a means to simulate a gaussian
vector with expectation ~µ and covariance matrix Ω.

Note that we find, as seen in Example C.12, that Y1 + Y2 − Y3 is a (non random) constant.

C.4 FOUNDATIONS OF ANOVA

C.4.1 HOMOSCEDASTIC GAUSSIAN VECTOR

DEFINITION C.4.1.A gaussian vector is calledHomoscedastic with varianceσ2 if its covariance
matrix isσ2Id for someσ > 0. The expectation~µ is not necessarily0.

Let ~X = (X1, X2, ..., Xn)
T . This definition is equivalent to saying thatXi = µi + ǫi, with µi

non-random andǫi ∼ iid N0,σ2 .

A homoscedastic gaussian vector always has a density (sinceits covariance matrix is invertible),
given by

f ~X(~x) =
1

(2π)
n
2 σn

e−
1

2σ2 ‖~x−~µ‖2 (C.16)

Homoscedasticity is preserved by orthogonal transformations:

THEOREM C.4.1.LetU be an orthogonal matrix (i.e.U−1 = UT ). If ~X is homoscedastic gaussian
and~Y = U ~X, then~Y is also homoscedastic gaussian with same variance.

The following theorem underlies the ANOVA theory:

THEOREM C.4.2. Let ~X be homoscedastic gaussian inRn, ~µ = E( ~X) andM some linear sub-
space ofRn, of dimensionk. LetΠM be the orthogonal projection onM .

1. ΠM
~X and~Y = ~X − ΠM

~X are independent
2. ‖ΠM

~X −ΠM~µ‖2 ∼ χ2
k

3. ‖~Y − ~µ+ΠM~µ‖2 ∼ χ2
n−k

whereχ2
n is the Chi-square distribution withn degrees of freeedom.
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C.4.2 MAXIMUM L IKELIHOOD ESTIMATION FOR HOMOSCEDASTIC GAUS-
SIAN VECTORS

THEOREM C.4.3 (ANOVA). Let ~X be homoscedastic gaussian inRn with varianceσ2 and ex-
pectation~µ. Assume that~µ is restricted to a linear subspaceM of Rn; let k = dimM . We are
interested in estimating the true values of~µ andσ2.

1. The MLE of(~µ, σ2) is µ̂ = ΠM
~X, σ̂2 = 1

n
‖ ~X − µ̂‖2.

2. E(µ̂) = ~µ = E( ~X)

3. ~X−µ̂ andµ̂ are independent gaussian random vectors and‖ ~X−~µ‖2 = ‖ ~X−µ̂‖2+‖~µ−µ̂‖2.
4. ‖ ~X − µ̂‖2 ∼ χ2

n−kσ
2 and‖µ̂− ~µ‖2 ∼ χ2

kσ
2

5. (Fisher distribution)
‖µ̂−~µ‖2

k
‖ ~X−µ̂‖2

n−k

∼ Fk,n−k

A special case is the well known estimation for iid normal random variables, used in Theo-
rem 2.2.3:

COROLLARY C.4.1. Let (Xi)i=1...n ∼ N(µ, σ2).

1. The MLE of(µ, σ) is µ̂ = X̄
def
= 1

n

∑n
i=1Xi, σ̂2 = 1

n
SXX , withSXX

def
=
∑n

i=1(Xi − X̄)2.
2. SXX andX̄ are independent and

∑

i(Xi − µ)2 = SXX + n(X̄ − µ)2.
3. SXX ∼ χ2

n−1σ
2 andX̄ ∼ N(µ, σ2

n
).

4. (Student distribution):
√
n(X̄−µ)
√

SXX
n−1

∼ tn−1

C.5 CONDITIONAL GAUSSIAN DISTRIBUTION

C.5.1 SCHUR COMPLEMENT

Let M be a square matrix, decomposed in blocks asM =

(

A B
C D

)

whereA andD are square

matrices (butB andC need not be square) andA is invertible. TheSchur complement of A in
M is defined as

S = D − CA−1B

It has the following properties.

1. det(M) = det(A) det(S);

2. If M or S is invertible then both are andM−1 has the form

(

⋆ ⋆
⋆ S−1

)

, where⋆ stands for

unspecified blocks of appropriate dimensions;
3. If M is symmetrical [resp. positive definite, positive semi-definite] so isS.
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C.5.2 DISTRIBUTION OF ~X1 GIVEN ~X2

Let ~X be a random vector inRn1+n2 and let ~X =

(

~X1

~X2

)

, with ~Xi in R
ni, i = 1, 2. We are

interested in the conditional distribution of~X2 given that~X1 = ~x1 (this is typically for prediction
purposes). By general results of probability theory, this conditional distribution is well defined; if
~X is gaussian, it turns out that this conditional distribution is also gaussian, as explained next.

Let ~µ2 = E( ~X2), ~µ1 = E( ~X1) and decompose the covariance matrix of~X into blocks as follows.

Ω =

(

Ω1,1 Ω1,2

Ω2,1 Ω2,2

)

with Ωi,j (cross-covariance matrix) defined by

Ωi,j = E(( ~Xi − ~µi)( ~Xj − ~µj)
T ) i, j = 1, 2

Note thatΩ2,1 = ΩT
1,2 andX2 andX1 are independent if and only ifΩ2,1 = 0.

THEOREM C.5.1 ([32]). Let ~X be a gaussian random vector inRn1+n2 . The conditional distribu-
tion of ~X2 given that~X1 = ~x1 is gaussian. IfΩ1,1 is invertible, its expectation is~µ2+Ω2,1Ω

−1
1,1(~x1−

~µ1) and its covariance matrix is the Schur complement of the covariance matrixΩ1,1 of ~X1 in
the covariance matrixΩ of ( ~X1, ~X2). In particular, the conditional covariance of~X2 given that
~X1 = ~x1 does not depend on~x1.

The property that the conditional covariance matrix is independent of~x1 holds true only for gaus-
sian vectors, in general. By the properties of covariance matrices, ifΩ is invertible, thenΩ1,1 also
(this follows from the last sentence in Section C.2.2). In this case, by the properties of the Schur
complement, the conditional covariance matrix also has full rank.

C.5.3 PARTIAL CORRELATION

Theorem C.5.1 provides a formula for the conditional covariance. Though it is true only for gaus-
sian vectors, it is used as the basis for the definition ofpartial covariance andpartial correlation ,
used in time series analysis. Informally they quantify the residual correlation betweenX1 andXn

when we know the values ofX2, ..., Xn−1.

DEFINITION C.5.1 (Partial Covariance and Correlation, Gaussian case). Let ~X = (X1, X2, ..., Xn−1, Xn)
T

be a gaussian vector such that its covariance matrix is invertible. Let

Γ =

(

γ1,1 γ1,n
γ1,n γn,n

)

be the covariance matrix of the conditional distribution of(X1, Xn) given(X2 = x2, . . . , Xn−1 =
xn−1). By Theorem C.5.1,Γ is independent ofx2, . . . , xn−1. Thepartial covariance of X1 and
Xn is γ1,n and thepartial correlation of X1 andXn is

r1,n = γ1,n/
√
γ1,1γn,n
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If X1, ..., Xn is a Markov chain, andn > 1, thenXn is independent ofX1, givenX2, ..., Xn−1. In
such a case, the partial correlation ofX1 andXn is 0 (but the covariance ofX1 andXn is not0).
Partial correlation can be used to test if a Markov chain model is adequate. The following theorem
gives a simple way to compute partial correlation.

THEOREM C.5.2 ([32]). Let ~X = (X1, X2, ..., Xn−1, Xn)
T be a gaussian vector such that its

covariance matrixΩ is invertible. The partial correlation ofX1 andXn is given by

r1,n =
−τ1,n√
τ1,1τn,n

whereτi,j is the(i, j)th term ofΩ−1.

The classical definition of partial correlation consists inextending Theorem C.5.2:

DEFINITION C.5.2 (Partial Correlation).Let ~X = (X1, X2, ..., Xn−1, Xn)
T be a random vector

such that its covariance matrixΩ is well defined and is invertible. Thepartial correlation of X1

andXn is defined as

r1,n =
−τ1,n√
τ1,1τn,n

whereτi,j is the(i, j)th term ofΩ−1.

C.6 PROOFS

PROPOSITION C.2.1 Let v ∈ R
n be in the kernel ofΩ, i.e.Ωv = 0 and letZ = vT (X − µ). We have

E(Z2) = E
(

vT (X − µ)(X − µ)T v
)

= vTΩv = 0

thusZ = 0 w.p. 1, i.e.X − µ is orthogonal to the kernel ofΩ.

SinceΩ is symmetric, the set of vectors that are orthogonal to its kernel isV , thusX − µ ∈ V .

PROPOSITION C.3.1 X is gaussian with covariance matrixLLT by Eq.(C.10). We now show that the rank
of LLT is equal to the rank ofLT , by showing thatLLT andLT have same null space. Indeed, ifLTx = 0 then
LLTx = 0. Conversely, ifLLTx = 0 thenxTLLTx =

∥

∥LTx
∥

∥

2
= 0 thusLTx = 0. Finally, the rank of a matrix is

equal to that of its transpose.

THEOREM C.4.1 The covariance matrix ofU ~X is U(σ2Id)UT = σ2Id.

THEOREM C.4.2 Let ~X ′ = ~x − µ and~Y ′ = ~X ′ − ΠM
~X ′. By linearity ofΠM , ΠM

~X ′ andΠM
~X [resp. ~Y ′

and~Y ] differ by a constant (non-random) vector, thus the cross-covarianceΓ of ~X and~Y is that of ~X ′ and~Y ′. Thus

Γ = E(ΠM
~X ′~Y ′T ) = E

(

ΠM
~X ′( ~X ′ −ΠM

~X ′)T
)

= E

(

ΠM
~X ′ ~X ′T −ΠM

~X ′ ~X ′TΠT
M

)

= ΠME

(

~X ′ ~X ′T
)

−ΠME

(

~X ′ ~X ′T
)

ΠT
M
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NowE

(

~X ′ ~X ′T
)

= σ2Id thus

Γ = σ2ΠM − σ2ΠMΠT
M = 0

sinceΠM = ΠT
M andΠ2

M = ΠM . By Theorem C.3.1,ΠM
~X and~Y are independent. This proves item 1.

LetZ = ΠMX −ΠMµ. PutΠM in diagonal form as in Eq.(C.2) and let̃X = UT (~x− µ) andZ̃ = UTZ, so that

Z̃ = DX̃

thus

Z̃i = X̃i for i = 1 . . .m

Z̃i = 0 for i = m+ 1 . . . n

Note that
∥

∥

∥Z̃
∥

∥

∥ =
∥

∥

∥ΠM
~X −ΠM~µ

∥

∥

∥ (C.17)

sinceU is orthogonal. NowX̃ is homoscedastic gaussian with 0 expectation and varianceσ2 (Theorem C.4.1), thus
X̃i ∼ iid N0,σ2 , and finally

∥

∥

∥ΠM
~X −ΠM~µ

∥

∥

∥

2

=

m
∑

i=1

X̃2
i

This proves item 2, and similarly, item 3.

THEOREM C.4.3 The log likelihood of an observation~x = (x1, . . . , xn)
T is

l~x(~µ, σ) = −N
2
ln(2π)−N ln(σ)− 1

2σ2

n
∑

i=1

(xr − µr)
2

= −N
2
ln(2π)−N ln(σ)− 1

2σ2
‖~x− ~µ‖2 (C.18)

For a givenσ, by Eq.(C.1), the log-likelihood is maximized for~µ = µ̂ = ΠM (~x), which is independent ofσ. Let
~µ = µ̂ in Eq.(C.18) and maximize with respect toσ, this gives the first item in the theorem. The rest follows from
Theorem C.4.2.
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APPENDIX D

DIGITAL FILTERS

Here we review all we need to know for Chapter 5 about causal digital filters. It is a very small
subset of signal processing, without any Fourier transform. See for example [83, 75] for a
complete and traditional course.
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D.1 CALCULUS OF DIGITAL FILTERS

D.1.1 BACKSHIFT OPERATOR

We consider data sequences of finite, but arbitrary length and callS the set of all such sequences
(i.e. S =

⋃∞
n=1R

n). We denote with length(X) the number of elements in the sequenceX.

Thebackshift operator is the mappingB from S to itself defined by:

length(BX) = length(X)

(BX)1 = 0

(BX)t = Xt−1 t = 2, ..., length(X)

We usually view a sequenceX ∈ S as a column vector, so that we can write:

B









X1

X2

. . .
Xn









=









0
X1

. . .
Xn−1









(D.1)

when length(X) = n.

If we know that length(X) ≤ n, we can express the backshift operator as a matrix multiplication:

BX = BnX (D.2)

whereBn is then× n matrix:

Bn =















0 0 · · · 0
1 0 0

0 1 0
...

...
. . . 0 0

0 · · · 0 1 0















Obviously, ifn = length(X) then applyingB n times toX gives a sequence of0s; in matrix form:

(Bn)
n = 0 (D.3)

D.1.2 FILTERS

DEFINITION D.1.1. A filter (also called “causal filter”, or “realizable filter”) is any mapping, say
F , fromS to itself that has the following properties.

1. A sequence of lengthn is mapped to a sequence of same length.
2. There exists an infinite sequence of numbershm, m = 0, 1, 2, ... (called the filter’simpulse

response) such that for anyX ∈ S

(FX)t = h0Xt + h1Xt−1 + ... + ht−1X1 t = 1, ..., length(X) (D.4)
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EXAMPLE: The backshift operator B is the filter with h0 = 0, h1 = 1, h2 = h3 = · · · = 0.

The identical mapping, Id, is the filter with h0 = 1, h1 = h2 = . . . = 0.

The de-seasonalizing filter of order s, Rs, is the filter with h0 = . . . = hs−1 = 1, hm = 0 for m ≥ s.

The differencing filter at lag s, ∆s, is the filter with h0 = 1, hs = −1 and hm = 0 for m 6= 0 and
m 6= s.

Eq.(D.4) can also be expressed as

F =

∞
∑

m=0

hmB
m (D.5)

whereB0 = Id. Note that the summation is only apparently infinite, since for a sequenceX in S
of lengthn we haveFX =

∑n−1
m=0 hmB

mX.

In matrix form, if we know that length(X) ≤ n we can write Eq.(D.4) as

FX =

















h0 0 · · · 0 0

h1 h0
...

...

h2 h1
. . .

...
...

. . . h0 0
hn−1 hn−2 · · · h1 h0

















X (D.6)

A filter is calledFinite Impulse Response (FIR) if hn = 0 for n large enough. Otherwise, it is
calledInfinite Impulse Response.

D.1.3 IMPULSE RESPONSE AND DIRAC SEQUENCE

Define theDirac sequence of lengthn

δn =









1
0
. . .
0









(D.7)

The impulse response of a filter satisfies









h0

h1

. . .
hn−1









= Fδn (D.8)

This is used to compute the impulse response if we know some algorithm to computeFX for any
X.
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D.1.4 COMPOSITION OF FILTERS , COMMUTATIVITY

LetF andF ′ be filters. The composition ofF andF ′, denoted withFF ′, is defined as the mapping
from S to S obtained by applyingF ′ first, thenF , i.e. such that for any sequenceX

(FF ′)(X) = F (F ′(X)) (D.9)

It can easily be seen thatFF ′ is a filter. Furthermore,the composition of filters commute, i.e.

FF ′ = F ′F (D.10)

The firstn terms of the impulse response ofFF ′ can be obtained by








g0
g1
. . .
gn−1









= (FF ′)δn = F (F ′δn) = (F ′F )δn = F ′(Fδn) (D.11)

EXAMPLE: Let us compute the impulse response of FF ′ when F = Id − B (differencing at lag 1)
and F ′ = Id−B5 (differencing at lag 5). Let n be large:

F ′δn = (1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, · · ·)T
F (F ′δn) = (1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0, · · ·)T

thus the impulse response g of FF ′ is given by






g0 = g6 = 1
g1 = g5 = −1
else gm = 0

(D.12)

Alternatively, we can compute in the reverse order and obtain the same result:

Fδn = (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·)T
F ′(Fδn) = (1,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0, · · ·)T

D.1.5 INVERSE OF FILTER

Since the matrix in Eq.(D.6) is triangular, it is invertibleif and only if its diagonal terms are non
zero, i.e. ifh0 6= 0, whereh0 is the first term of its impulse response. If this holds, it canalso
be seen that the reverse mappingF−1 is a filter, i.e it satisfies the conditions in Definition (D.1.1).
Thusa filter F is invertible if and only if h0 6= 0 .

For example, the inverse filter of the filter with impulse responsehm = 1 for m ≥ 0 (integration
filter) is the filter with impulse responseh0 = 1, h1 = −1, hm = 0 for m ≥ 2 (differencing filter).
This can also be written as

( ∞
∑

n=0

Bn

)−1

= Id− B (D.13)
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D.1.6 AR(∞) REPRESENTATION OF I NVERTIBLE FILTER

LetF be an invertible filter andY = FX. Let g0, g1, . . . be the impulse response ofF−1. We have
X = F−1Y thus fort ≥ 1

Xt = g0Yt + g1Yt−1 + . . .+ gt−1Y1 (D.14)

Note thatg0 = 1/h0, thus
Yt = c0Xt + c1Yt−1 + . . .+ ct−1Y1 (D.15)

with
{

c0 =
1
g0

= h0

cm = −gm
g0

= −gmh0 for m = 1, 2, . . .
(D.16)

The sequencec0, c1, c2, . . . used in Eq.(D.15) is called theAR(∞) 1 representation ofF . It can
be used to compute the outputYt as a function of the past output and the current inputXt. This
applies to any invertible filter.

If F−1 is FIR, then there is someq such thatcm = 0 for m ≥ q. The filterF is calledauto-
regressive of orderq (AR(q)).

D.1.7 CALCULUS OF FILTERS

When the filterF ′ is invertible, the compositionF (F ′−1) is also notedF
F ′ . There is no ambiguity

since composition is commutative, namely

F

F ′ = F (F ′−1) = (F ′−1)F (D.17)

We have thus defined the product and division of filters. It is straightforward to see that the addition
and subtraction of filters are also filters. For example, the filter F + F ′ has impulse response
hm + h′

m and the filter−F has impulse response−hm.

It is customary to denote the identity filter with1. With this convention, we can write the differ-
encing filters as

∆s = 1− Bs (D.18)

and the de-seasonalizing filter as

Rs = 1 +B + . . .+Bs−1 (D.19)

We can also rewrite Eq.(D.13) as
1

∑∞
n=0B

n
= 1− B

or
1

1− B
=

∞
∑

n=0

Bn (D.20)

1AR stands for “Auto-Regressive”
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The usual manipulations of fractions work as expected, and can be combined with the usual rules
for addition, subtraction,multiplication and division (as long as the division is valid, i.e. the filter
at the denominator is invertible). Thus, ifF andF ′ are invertible, the inverse ofF

F ′ is F ′

F
:

1
F
F ′

=
F ′

F

EXAMPLE: We can recover Eq.(D.12) as follows:

FF ′ = (1−B)(1−B5) = 1−B −B5 +B6

EXAMPLE:

∆5

∆1
=

1−B5

1−B
=

(1−B)(1 +B +B2 +B3 +B4)

1−B
= 1 +B +B2 +B3 +B4 = R5 (D.21)

If F andG are FIR, thenFG, F +G andF −G are also FIR, butF/G is (generally) not.

D.1.8 z TRANSFORM

It is customary in signal processing to manipulate transforms rather than the filters themselves. By
definition, theTransfer Function of the filter with impulse responseh is the power series

H(z) = h0z + h1z
−1 + h1z

−2 + ... (D.22)

i.e. it is thez transform of the impulse response. This is considered as a formal series, i.e. there
is no worry about its convergence for any value ofz. Note the use ofz−1 (customary in signal
processing) rather thanz (customary in maths).

It follows from the rules on the calculus of filters that usingtransfer functions is the same as
replacingB by z−1 everywhere.

EXAMPLE: The transfer function of the filter

F =
Q0 +Q1B + · · ·+QqB

q

P0 + P1B + · · · + PpBp
(D.23)

with P0 6= 0 is precisely

H(z) =
Q0 +Q1z

−1 + · · ·+Qqz
−q

P0 + P1z−1 + · · ·+ Ppz−p
(D.24)

You may find it more convenient to usez-transforms and thus transfer functions if you do not
feel comfortable manipulating the backshift operatorB (and vice-versa: if you do not like transfer
functions, use the backshift operator instead).



D.2. STABILITY 345

D.2 STABILITY

A filter F with impulse responsehn is calledstable2 iff

∞
∑

n=0

|hn| < +∞ (D.25)

For a sequenceX ∈ S, let ‖X‖∞ = max
t=1...length(X)

|Xt|. If F is stable andY = FX then

‖Y ‖∞ ≤ M ‖X‖∞ (D.26)

whereM =
∑∞

n=0 |hn|. In other words, if the input to the filter has a bounded magnitude, so does
the output. In contrast, ifF is not stable, the output of the filter may become infinitely large as
the length of the input increases. A stable filter has an impulse responsehn that decays quickly as
n → ∞.

For example, the filter in Eq.(D.21) is stable (as is any FIR filter) and the filter in Eq.(D.20) is not
stable.

In practice, if a filter is not stable, we may experience numerical problems when computing its
output (Figure D.1).

D.3 FILTERS WITH RATIONAL TRANSFER FUNCTION

D.3.1 DEFINITION

Filters with Rational Transfer Function are filters of the form in Eq.(D.23), or, equivalently, whose
transfer function has the form in Eq.(D.24), withP0 6= 0. Many filters used in practice are of this
type. Note that

Q0 +Q1B + · · ·+QqB
q

P0 + P1B + · · ·+ PpBp
=

Q′
0 +Q′

1B + · · ·+Q′
qB

q

1 + P ′
1B + · · ·+ P ′

pB
p

with Q′
m = Qm

P0
andP ′

m = Pm

P0
, so we can always assume thatP0 = 1.

A filter with rational transfer function can always be expressed as aLinear constant-coefficient
difference equation. Indeed, considerF as in Eq.(D.23) withP0 6= 0 and letY = FX. Recall
that this is equivalent to

Y = (P0 + P1B + · · ·+ PpB
p)−1 (Q0 +Q1B + · · ·+QqB

q)X

i.e.
(P0 + P1B + · · ·+ PpB

p) Y = (Q0 +Q1B + · · ·+QqB
q)X

Thus fort = 1 . . . length(X):

P0Yt + P1Yt−1 + · · ·+ PpYt−p = Q0Xt +Q1Xt−1 + · · ·+QqXt−q (D.27)

with the usual conventionYt = Xt = 0 for t ≤ 0. SinceP0 6= 0, this equation can be used to
iteratively computeY1 = Q0X1/P0, Y2 = (Q0X2 +Q1X1)/P0 etc.

2or Bounded Input, Bounded Output (BIBO) -stable
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The impulse responseof F is usually computed by applyingfilter to a Dirac sequence. It may
also be computed by Taylor series expansion, using classical rules for Taylor series of functions of
one real variable.

EXAMPLE: T.he impulse response of the filter G = 1−2B
1−B2 is obtained as follows. We use the rule

1
1−x = 1 + x+ x2 + . . . and obtain:

1− 2B

1−B2
= (1− 2B)

(

1 +B2 +B4 + . . .
)

= 1 +B2 +B4 +B6 + . . .− 2B − 2B3 − 2B5 − . . .

= 1− 2B +B2 − 2B3 +B4 − 2B5 . . .

thus the impulse response of G is (1,−2, 1,−2, 1,−2 . . .).

Note that, in general, a filter with rational transfer function has an infinite impulse response.

The inverseof the filterF exists ifQ0 6= 0 and is

F−1 =
P0 + P1B + · · ·+ PpB

p

Q0 +Q1B + · · ·+QqBq
(D.28)

i.e. is obtained by exchanging numerator and denominator.

D.3.2 POLES AND ZEROES

By definition, thePoles of a filter with rational transfer functions are the values ofz, other than0,
for which the transfer function is not defined. If the transfer function is in a form that cannot be
simplified3 the poles are the zeroes of the denominator. Similarly, theZeroes of the filter are the
values ofz 6= 0 such thatH(z) = 0.

A filter with rational transfer function is stable iff it has no pole or itspoles are all inside the
unit disk , i.e. have modulus less than 1. This follows from the definition of stability and standard
results on the theory of Taylor series of rational fractionsin one variable.

The location of zeroes is useful to assess stability of the reverse filter. Indeed, if the filter is
invertible (i.e.Q0 6= 0), then the inverse filter is stable iff all zeroes of the original filter are within
the unit disk.

EXAMPLE 4.1:NUMERICAL STABILITY OF INVERSE FILTER. Consider the filter

F =
0.1 + 0.2B + 0.3B2

1− 0.2B
(D.29)

We apply the filter to an input sequenceX (thin line on Figure D.1) and obtain the output sequence
Y (thick line). F is a filter with rational transfer function, and is equivalent to the linear constant-
coefficient difference equation:

Yt = 0.1Xt + 0.2Xt−1 + 0.3Xt−2 + 0.2Yt−1

3i.e. of the formp(z−1)
q(z−1) wherep, q are polynomials with no common root
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Figure D.1:Numerical illustration of the filter F = 0.1+0.2B+0.3B2

1−0.2B . Top: a random input sequence X (thin
line), the corresponding output Y = FX (thick line), obtained by the matlab command Y=filter([0.1
0.2 0.3],[1 -0.2],X) and the reconstructed input F−1Y obtained by filter([1 -0.2],[0.1
0.2 0.3],Y) (small disks). Bottom left: poles (x) and zeroes (o) of F , obtained by zplane([0.1 0.2
0.3],[1 -0.2]). The filter F is stable (poles within unit disk) but F−1 is not (at least one zero out-
side the unit disk). Bottom middle and right: impulse response of F (h=filter([0.1 0.2 0.3],[1
-0.2],D), where D is a dirac sequence) and F−1 (h=filter([1 -0.2],[0.1 0.2 0.3],D)).
Reconstruction of X as F−1Y fails for t ≥ 60; this is a symptom of F−1 being unstable.
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Figure D.2:Numerical illustration of the filter G = G = 0.5+ 0.3B + 0.2B2. Top: a random input sequence
X (thin line), the corresponding output Z = GX (thick line) and the reconstructed input G−1Z (small disks).
Bottom left: poles (x) and zeroes (o) of G. Depending on the conventions, the origin may or may not be
considered as a pole. With our conversion, there is no pole but the software used shows a pole of multiplicity
2 at 0. The filter G and its inverse are stable (poles and zeroes are within the unit disk). Bottom middle and
right: impulse response of G and G−1. Reconstruction works perfectly.
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The poles are the zeroes of 1− 0.2z−1, which are the same as the zeroes of z − 0.2 (i.e z = 0.2).

The poles lie inside the unit disk, so the filter is stable. Its impulse response quickly decays to 0.
The filter is invertible but the inverse is not stable as the zeroes are not all inside the unit disk. The
impulse response of the inverse filter does not decay. We also compute F−1(Y ) which should, in
theory, be equal to X (small disks); however, the inverse filter in not stable and can be difficult to
apply in practice; we see indeed that rounding errors become significant for t ≥ 60.

If we consider instead G = 0.5 + 0.3B + 0.2B2 then both the filter and its inverse are stable, and
there are no numerical errors in the reconstruction (Figure D.2).

D.4 PREDICTIONS

We use filter to model time series and perform predictions. Many formulas in Chapter 5 are based
on the following result.

D.4.1 CONDITIONAL DISTRIBUTION L EMMA

LEMMA D.4.1. Let (X1, X2), (Y1, Y2) be two random vectors, both with values in the spaceR
n1 ×

R
n2 , and such that

Y1 = F1X1

Y2 = F21X1 + F22X2

whereF1, F21, F22 are non random linear operators andF1 is invertible.

LetX ′
2 be a random sample drawn from the conditional distribution of X2 given thatX1 = x1 and

y1 = F1x1

Y ′
2 = F21x1 + F22X

′
2

The law ofY ′
2 is the conditional distribution ofY2 given thatY1 = y1.

D.4.2 PREDICTIONS

Let Xt, Yt be two real valued random sequences (not necessarily iid), defined fort ≥ 1. Assume
thatY = FX whereF is an invertible filter with impulse responseh0, h1, h2 . . . and AR(∞) rep-
resentationc0, c1, c2 . . .. The following theorem says that making a prediction forX is equivalent
to making a prediction forY . It is a direct consequence of Lemma D.4.1.

THEOREM D.4.1 (Conditional Distribution of Futures).Assume that(y1, . . . , yt)T = F (x1, . . . , xt)
T

and letℓ ≥ 1.

Assume that(X ′
t+1, . . . , X

′
t+ℓ) is a random sample drawn from the conditional distribution of

(Xt+1, . . . , Xt+ℓ) given thatX1 = x1, . . . , Xt = xt. Let

(y1, . . . , yt, Y
′
t+1, . . . , Y

′
t+ℓ)

T = F (x1, . . . , xt, X
′
t+1, . . . , X

′
t+ℓ)

T

then (Y ′
t+1, . . . , Y

′
t+ℓ) is distributed according to the conditional distribution of (Yt+1, . . . , Yt+ℓ)

given thatY1 = y1, . . . , Yt = yt.
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We can derive explicit formulae for point predictions.

COROLLARY D.4.1 (Point Prediction).Define theℓ-point-ahead predictions by

X̂t(ℓ) = E(Xt+ℓ|X1 = x1, . . . , Xt = xt)

Ŷt(ℓ) = E(Yt+ℓ|Y1 = y1, . . . , Yt = yt)

then
(y1, . . . , yt, Ŷt(1), . . . , Ŷt(ℓ))

T = F (x1, . . . , xt, X̂t(1), . . . , X̂t(ℓ))
T (D.30)

and in particular

Ŷt(ℓ) = h0X̂t(ℓ) + h1X̂t(ℓ− 1) + . . .+ hℓ−1X̂t(1) + hℓ−1xt + . . .+ ht−1x1 (D.31)

and
Ŷt(ℓ) = c0X̂t(ℓ) + c1Ŷt(ℓ− 1) + . . .+ cℓ−1Ŷt(1) + cℓyt + . . .+ ct−1y1 (D.32)

In the frequent case whereXt is assumed to be iid, we can deduce more explicit results for the
point prediction and mean square prediction errors:

COROLLARY D.4.2. Assume in addition thatXt is iid with meanµ = E(Xt) and varianceσ2 =
varXt. Then

1. (Point Predictions)

(y1, . . . , yt, Ŷt(1), . . . , Ŷt(ℓ))
T = F (x1, . . . , xt, µ, . . . , µ)

T (D.33)

and in particular

Ŷt(ℓ) = (h0 + h1 + . . .+ hℓ−1)µ+ hℓ−1xt + . . .+ ht−1x1 (D.34)

and
Ŷt(ℓ) = c0µ+ c1Ŷt(ℓ− 1) + . . .+ cℓ−1Ŷt(1) + cℓyt + . . .+ ct−1y1 (D.35)

2. (Mean Square Prediction Error) Define

MSE2t (ℓ)
def
= var (Yt+ℓ| Y1 = y1, . . . , Yt = yt)

= E

(

(Yt+ℓ − Ŷt(ℓ))
2|Y1 = y1, . . . , Yt = yt

)

then
MSE2t (ℓ) = σ2

(

h2
0 + · · ·+ h2

ℓ−1

)

(D.36)

COROLLARY D.4.3 (Innovation Formula).For t ≥ 2:

Yt − Ŷt−1(1) = h0(Xt − µ) (D.37)

This is called innovation formula as it can be used to relateXt (the “innovation”) to the prediction
error.
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D.5 LOG L IKELIHOOD OF I NNOVATION

Let Xt, Yt be two real valued random sequences (not necessarily iid), defined fort ≥ 1. Assume
thatY = FX whereF is an invertible filter with impulse responseh0, h1, h2 . . .. Also assume that
for anyn, the random vector(X1, ..., Xn) has a PDFf ~Xn

(x1, ..., xn).

THEOREM D.5.1. Assume that the impulse response ofF is such thath0 = 1. Then for alln the
random vector(Y1, ..., Yn) has a PDF equal to

f~Yn
(y1, ..., yn) = f ~Xn

(x1, ..., xn)

with (y1, ..., yn)
T = F (x1, ..., xn)

T

Theorem D.5.1 can be used for estimation in the context of ARMA models, whereXt is the non
observed innovation, assumed to be iid. The theorem says that the log-likelihood of the model is
the same as if we had observed the innovation; estimation methods for iid sequences can then be
applied, as in Example 2.4.

D.6 MATLAB COMMANDS

filter Y =filter([Q0Q1 · · ·Qq], [P0P1 · · ·Pp], X) with P0 6= 0 applies the filter

Q0 +Q1B + · · ·+QqB
q

P0 + P1B + · · ·+ PpBp
(D.38)

to the input sequenceX and produces an output sequenceY of same length asX.
poles and zeroescan be obtained withzplane
de-seasonalizingThe de-seasonalizing filter with periods is Rs =

∑s−1
i=1 B

i; X = RsY can be
obtained using
R = ones(1,s)
X = filter(R,1,Y)

differencing filter X = ∆sY can be obtained by
X = filter([1,0,...,0,-1],[1],Y)
where-1 is at positions + 1. The inverse filter is obtained by exchanging the first two
arguments:
Y = filter([1],[1,0,...,0,-1],X)
and the termsh0, h1, ..., hℓ of the impulse response of∆−1

s are obtained by the command:
h = filter([1],[1,0,...,0,-1],[1,0,...,0])

where the last vector hasℓ zeroes.
The commandY=diff(X,s) also applies the differencing filter∆s to X but it removes the
first s entries instead of setting them to0 asfilter does

impulse responseimpz([P0P1 · · ·Pp], [Q0Q1 · · ·Qq], n) gives the firstn terms of the impulse re-
sponse of the filter in Eq.(D.38). It is equivalent to usingfilter([P0P1 · · ·Pp], [Q0Q1 · · ·Qq],
deltan) with deltan equal to the sequence[1 0 ... 0] (with n− 1 zeroes).

parameter estimation of an ARMA model can be done with direct application of Theorem 5.5.1
andlsqnonlin for the solution of the non linear optimization problem. Forsimple ARMA
models, it can be done in one step witharmax.
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convolution c=conv(a,b) computes the sequence of length length(a) + length(b)− 1 such that
ck =

∑

i aibk−i, where the sum is fori such thatai andbk−i are defined. The commandY =
filter(P1,Q1,filter(P2,Q2,X)) is equivalent to
P = conv(P1,P2)
Q = conv(Q1,Q2)
X = filter(P,Q, X)

simulation of an ARMA process as defined in Definition 5.5.1 can be done with
e = sigma * randn(n,1)
x = mu + filter(A,C,e)

D.7 PROOFS

L EMMA D.4.1 The characteristic function ofY ′
2 is

φY ′
2
(ω2) = E

(

e−j(<ω2,F21x1>+<ω2,F22X
′
2>)
)

= e−j<ω2,F21x1>E

(

e−j<ω2,F22X
′
2>
)

= e−j<ω2,F21x1>E
(

e−j<ω2,F22X2>|X1 = x1
)

:= e−j<ω2,F21x1>h(x1) := f(x1) (D.39)

where< ·, · > is the inner product. Now letg(y1) := f(F−1
1 y1). We want to show that

g(y1) = E
(

e−j<ω2,Y2>|Y1 = y1
)

(D.40)

By definition of a conditional probability, this is equivalent to showing that for anyω1 ∈ R
n1 :

E
(

e−j<ω1,Y1>g(Y1)
)

= E
(

e−j<ω1,Y1>e−j<ω2,Y2>
)

(D.41)

Now by the definition ofg()

E
(

e−j<ω1,Y1>g(Y1)
)

= E

(

e−j<ω1,Y1>e−j<ω2,F21F
−1
1 Y1>h(F−1

1 Y1)
)

= E
(

e−j<ω1,F1X1>e−j<ω2,F21X1>h(X1)
)

= E
(

e−j<ω1,F1X1>e−j<ω2,F21X1>e−j<ω2,F22X2>
)

where the last equality is by the definition ofh() as a conditional expectation in Eq.(D.39). This shows Eq.(D.41) as
desired.

Note that the proof is simpler ifX1, X2 has a density, but this may not always hold, even for gaussianprocesses.

THEOREM D.5.1 The random vector~Yn = (Y1, ..., Yn)
T is derived from the random vector~Xn = (X1, ..., Xn)

T

by ~Yn = Hn
~Xn whereHn is the matrix in Eq.(D.6), withh0 = 1. By the formula of change of variable, we have

f ~Xn
(x1, ..., xn) = |det(Hn)| f~Yn

(y)

anddet(Hn) = 1.
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