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PREFACE

PERFORMANCE EVALUATION s often the critical part

of evaluating the results of a research project. Many of

us are familiar with simulations, but it is often difficult to

address questions like: Should | eliminate the beginning

of the simulation in order for the system to become sta-

bilized ? | simulate a random way point model but the /J
average speed in my simulation is not as expected. What N— -~
happened ? The reviewers of my study complained that |

did not provide confidence intervals. How do | go about

this ? | would like to characterize the fairness of my proto-

col. Should I use Jain’s Fairness Index or the Lorenz Curve

Gap ? | would like to fit a distribution to the flow sizes 6[/
that | measured but all my measurements are truncated to a o
maximum value; how do | account for the truncation ?

This book groups a set of lecture notes for a course given &LEP contains all the material
needed by an engineer who wishes to evaluate the perfornadi@ceomputer or communication
system. More precisely, with this book and some accompagnpiacticals, you will be able to
answer the above and other questions, evaluate the perfoentd computer and communication
systems and master the theoretical foundations of perfacene@valuation and of the corresponding
software packages.

In the past, many textbooks on performance evaluation haes ghe impression that this is a
complex field, with lots of baroque queuing theory excursjomhich can be exercised only by
performance evaluation experts. This is not necessam\céise. In contrast, performance evalu-
ation can and should be performed by any computer engirgespiecialist who designs a system.
When a plumber installs pipes in our house, one expects h@oferly size their diameters; the
same holds for computer engineers.

This book is not intended for the performance evaluatioriggist. It is addressed tevery com-
puter engineer or scientistho is active in the development or operation of softwareaydivare
systems. The required background is an elementary couelability and one in calculus.

XVil
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THE OBJECTIVE OF THIS BOOK is therefore to make performance evaluation usable by all
computer engineers and scientists. The foundations obpednce evaluation reside in statistics
and queuing theory, thereforepmemathematics is involved and the text cannot be overly sim-
plified. However, it turns out that much of the complicati@re not in the general theories, but
in the exact solution of specific models. For example, somxiteks on statistics (but none of
the ones cited in the reference list) develop various smiuteéchniques for specific models, the
vast majority of which are encapsulated in commerciallyreelly available software packages like
Matlab, S-PLUS, Excel, Scilab or R.

To avoid this pitfall, we focused first on thehatbefore thenow. Indeed, the most difficult question
in a performance analysis is often “what to do”; once you kwavat to do, it is less difficult to
find a way with your usual software tools or by shopping the wietr example, what do we do
when we fit a model to data using least square fitting (Chapten8hat is a confidence interval ?
What is a prediction interval (Chapter 2) ? What is the cotigesollapse pattern (Chapter 1) ?
What is the null hypothesis in a test and what does the retalttestreally mean (Chapter 4) ?
What is an information criterion (Chapter 5) ? If no failungpaars out o, experiments, what
confidence interval can | give for the failure probabilityh@pter 2) ?

Second, for thdaow, we looked for solution methods that as universal as passilel. that apply
to many situations, whether simple or complex. There arers¢veasons for this. Firstly, one
should use only methods and tools that one understands, goddaengineer should first invest
her time learning tools and methods that she will use morenoftSecondly, brute force and a
computer can do a lot more than one often seems to believe philosophy is in sharp contrast to
some publications on performance evaluation. For exansplaputing confidence or prediction
intervals can be made simple and systematic if we use theamexdtid not the mean; if we have
to employ the mean, the use of likelihood ratio statisticugeuniversal and requires little intel-
lectual sophistication regarding the model. Thus, we fasugeneric methods such as: the use of
filters for forecasting (Chapter 5), bootstrap and MonteldCsimulations for evaluating averages
or prediction intervals (Chapter 6), the likelihood rattatsstic for tests (Chapter 2, Chapter 4),
importance sampling (Chapter 6), least square/antbrm minimization methods (Chapter 3).

When presenting solutions, we triedt to hide their limitations and the cases where they do not
work. Indeed, some frustrations experienced by young resees can sometimes be attributed to
false expectations about the power of some methods.

We give a coverage of queuing theory that attempts to strikalance between depth and rele-
vance. During a performance analysis, one is often cordcbniith the dilemma: should we use
an approximate model for which exact solutions exist, oraxmate solutions for a more exact
model ? We propose four topics (deterministic analysisratpenal laws, single queues, queuing
networks) which provide a good balance. We illustrate in secstudy how the four topics can
be utilized to provide different insights on a queuing gisest For queuing networks, we give a
unified treatment, which is perhaps the first of its kind ad tevel of synthesis. We show that com-
plex topics such as queues with concurrency (MSCCC queuasiworks with bandwidth sharing
(Whittle networks) all fit in the same framework of produatrfoqueuing networks. Results of this
kind have been traditionally presented as separate; mgifyiem simplifies the student’s job and
provides new insights.

We develop the topic of Palm calculus, also called “the ingrure of the viewpoint”, which is
so central to queuing theory, as a topic of its own. Indead,tdpic has so many applications to
simulation and to system analysis in general, that it is § geod time investment. Here too, we
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focus on general purpose methods and results, in partitheaiarge-time heuristic for mapping
various viewpoints (Chapter 7).

CHAPTER 1 GIVES A METHODOLOGY  and serves as introduction to the rest of the book. Per-
formance patterns are also described, i.e. facts that tegigappear in various situations, and
knowledge of which considerably helps the performanceuaiain.

Chapter 2 demonstrates how to summarize experimental adaion results, as well as how to
guantify their accuracy. It also serves as an introductiangcientific use of the statistical method,
i.e. pose a model and verify its assumptions. In Chapter 3regsept general methods for fitting
an explanatory model to data and the concept of heavy tadpt@h 4 describes the techniques of
tests, and Chapter 5 those of forecasting. These four aisegitee a coverage of modern statistics
useful to our field.

Chapter 6 discusses discrete event simulation and seugpaltiant, though simple issues such as
the need for transient removal, for confidence intervald, @dassical simulation techniques. We

also discuss importance sampling, which is very useful donjguting estimates of rare events; we
give a simple, though quite general and broadly applicaldthod.

Chapter 7 describes Palm calculus, which relates the \@m@wpoints resulting from measure-
ments done by different operators. Here, we discuss frgesimulations, a phenomenon which
can be a problem for even simple simulations if one is not avedit. We also present how to
perform a perfect simulation of stochastic recurrencesap®r 8 discusses patterns specific to
gueuing, classical solution methods for queuing netwoaksl, perhaps more important, opera-
tional analysis for rapid evaluation.

The appendix gives background information that cannot getdsily found elsewhere, such as a
Fourier-free quick crash course on digital filters (used afer 5) and confidence intervals for
guantiles.

Performance evaluation is primarily an art, and involvaagisophisticated tools such as mathe-
matical packages, measurement tools and simulation t&als.the web site of the EPFL lecture
on Performance Evaluation for some examplgsratticals, implemented in matlab and designed
around this book.

The text is intended for self-study. Proofs are not givenmihere are easily accessible references
(these are indicated in the text); otherwise they can beddorappendixes at the end of the
chapters.

Thelndexcollects all terms and expressions that are highlightelerigxt likethis and also serves
as a notation list.
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CHAPTER 1

METHODOLOGY

Perhaps the most difficult part in performance
evaluation is where to start. In this chapter we
propose a methodology, i.e. a set of recommen
dations valid for any performance evaluation
study. We stress the importance of factors, ir
particular hidden factors, and the need to ust
the scientific method. We also discuss a few
frequent performance patterns, as a means 1 ,
quickly focus on important issues. e B
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1.1 WHAT IS PERFORMANCE EVALUATION ?

In the context of this book, performance evaluation is alopaintifying the service delivered by a
computer or communication system. For example, we mightteegsted in: comparing the power
consumption of several server farm configurations; knowiegresponse time experienced by a
customer performing a reservation over the Internet; camgacompilers for a multiprocessor
machine.

In all cases it is important to carefully define tlead and themetric, and to be aware of the
performance evaluatiogoals

1.1.1 LOAD

An important feature of computer or communication systesnthat their performance depends
dramatically on thevorkload (or simplyload) they are subjected to. The load characterizes the
guantity and the nature of requests submitted to the systemsider for example the problem of
guantifying the performance of a web server. We could charae the load by a simple concept
such as the number of requests per second. This is callehtéresity of the workload. In
general, the performance deteriorates when the intensitgases, but often the deterioration is
sudden; this is due to the non-linearity of queuing systeiaus example operformance pattern

that is discussed in Section 1.5 and Chapter 8.

The performance of a system depends not only on the intesfditye workload, but also its nature;
for example, on a web server, all requests are not equivasembe web server softwares might
perform well withgetrequests for frequently used objects, and less well withests that require
database access; for other web servers, things might teretiff This is addressed by using
standardized mixes of web server requests. They are geddratbenchmark, defined as a load
generation process that intends to mimic a typical usenbetia In Chapter 3 we study how such
a benchmark can be constructed.

1.1.2 METRIC

A performancemetric is a measurable quantity that precisely captures what we iwwaneasure
— it can take many forms. There is no general definition of doperance metric: it is system
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dependent, and its definition requires understanding teeesyand its users well. We will often
mention examples where the metric is throughput (numbesidstcompleted per time unit), power
consumption (integral of the electrical energy consumethbysystem, per time unit), or response
time (time elapsed between a start and an end events). Hopeaormance metric, we may be
interested in average, 95-percentile, worst-case, eex@ained in Chapter 2.

ExAaMPLE 1.1:WINDOWS VERSUSLINUX. Chen and co-authors compare Windows versus Linux in
[25]. They use as metric: number of CPU cycles, number of instructions, number of data read/write
operations required by a typical job. The load was generated by various benchmarks: “syscall”
generates elementary operations (system calls); “memory read” generates references to an array;
an application benchmark runs a popular application.

It is also important to be aware of the experimental condgionder which the metric is measured,
as illustrated by the coming example:

EXAMPLE 1.2:POWER CONSUMPTION. The electrical power consumed by a computer or telecom
equipment depends on how efficiently the equipment can take advantage of low activity periods
to save energy. One operator proposes the following metric as a measure of power consumption
[29]:

P Total = 0-35P max + 0.4Ps50 + 0.25P gjeep

where P 1414 IS the power consumption when the equipment is running at full load, P50 when it
is submitted to a load equal to 50% of its capacity and P glgep When itis idle. The example uses
weights (0.35, 0.4 and 0.25); they reflect our assumption about the proportion of time that a given
load condition typically occurs (for example,the full load condition is assumed to occur during 35%
of the time).

In this exampleutilization is a parameter of the operating conditions. The utilizatibaresource
is defined as the proportion of time that the resource is busy.

The example also illustrates that it may be important to @efihichsampling methodis used,
i.e. when the measurements are taken. This is an integrtabptire definition of the metric; we
discuss this point in more detail in Chapter 7.

A metric may be simple, i.e. expressed by a single number (@gver consumption), amul-
tidimensional, i.e. expressed by a vector of several numbers (e.g. powsuooption, response
time and throughput). When comparing two vectors of muttieinsional metric values, one should
compare the corresponding components (e.g. power consungdtA versus power consumption
of B, response time of A versus response time of B, etc). Asaltidgt may happen that none of
the two vectors is better than the other. We say that conpao$vectors is gartial order, as
opposed to comparison of numbers which oaplete order. It is however useful to determine
whether a vector imon-dominated, i.e. there is no other vector (in the set of available ra$ult
which is better. In a finite set of performance results exggdsvith a multidimensional metric,
there are usually more than one non-dominated results. \bibv@paring several configurations,
the non-dominated ones are the only ones of interest.

EXAMPLE 1.3:MULTI-DIMENSIONAL METRIC AND KIVIAT DIAGRAM. We measure the perfor-
mance of a web server submitted to the load of a standard workbench. We compare 5 different



— Response Time (ms)

-10 ... -2.19 A

D / - Power
\ Consumption
(W)

-100 .. -23.5

0..73.1
Throughput (tps)

Figure 1.1:Visualisation of the data in Example 1.3 by means of a Kiviat Diagram. Configurations A and
D are non-dominated.

configurations, and obtain the results below.

| Config | Power (W) | Response (ms) | Throughput (tps) |

A 23.5 3.78 42.2
B 40.8 5.30 29.1
C 92.7 4.03 22.6
D 53.1 2.19 73.1
E 54.7 5.92 24.3

We see for example that configuration A is better than B but is not better than D. There are two non
dominated configurations: A and D. A is better on power consumption, D is better on throughput
and response time.

The numerical values can be visualized on a Kiviat Diagram (also called Radar graph or Spider
Plot as on Figure 1.1.

1.1.3 THE DIFFERENT GOALS OF PERFORMANCE EVALUATION

The goal of a performance evaluation may either beomparison of design alternatives, i.e.
guantify the improvement brought by a design optionsystem dimensioning, i.e. determine
the size of all system components for a given planned utitina Comparison of designs requires
a well-defined load model; however, the exact value of itsrisity does not have to be identified.
In contrast, system dimensioning requires a detailed estm of the load intensity. Like any
prediction exercise, this is very hazardous. For any peréoice evaluation, it is important to
know whether the results depend on a workload predictiorotr 8imple forecasting techniques
are discussed Chapter 5.
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EXAMPLE 1.4:DIFFERENT GOALS.

QUuESTION 1.1.1. Say which is the nature of goal for each of the following penfance evaluations state-
ments:!

(A1) PC configuration 1 is 25% faster than PC configuration 2 when running Photoshop.

(A2) For your video on demand application, the number of required servers is 35, and the number
of disk units is 68.

(A3) Using the new version of sendfi | e() increases the server throughput by 51%

The benefit of a performance evaluation study has to be wegagainst its cost and the cost
of the system. In practice, detailed performance evalnatere done by product development
units (system design). During system operation, it is hatnemical (except for huge systems
such as public communication networks) to do so. Insteadhufaaturers providengineering
rules, which capture the relation between load intensity andgperance. Example (A2) above is
probably best replaced by an engineering rule such as:

EXAMPLE 1.5:ENGINEERING RULE.

(E2) For your video on demand application, the number of required servers is given by N; =
[ + £ and the number of disk units by N> = [;& + 27, where R [resp. B] is the
number of residential [resp. business] customers.

In this book, we study the techniques of performance eviainahat apply to all these cases.
However, how to implement a high performance system (fomgta: how to efficiently code a
real time application in Linux) or how to design bug-freetsyss areoutsidethe scope.

1.2 FACTORS

After defining goal, load and metric, one needs to establikst af factors: these are elements
in the system or the load that affect the performance. Onenipted to focus only on the factor
of interest, however, it is important to know all factorsttheay impact the performance measure,
whether these factors are desired or not.

EXAMPLE 1.6:WINDOWS VERSUSLINUX, CONTINUED. In [25], Chen and co-authors consider
the following external factors: background activity; multiple users; network activity. These were
reduced to a minimum by shutting the network down and allowing one single user. They also
consider: the different ways of handling idle periods in Windows and Limux, because they affect
the interpretation of measurements.

(A1), (A3) are comparisons of design options; (A2) is dinienig



6 CHAPTER 1. METHODOLOGY

1.2.1 THE HIDDEN FACTOR PARADOX

Ignoring some hidden factors may invalidate the result efgrformance evaluation, as the next
example shows.

ExXAMPLE 1.7:TCP THROUGHPUT  Figure 1.2, left, plots the throughput achieved by a mobile
during a file transfer as a function of its velocity (speed). It suggests that throughput increases
with mobility. The right plot shows the same data, but now the mobiles are separated in two
groups: one group (‘s’) is using a small socket buffer (4K Bytes), whereas the second (‘L) uses
a larger socket buffer (16 K Bytes). The conclusion is now inverted: throughput decreases with
mobility. The hidden factor influences the final result: all experiments with low speed are for small
socket buffer sizes. The socket buffer size is a hidden factor.
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Figure 1.2:Left: plot of throughput (in Mb/s) versus speed (in m/s) for a mobile node. Right: same plot,
but showing socket buffer size; s = small buffer, L = large buffer.

Avoiding hidden factors may be done by proper randomizaifdhe experiments. On the example
above, a proper design would have distributed socket bafaas randomly with respect to the
speed.

However, this may not always be possible as some experitrentditions may be imposed upon
us; in such cases, all factors have to be incorporated inrialysis. On Figure 1.2, we fitted a
linear regression to the two figures, using the method expthin Chapter 3. The slope of the
linear regression is negative when we explicit the hiddetofa showing that mobility decreases
throughput.

The importance of hidden factors may be interpreted as odetecy to confound cause and corre-
lation [77]. In Figure 1.2, left, the throughput is positiyeorrelated with the speed, but this may
not be interpreted as a causal relationship.

In conclusion at this point, knowing all factors is a tediphist necessary task. In particular, all
factors should be incorporated, whether you are interestdtem or not (factors that you are not
interested in are calleduisance factors). This implies that you have to know your system well,
or be assisted by people who know it well.
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1.2.2 SMPSON’S PARADOX

Simpson’s reversal, also known asimpson’s paradox is a well known case of the problem of
hidden factors, when the performance metric is a succesapildy.

EXAMPLE 1.8:TCP THROUGHPUT, CONTINUED. We revisit the previous example, but are now
interested only in knowing whether a mobile can reach a throughput of at least 1.5 Mb/s, i.e. we
say that a mobile is successful if its throughput is > 1.5Mb/s. We classify the mobiles as slow
(speed < 2m/s) or fast (speed > 2m/s). We obtain the following result.

\ | failure | success | | P(success) |
slow 11 3 14 0.214
fast 5 4 9 0.444

16 7 23

from where we conclude that fast mobiles have a higher success probability than slow ones. Now
introduce the nuisance parameter “socket buffer size”, i.e. we qualify the mobiles as ‘s’ (small
buffer size) or ‘L (large buffer size):

‘s’ mobiles | failure | success | | P(success) |
slow 10 1 11 0.091
fast 1 0 1 0.00
11 1 12
| 'L mobiles | failure | success | | P(success) |
slow 1 2 3 0.667
fast 4 4 8 0.500
5 6 11

Now in both cases slow mobiles have a higher success probability than fast ones, which is the
correct answer. The former answer was wrong because it ignored a hidden factor. This is known
as Simpsons'’s reversal.

Simpsons’ paradox can be formulated in general as follows [Bet S denote the fact that the
outcome of an experiment is a success, and'lbe the factor of interest (in the example, mobile
speed). LetV;, i = 1...k be binary hidden factors (nuisance factors; in the exantpkre is
only one, the socket buffer size). Assume that the factontefrest has a positive influence on the
success rate, i.e.

P(S|C) > P(S|C) (1.1)

This may happen while, at the same time, the combinationeofattor of interest with the hidden
factors/V; has the opposite effect:

P(S|C and N;) < P(S|C and Nj) (1.2)
forall i = 1...k. As illustrated in Examples 1.8 and 1.7, the reversal ocalman the effect of
hidden factors is large.

The fact that Simpson’s reversal is a paradox is assumedgioate in our (false) intuition that an
average of factors leads to an average of outcomes, i.e. wéwmangly) assume that Eq.(1.1) is
a weighted sum of Eq.(1.2).
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We do have weighted sums, but the weightsB(&;|C') for the left-handside in Eq.(1.1) vers®$N,|C') for the
right-handside:

P(S|C) = Y P(S|C and N;)P(N;|C)

P(S|C) > P(S|C and N;)P(N;|C)

1.3 EVALUATION METHODS

Once goal, load, metric and factors are well defined, perdoice evaluation can then proceed
with a solution method, which usually falls in one of the #hmases below. Which method to use
depends on the nature of the problem and the skills or tasteeadvaluation team.

e Measurementof the real system. Like in physics, it is hard to measure outhdisturbing
the system. Some special hardware devices (e.g.: optititiespin network links) some-
times can prevent any disturbance. If, in contrast, measemés are taken by the system
itself, the impact has to be analyzed carefully. Measuresn@m not always possible (eg. if
the system does not exist yet).

e Discrete EvenSimulation: a simplified model of the system and its load are implemeinted
software. Time is simulated and often flows orders of magteitmore slowly than real time.
The performance of interest is measured as on a real systemmdasurement side-effects
are usually not present. It is often easier than a measuteshaty, but not always. It is the
most widespread method and is the object of Chapter 6.

e Analytical: A mathematical model of the system is analyzed numericdlhis is viewed
by some as a special form of simulation. It is often much geiidkian simulation, but
sometimes wild assumptions need to be made in order for threencal procedures to be
applicable. Analytical methods are often used to gain Imsilyiring a development phase,
or also to learn fundamental facts about a system, which Weépzterns”. We show in
Chapter 8 how some performance analyses can be solved apptely in a very simple
way, using bottleneck analysis.

1.4 THE SCIENTIFIC METHOD

The scientific method applies to any technical work, not ¢algerformance evaluation. However,
in the author’s experience, lack of scientific method is om@pnent cause for failed performance
studies. In short, the scientific method requires that yonatdelieve in a conclusion unless it is
thoroughly tested.

EXAMPLE 1.9:JOFE’'S KIOSK. Joe’s e-kiosk sells online videos to customers equipped with smart-
phones. The system is made of one servers and one 802.11 base station. Before deployment,
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performance evaluation tests are performed, as shown on Figure 1.3(a). We see that the through-
put reaches a maximum at around 8 transactions per second.

Joe concludes that the bottleneck is the wireless LAN and decides to buy and install 2 more base
stations. After installation, the results are on Figure 1.3(b). Surprisingly, there is no improvement.
The conclusion that the wireless LAN was the bottleneck was wrong.

Joe scratches his head and decides to go more carefully about conclusions. Measurements are
taken on the wireless LAN; the number of collisions is less than 0.1%, and the utilization is below
5%. This confirms that the wireless LAN is not a bottleneck. Joe makes the hypothesis that the
bottleneck may be on the server side. After doubling the amount of real memory allocated to the
server process, the results are as shown on Figure 1.3(c). This confirms that real memory was
the limiting factor.
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Figure 1.3:Performance results for Joe’s server. X-axis: offered load; Y-axis: achieved throughput, both
in transactions per second.

A common pitfall is to draw conclusions from an experimeratttvas not explicitly designed to
validate these conclusion. The risk is that hidden factaghtrinterfere, as illustrated by the pre-
vious example. Indeed, Joe concluded from the first expertithat the LAN performance would
be improved by adding a base station; this may have baggestedby the result of Figure 1.3(a),
but this is not sufficient. It is necessary to perform othgreziments, designed to validate this
potential conclusion, before making a final statement.dvwatig Popper’s philosophy of science
[82], we claim that it is necessary for the performance astdtytake both roles : (1) make tentative
statements, and (2) design experiments that try to invaitdteem.

ExaMpPLE 1.10:ATM UBR BETTER THAN ATM ABR. In [66], the authors evaluate whether the
ATM-UBR protocol is better than ATM-ABR (both are alternative methods used to manage switches
used in communication networks). They use a typical scientific method, by posing each potential
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conclusion as a hypothesis and designing experiments to try and invalidate them:

ABSTRACT. We compare the performance of ABR and UBR for providing high-speed
network interconnection services for TCP traffic. We test the hypothesis that UBR
with adequate buffering in the ATM switches results in better overall goodput for TCP
traffic than explicit rate ABR for LAN interconnection. This is shown to be true in a
wide selection of scenarios. Four phenomena that may lead to bad ABR performance
are identified and we test whether each of these has a significant impact on TCP
goodput. This reveals that the extra delay incurred in the ABR end-systems and the
overhead of RM cells account for the difference in performance. We test whether it is
better to use ABR to push congestion to the end-systems in a parking-lot scenario or
whether we can allow congestion to occur in the network. Finally, we test whether the
presence of a “multiplexing loop” causes performance degradation for ABR and UBR.
We find our original hypothesis to be true in all cases. We observe, however, that ABR
is able to improve performance when the buffering inside the ABR part of the network
is small compared to that available at the ABR end-systems. We also see that ABR
allows the network to control fairness between end-systems.

Other aspects of the scientific method are:

e Give an evaluation of thaccuracy of your quantitative results. Consider the measured
data in Table 1.11. There is a lot of variability in them; sayihat the average response
time is better with B than A is not sufficient; it is necessarygive uncertainty margins, or
confidence intervals. Techniques for this are discussedhapt@r 2.

e Make the results of your performance evaluation easiproducible. This implies that all
assumptions are made explicit and documented.

e Remove what can be removed. Often, at the end of a performevateation study, many
results are found uninteresting; the right thing to do isstmove such results, but this seems
hard in practice !

1.5 PERFORMANCE PATTERNS

Performance evaluation is simpler if the evaluator is awaperformanceatterns, i.e. traits that
are common to many different settings.

1.5.1 BOTTLENECKS

A prominent pattern i®ottlenecks. In many systems, the overall performance is dictated by the
behaviour of the weakest components, called the bottleneck

EXAMPLE 1.11:BOTTLENECKS. You are asked to evaluate the performance of an information
system. An application server can be compiled with two options, A and B. An experiments was
done: ten test users (remote or local) measured the time to complete a complex transaction on
four days. On day 1, option A is used; on day 2, option B is. The results are in the table below.
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remote | local remote | local
A 123 43 B 107 62
189 38 179 69
99 49 199 56
167 37 103 47
177 44 178 71

The expert concluded that the performance for remote users is independent of the choice of an
information system. We can criticize this finding and instead do a bottleneck analysis. For remote
users, the bottleneck is the network access; the compiler option has little impact. When the
bottleneck is removed, i.e. for local users, option A is slightly better.

Bottlenecks are the performance analysts’ friend, in tinss¢hat they may consideralgynplify
the performance evaluation as illustrated next.

ExamMPLE 1.12:CPUMODEL. A detailed screening of a transaction system shows that one trans-
action costs in average: 1'238'400 CPU instructions; 102.3 disk accesses and 4 packets sent on
the network. The processor can handle 10° instructions per second; the disk can support 10%
accesses per second; the network can support 10* packets per second. We would like to know
how many transactions per second the system can support.

The resource utilization per transaction per second is: CPU: 0.12% — disk: 1.02% —network: 0.04%;
therefore the disk is the bottleneck. The capacity of the system is determined by how many
transactions per second the disk can support, a gross estimate is thus -2 ~ 99 transactions per

1.02
second.

If we would like more accuracy, we would need to model queuing at the disk, to see at which
number of transactions per seconds delays start becoming large. A global queuing model of CPU,
disk access and network is probably not necessary.

In Section 8.2.4 we study bottleneck analysis for queuing systems in a systematic way.

However, one should not be fooled by the apparent simplaitihe previous example, as bot-
tlenecks are moving targets. They depend on all parametdie ®system and on the load: a
component may be a bottleneck in some conditions, not inrgitte particular, removing a bottle-
neck may let some other bottleneck appear.

ExAamMPLE 1.13:HIGH PERFORMANCEWEB SITES. In [99], the author discusses how to design high
performance web sites. He takes as performance metric user’s response time. He observes that
modern web sites have highly optimized backends, and therefore their bottleneck is at the front
end. A common bottleneck is DNS lookup; entirely avoiding DNS lookups in web pages improves
performances, but reveals another bottleneck, namely, script parsing. This in turn can be avoided
by making scripts external to the web page, but this will reveal yet another bottleneck, etc. The
author describes 14 possible components, any of which, if present, is candidate for being the
bottleneck, and suggests to remove all of them. Doing so leaves as bottlenecks network access
and server CPU speed, which is desirable.
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1.5.2 CONGESTION COLLAPSE

Congestion occurs when the intensity of the load exceeds system cgfdasidetermined by the
bottleneck). Any system, when subject to a high enough legltibecome congested: the only
way to prevent this is to limit the load, which is often diffitor impossible. Therefore, it is
difficult to avoid congestion entirely.

In contrast, it is possible, and desirable, to avomhgestion collapse, which is defined as a
reduction in system utility, or revenue when the load insesa

source 1

node 12
node i 1+1

link (i-1) link (i+1)

Figure 1.4:First panel: A network exhibiting congestion collapse if sources are greedy. Second panel:
throughput per source \” versus offered load per source ), in Mb/s (plain line). Numbers are in Mb/s; the
link capacity is ¢ = 20Mb/s for all links. Dotted line: ideal throughput with congestion but without congestion
collapse.

EXAMPLE 1.14:CONGESTION COLLAPSE. Consider a ring network as in Figure 1.4 (such a topol-
ogy Is common, as it is a simple way to provide resilience single link or node failure). There
are I nodes and links, and sources numbered 0,1, ..., — 1. At every node there is one source,
whose traffic uses the two next downstream links (i.e. source ¢ uses links [(i + 1) mod I] and
[(i + 2) mod I]). All links and sources are identical.

Every source sends at a rate A and let ¢ be the useful capacity of a link (c and A are in Mb/s). Let
)\ the rate achieved by one source on its first hop, A" on its second hop (\” is the throughput per
source). Since a source uses two links, we can assume (in a simplified analysis) that, as along as
A < g, all traffic is carried by the network without loss, i.e.

if)\<§then)\’:)\”:)\

Assume now that sources are greedy and send as much as they can, with a rate A > 5. The
network capacity is exceeded, therefore there will be losses. We assume that packet dropping is
fair, i.e. the proportion of dropped packets is the same for all flows at any given link. The proportion
of packets lost by one source on its first hop is 252; on its second hop it is 252%. By the fair packet

dropping assumption, those proportions are equal, therefore
/\l /\l/
PRV

(1.3)
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Furthermore, we assume that links are fully utilized when capacity is reached, i.e.
if/\>g then N + \' = ¢

We can solve for )\’ (a polynomial equation of degree 2) and substitute )’ in Eq.(1.3) to finally
obtain the throughput per source:

n_ A c
A —c—§<,/1—|—4x—1> (1.4)

Figure 1.4 plots \” versus J\; it suggests that \” — 0 as A — oco. We can verify this by using a
Taylor expansion of /1 + u, for u — 0 in Eq.(1.4). We obtain

2

A=< (T+e(V)

with limy_,, €(A) = 0. which shows that the limit of the achieved throughput, when the offered
load goes to +o¢, is 0. This is a clear case of congestion collapse

Figure 1.4 also illustrates the difference between congestion and congestion collapse. The dotted
line represents the ideal throughput per source if there would be congestion without congestion
collapse; this could be achieved by employing a feedback mechanism to prevent sources from
sending more than 5 (for example by using TCP).

Two common causes for congestion collapse are:

1. The system dedicates significant amounts of resourcedbsothat will not complete, as in
Figure 1.4, where packets are accepted on the first hop, whilokventually be dropped on
the second hop. This is also known to occur on busy web sitesllarenters due to customer
impatience: when response time gets large impatient customers draesés|before they
complete.

2. The service time per job increases as the load increadeis. otcurs for example when
memory is paged to disk when the number of active processesises.

Congestion collapse is very common in complex systems. dtrnslisance since it reduces the
total system utility below its capacity. Avoiding congesticollapse is part of good system design.
A common solution to the problem &dmission control, which consists in rejecting jobs when

there is a risk that system capacity would be exceeded [50].

1.5.3 COMPETITION SIDE EFFECT

In many systems the performance of one user influence otlees.u§his may cause an apparent
paradox, where putting more resources makes the perfoenaacse for some users. The root
cause is as follows: increasing some resources may allow s8BTs to increase their load, which
may in turn decrease the performance of competing users1 tr®point of view of the user whose
performance is decreased, there is an apparent paradoxirces were added to the system, with
an adverse effect.

EXAMPLE 1.15:COMPETING USERS WITH IDEAL CONGESTION CONTROL.  Figure 1.5 shows a
simple network with 2 users, 1 and 2, sending traffic to destinations D1 and D2 respectively. Both
users share a common link X — Y.



14 CHAPTER 1. METHODOLOGY

Source 1 link 1 link 4
cl = 100 kb/s c4 = 100 kb/s
1 link 3 D1
\ c3 = 110 kb/s /
X Y
2 ™ link 2 link 5 D2

Figure 1.5:A simple network with two users showing the pattern of competition side effect. Increasing the
capacity of link 5 worsens the performance of user 1.

Assume that the sources use some form of congestion control, for example because they use the
TCP protocol. The goal of congestion control is to limit the source rates to the system capacity
while maintaining some fairness objective. We do not discuss fairness in detail in this book, see
for example [50] for a quick tutorial; for simplicity, we may assume here that congestion control has
the effect of maximizing the logarithms of the rates of the sources, subject to the constraints that
all link capacities are not exceeded (this is called proportional fairness and is approximately what
TCP implements). Let z; and x5 be the rates achieved by sources 1 and 2 respectively. With the
numbers shown on the figure, the constraints are x; < 100kb/s and x5 < 10kb/s (other constraints
are redundant) so we will have x; = 100kb/s and x5 = 10kb/s.

Assume now that we add resources to the system, by increasing the capacity of link 5 (the weakest
link) from ¢; = 10kb/s to ¢; = 100kb/s. The constraints are now

1 < 100 kb/s
ro < 100 kb/s
1 +x9 < 110 kb/s

By symmetry, the rates allocated under proportional fairness are thus x; = x5 = 55kb/s. We see
that increasing capacity has resulted in a decrease for source 1.

The competition side effect pattern in the previous exangue“good” case, in the sense that the
decrease in performance for some users is compensated hgraase for others. But this is not
always true; combined with the ingredients of congestidlapee, the competition side effect may
result in a performance decrease without any benefit for aay @jput more, get less”), as shown
in the next example.

EXAMPLE 1.16:COMPETING USERS WITHOUTCONGESTIONCONTROL. Consider Figure 1.5 again,
but assume that there is no congestion control (for example because sources use UDP instead of
TCP). Assume that sources send as much as their access link allows, i.e. source 1 sends at the
rate of link 1 and source 2 at the rate of link 2.

Assume that we keep all rates as shown on the figure, except for the rate of link 2, which we vary
from ¢ = 0 to ¢ = 1000kb/s. Define now the rates x; and x5 as the amounts of traffic that do
reach the destinations.

If ¢co < 10kb/s, there is no loss and xz; = 100kb/s, x5 = co. If ¢co > 10kb/s, there are losses at X.
Assume losses are in proportion to the offered traffic. Using the same analysis as in Example 1.14,
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we obtain, for ¢; > 10:

100
- 110x —2
1 X e+ 100
. C2
- 110 x —2 1
r2o= ( X e 100° >

Figure 1.6 plots the rates versus c,. We see that increasing ¢ beyond 10kb/s makes things worse
for source 1, with no benefit for source 2.

120

201
User 2

Figure 1.6:Achieved throughputs for the sources in Figure 1.5 versus c,.
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1.5.4 LATENT CONGESTION COLLAPSE

Many complex systems have several potential bottlenecksneay be susceptible to congestion
collapse. Removing a bottleneck (by adding more resouroes) reveal a congestion collapse,
resulting in worse performance. Before resources weredhdtie system was protected from
congestion collapse by the bottleneck, which acted as amgldmission control. This results in

the “put more, get less” paradox.

ExAaMPLE 1.17:MUSEUM AUDIO GUIDES. A museum offers free audio guides to be downloaded
on MP3 players. Visitors put their MP3 player into docking devices. The docking devices connect
via a wireless LAN to the museum server. Data transfer from the docking device to the MP3
player is via a USB connector. The system was tested with different numbers of docking devices;
Figure 1.7(a) shows the download time versus the number of docking devices in use.

The museum later decides to buy better docking devices, with a faster USB connection between
device and MP3 player (the transfer rate is now doubled). As expected, the download time is
smaller when the number n of docking devices is small, but, surprisingly, it is larger when n > 7
(Figure 1.7(a)). What may have happened ? It is known that the wireless LAN access method
is susceptible to congestion collapse: when the offered load increases, packet collisions become
frequent and the time to successfully transfer one packet becomes larger, so the throughput de-
creases. We may conjecture that improving the transfer speed between docking device and MP3
player increases the load on the wireless LAN. The congestion collapse was not possible before
because the low speed docking devices acted as an (involuntary) access control method.

We can verify this conjecture by plotting throughput instead of download time, and extending the
first experiment to large values of n. We see on Figure 1.7(b) that there is indeed a reduction in
throughput, at a point that depends on the speed of the USB connection.
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Figure 1.7:lllustration of latent congestion collapse. Download time and System throughput as a function
of the number of docking devices, with lower speed USB connections (0) with higher speed USB connec-
tions (+).

1.6 REVIEW

1.6.1 CCHECK-LIST

PERFORMANCE EVALUATION CHECKLIST

PE1 Define your goal.For example: dimension the system, find the overload bebgwvaluate
alternatives. Do you need a performance evaluation studse@'tthe results obvious ? Are
they too dependent on the input factors, which are arbittary

PE2 Identify the factors. What are all the factors ? are there external factors whiell ne be
controlled ?

PE3 Define your metrics. For example: response time, server occupancy, numbemsfactions
per hour, Joule per Megabyte. Define not only what is measbuédilso under which
condition or sampling method. If the metric is multidimensal, different metric values are
not always comparable and there may not be a best metric. ldaveever, there may be non
dominated metric values.

PE4 Define the offered load. How is it expressed: transactions per second, number o§user
number of visits per hour ? Is it measured on a real systemificiaitload generated by a
simulator, by a synthetic load generator ? load model in arttecal model ?

PE5 Know your bottlenecks. The performance often depends only on a small number ofrigcto
often those whose utilization (= load/capacity) is high. Kélaure what you are evaluating
is one of them.

PE6 Know your system well. Know the system you are evaluating and list all factors. Use
evaluation tools that you know well. Know common performapatterns for your system.

SCIENTIFIC METHOD CHECKLIST

S1 Scientific Method
do {Define hypothesis; design experiments; validatmtil validation is OK

S2 Quantify theaccuracy of your results.
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1.6.2 ReEVIEW QUESTIONS

QUESTION 1.6.1. For each of the following examples:

Design web server code that is efficient and fast.

Compare TCP-SACK versus TCP-new Reno for hand-held enbdiices.
Compare Windows 2000 Professional versus Linux.

Design a rate control for an internet audio application.

Compare various wireless MAC protocols.

Say how many servers a video on demand company needsab inst
Compare various compilers.

How many control processor blades should this Cisco rcudge ?
Compare various consensus algorithms.

Design bug-free code.

. Design a server farm that will not crash when the load ghhi

Design call center software that generates guarantegdnue.

. Size a hospital’s information system.

. What capacity is needed on an international data link ?

. How many new servers, if any, should | install next quddemy business application ?

CLONOGORWDNE

e e ol
arwWNBR

say whether a detailed identification of the intensity ofwhekload is required?

QUESTION 1.6.2. Consider the following scenarios.

1. The web server used for online booking at th&té& des Vignerons” was so popular that it
collapsed under the load, and was unavailable for severalfio

2. Buffers were added to an operating system task, but thralbperformance was degraded

(instead of improved, as expected).

The response time on a complex web server is determinedply by the performance of

the front end.

When too many users are using the international link, @sponse time is poor

When too many users are present on the wireless LAN, noats@geful work done

A traffic volume increase of 20% caused traffic jams

New parking facilities were created in the city center fvae parking availability did not

increase.

w

No ok

and the following patterns

(&) non-linearity of response time with respect to load
(b) congestion collapse (useful work decreases as loag@asas)
(c) performance is determined by bottleneck

Say which pattern is present in which scenafio

QUESTION 1.6.3. Read [63], written by one of Akamai’s founders. What topicshis chapter
does this illustrate ?

2Examples 6, 8, 13, 14, 15 are dimensioning exercises andegdentification of the predicted workload intensity.
Examples 1 and 10 are outside the scope of the book. Examplsdl12 are about avoiding congestion collapse.

31b; 2: perhaps a combination of b and ¢; 3c; 4a; 5b; 6b; 7¢c

4(1) The performance bottleneck in internet response tinthésniddle milg i.e. the intermediate providers
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between web site provider and end-user ISP. (2) performiauetecs of interest are not only response time but also
reliability.
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CHAPTER 2

SUMMARIZING PERFORMANCEDATA,
CONFIDENCEINTERVALS

In most measurements or simulations, we ot ‘

tain large amounts of data. Displaying the e
data correctly is important, and implies to ust v i
some graphical packages, or maths packag ( ¥ 7 _—
with graphical capabilities (Different tools have ‘-«
different capabilities, and produce graphics c I \r

different aesthetic value; but the most importar i

is to use one tool that you know well). Tools \/J,f

do not do everything and you need to know whe Z1N i -

to represent. We discuss important and freque L ; cL

summarizations that can be used to display ar

compare data: the complete distribution; summa-

rized quantities such as mean, standard deviation,

median and tail quantiles; fairness indices.

We discuss some properties of these summarization ancesidicey are not all equivalent, and
some, though less frequently used, are preferable if onal@mwice; for example, the Lorenz
curve gap is more robust than Jain’s Fairness index (whiekgentially the same as the standard
deviation rescaled by the mean) and should be preferred.

Simulation and measurement usually contain some randa@nihesefore it is important to capture
the uncertainty about measured performance. This is dathecanfidence or prediction intervals;
we discuss the use and interpretation of both. There are dliffayent ways for defining a confi-
dence or prediction interval; some are robust and some netgiV¢ useful, and simple formulas
and show that, if one has a choice, intervals based on medrahguantiles should be preferred
to the more classical mean and standard deviation. We alsaugeful, though little know results

21
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such as how to compute a confidence interval for a succesalglitypwhen has seen no success.
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2.1 SUMMARIZED PERFORMANCE DATA

2.1.1 HSTOGRAM AND EMPIRICAL CDF

Assume you have obtained a large set of results for the vdla@erformance metric. This can be
fully described by the distribution of the data, and illas&d by ahistogram. A histogram uses
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bins for the data values and plots on ghaxis the proportion of data samples that fall in the bin
on thez axis, see Figure 2.1.
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Figure 2.1:Data for Example 2.1. Measured execution times, in ms, for 100 transactions with the old and
new code, with histograms.

The empirical cumulative distribution function (ECDF) is an alternative to histograms which
sometimes makes comparisons easier. The ECDF of a data, setz,, is the functionF’ defined

by

1 n
i=1

so thatF'(z) is the proportion of data samples that do not exceed

Data sets may be compared by means of their ECDFs. If one &yalabove the other, then one
may consider that it is superior, even though some data pointhe first set may be less good
(this is calledstochastic majorization). On Figure 2.2 we see that the new data set (left) clearly
outperforms the old one. Note that stochastic majorizasanpartial order, as is the comparison
of multidimensional metrics (Section 1.1.2).

Assume the data samples come from a well defined probabiitylalition; the histogram can then
be viewed as an estimate of the PDF of the distribution, aad&DF as an estimate of the CDF

2.1.2 MEAN, MEDIAN AND QUANTILES

Instead of considering entire histograms or ECDFs, onenofteuld like to summarize, i.e. com-
press the histogram into one or a few numbers that represémalerage and variability. This is
commonly done by either one of the following:

Median and Quantile. A median is a value that falls in the middle of the distribuatii.e. 50%

of the data is below and 50% above. p8-quantile leave$% of the observation below and
(100 —p)% above. The median gives some information about the averdgle extreme quantiles
give information about the dispersion. A commonly used lthheBox Plot. It shows the median,
the 25% and 75% quantiles (called “quartiles”) and the ‘iewdl’, defined as data points that are a
fixed fraction away from the quartiles (Figure 2.3).

1The CDF of the random variabl is the function defined by (z) = P(X < z).
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Figure 2.2:Data of Example 2.1. Empirical distribution functions for the old code (right curve) and the new
one (left curve). The new outperforms the old, the improvement is significant at the tail of the distribution.

Thesample median of a data set is defined as follows. Assume therenadata pointsey, ..., x,. Sort the points
in increasing order and obtair},) < ... < z(,. If n is odd, the median is(nTﬂ), else%(:v(%) + x(%ﬂ)). More
generally, thesample ¢- quantile is defined asz“”;r& with &' = |gn+ (1 — ¢)] andk’ = [gn+ (1 — q)]. |z] is
the largest integex « and[z] is the smallest integer x

Mean and Standard Deviation The mean m of a data set:y,...,z, ism = %Z;‘Zl ;. It
gives some information about the center of the distributibime standard deviation s of a data
set is defined bys? = 13" (2, —m)® or s> = 223" | (2, —m)® (either conventions are
used — see Section 2.2 for an explanation). It gives infaonaibout the variability. The use
of standard deviation is rooted in the belief that data rdyfllows a normal distribution, also
calledgaussian distribution. It is characterized by a histogram with Bell shape (seepetia
and Table 3.1 on Page 93); the CDF of the general normal lnligion is denoted withV, -,
wherey is the mean and? the variance. It is very frequently encountered becauskeoténtral
limit theorem that says that an average of many things temde tnormal (but there are some
exceptions, called heavy tail in Chapter 3). If such a hypsighis true, and if we hath ~ u
ando = s, then with 95% probability, the data sample would lie in theeivalm 4+ 1.96s. This
justifies the use aihean-variance plots like in Figure 2.3, which use as measure of variabihty
intervalm =+ 1.96s. This is also called arediction interval since it predicts a likely range for a
future sample (Section 2.4).

EXAMPLE 2.1:COMPARISON OFTWO OPTIONS. An operating system vendor claims that the new
version of the database management code significantly improves the performance. We measured
the execution times of a series of commonly used programs with both options. The data are
displayed in Figure 2.1. The raw displays and histograms show that both options have the same
range, but it seems (graphically) that the new system more often provides a smaller execution
time. The box plots are more suggestive; they show that the average and the range are about half
for the new system.

In Section 2.5 we discuss the differences between these twdesmnf summarization.
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Figure 2.3:Box Plots for the data for Example 2.1. Left: standard box plot commonly used by statisticians
showing median (notch) and quartiles (top and bottom of boxes); “dispersion” is an ad-hoc measure, defined
here as 1.5 times the inter-quartile distance; the notch width shows the confidence interval for the median.
Right: same, overlaid with quantities commonly used in signal processing: mean, confidence interval for
the mean (= mean + 1.960/+/n, where ¢ is the standard deviation and n is the number of samples) and
prediction interval (= mean =+ 1.960).

2.1.3 COEFFICIENT OF VARIATION AND LORENZ CURVE GAP

Those are frequently used measures of variation, resaaleel invariant by change of scale. They
apply to a positive data set, ..., z,,.

COEFFICIENT OF VARIATION . Itis defined by

Cov=" 2.2)
m
wherem is the mean and the standard deviation, i.e. it is the standard deviatisnaked by the
mean. It is also sometimes call&ynal to Noise ratio. For a data set with values one always
hag
0<CoV<+vn-1 (2.3)

where the upper bound is obtained whenalave the same value except one of them. The lower
bound is reached when all values are equal.

LORENZ CURVE GAP. Itis an alternative measure of dispersion, obtained wherepiace the
standard deviation by tHdean Absolute Deviation (MAD). The MAD is defined by

1 n
MAD = =S |z; —
nZ|x m

i=1

2Consider the maximization problem: maximize; (x; — m)? subject toz; > 0 and)_ x; = mn. Sincex
> (z; —m)? is convex, the maximum is at an extremal poipt = mn, z; = 0, i # .
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i.e. we compute the mean distance to the mean, instead ofjtleesroot of the mean square
distance. Compared to the standard deviation, the MAD ssdeasitive to a few very large values.
It follows from the Cauchy-Schwarz inequality that it is alys less than the standard deviation,
ie.

0 <MAD <s (2.4)
with equality only ifz; is constant, i.ez; = m for all 7.
If n is large and; is iid from a gaussian distribution, then

2
MAD =~ \/js ~ (0.8s (2.5)
s

If in contrast, ifx; comes from a heavy tailed distribution with a finite meanthens — oo asn
gets large, whereas MAD converges to a finite limit.

ThelLorenz Curve Gap is a rescaled version of MAD, defined by

_ MAD

gap = — — (2.6)
m

The reason for the fact@ris given in the next section. We always have
1
0<gap<1--— (2.7)
n

thus, contrary to CoV, gap is betwedrandl1. If n is large andr; is iid from a gaussian dis-
tribution, then gap~ 0.4CoV, if it comes from an exponential distribution, gap 0.37 and
CoV~1.

If 2; is iid and comes from a distribution with PDf), then, for large:, CoV and MAD converge to their theoretical
counterparts:

P — p)2f(x)dx
CoV — CoVy, = VI Mu) )
Jo |z — pul f(a)da
2p

MAD — gapih =

with p = fooo xf(x)dx.
If the distribution is gaussiay,, .- then Co\{, = % and gagp = 1/%%; if it is exponential then Co), = 1 and
9apih = ;-

2.1.4 FAIRNESSINDICES

Often one interprets variability as fairness, and sevetiahéss indices have been proposed. We
review here the two most prominent ones. We also show thgtaresin fact reformulations of
variability measures, i.e. they are equivalent to CoV ang ,gster proper mapping (so that using
these indices may appear superfluous). Like in the previettsos, the data set; is assumed here
to be positive.
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Figure 2.4:Jain’s fairness index is cos? 6. z1, ..., z,, is the data set and m is the sample mean. The figure
is for n = 2.

JAIN’S FAIRNESS INDEX (JFI). Itis defined as the square of the cosine of the angle between
the data set; and the hypothetical equal allocation (Figure 2.4). It isegiby

n 2
JFI = % (2.8)
1=1 "1

A straightforward computation shows that the fairness mea3dF| is a decreasing function of the

variability measure CoV:

1

so that, by Eq.(2.3), we conclude that JFI ranges fFjLOI(mnaximum unfairness) to (all z; are
equal).

LoRENZ CURVE Thelorenz Curve is defined as follows. A pointp, ¢) on the curve, with
p, ¢ € [0, 1], means that the bottom fractignof the distribution contributes to a fractidrof the
total -7 | ;.

More precisely, we are given a data set> 0, i = 1..n. We plot for alli = 1...n the points

pi = %
L Z?:l Zj

See Figure 2.5 for examples. We can make the Lorenz curvetaaons mapping = L(p) by
linear interpolation and by setting(0) = 0. The resulting.() is a continuous mapping froff, 1]
onto|0, 1], monotone non decreasing, convex, Witf)) = 0 andL(1) = 1.

The Lorenz curvé = L(p) can be interpreted as a global measure of fairness (or végipdf all
x;S are equal (maximum fairness) thefp) = p andL() is the diagonal of the squaj@ 1] x [0, 1]
(called the “line of perfect equality”). In the worst casbetlLorenz curve follows the bottom
and right edges of the square (called the “line of perfeajuradity”) (Figure 2.6). In practice the
Lorenz curve is computed by sortingin increasing ordera(;) < z¢; < ... < z(,) and letting

| = Ty + T T (2.11)

nm
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wherem is the sample mean. It follows that< [; < % i.e.
0<L(p)<p

i.e. and the Lorenz curve is always between the lines of peeiguality and perfect inequality.

LoREZz CURVE GAP, AGAIN A measure of fairness is the largest euclidian distanceg#épg
from the Lorenz curve to the diagonal, rescaled by its manimalue( ! ) It is also equal to

V2
the largest vertical distanceyp,,c( 1) (v — L(u)) (Figure 2.5). The gap can easily be computed
by observing that it is reached at indgx= max{i : z(;; < m}, i.e. ata valug, =  such that
the bottom fractiom, of the data have a a value Iess than the average. Thus
gap — o T + o Tig) (2.12)
n mn

We have already introduced the gap in Eq.(2.6), so we needaw that the two definitions are
equivalent. This follows from

1 & 1 &
MAD = E;\xl—m\ = E;‘x(i) —m‘
20 n
(Z(m — x(i)) + Z([L’(Z—) — m))

=1 i0+1

= %(zom Zzox +nm — Zx (n —ig)m )

= 2m gap

S|

which is the same as Eq.(2.6).

The theoretical Lorenz curve is defined for a probabilityritisition with cumulative distribution function CDF ()
and finite mean by

D
L) = [ P 0 (2.13)
0
whereF~! is the (right-continuous) pseudo-inverse
F~Y(q) = sup{x: F(z) < p} = inf{x: F(z) > q}

If the CDF F() is continuous and increasing, théfr ! is the usual function inverse. In this case, the theoretical
Lorenz curve gap is then equal to

gagnp = ro — L(po)
with pg = F(u).
The theoretical Lorenz curve is the limit of the Lorenz cufimean iid data sample coming frofi(), whenn is large.

THE GINI COEFFICIENT  Gini coefficient This is yet another fairness index, very widespread
in economy, and, by imitation, in computer and communicasigstems. Its definition is similar
to the Lorenz curve gap, with the mean average deviatioaceplby theMean Difference:

MD = mZm—xﬂ (2.14)

2
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(c) Ethernet Byte Counts{, is the byte length of the
nth packet of an Ethernet trace [64])

| Cov | JFI | gap | Gini | Gini-approx]

Figure 2.1, old code| 0.779| 0.622| 0.321| 0.434 0.430

Figure 2.1, new codel 0.720| 0.658| 0.275| 0.386 0.375

Ethernet Byte Countg 1.84 | 0.228| 0.594| 0.730 0.715

29

Figure 2.5:Lorenz curves for three data sets, with proportion of users p on = axis and proportion of total
sum ¢ on y axis. The diagonal is the line of perfect equality. The maximum distance (plain line) is equal
to LQ times the maximum vertical deviation (dashed line), which is called the Lorenz curve gap. The Gini

7

coefficient is the area between the diagonal and the Lorenz curve, rescaled by its maximum value % The
table gives the values of Coefficient of Variation, Jain’s Fairness Index, Lorenz Curve Gap, Gini coefficient
and the Gini coefficient approximation in Eq.(2.17).
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Figure 2.6: Lorenz curve (plain line). The line of perfect equality is OD, of perfect inequality OBD.
The Lorenz curve gap is the maximum distance to the line of perfect equality, re-scaled by /2. The Gini
coefficient is the area between the line of perfect equality and the Lorenz curve, re-scaled by 2.

The Gini coefficient is then defined as

.. MD
Gini = — (2.15)
2m
wherem is the empirical mean of the data set. It can be shown thaeigisl to2x the area be-
tween the line of perfect equality and the Lorenz curve (8sealing factoR makes it lie between
0 and1). In practice the Gini coefficient can be computed by usindZE#1), which gives

- 2 . 1

The theoretical Gini coefficient for a probability distriimn with CDF F() is defined by

1 1
Ginigy = 2/ (¢g—L(g))dg=1— 2/ L(q)dq
0 0
whereL() is the theoretical Lorenz curve defined in Eq.(2.13).

Since the Lorenz curve is convey, it is straightforward taitmb the Gini coefficient by means
of the Lorenz curve gap. On Figure 2.6, we see that the are#ebatthe Lorenz curve and the
diagonal is lower bounded by the triangleV/, D and upper bounded by the trape2elC D. It
follows from this and Eq.(2.16) that

0< gap < Gini gl—l
n
Gini < gap(2 — gap)

where the lower bound is reached at maximum fairness.

It follows that one can also approximate Gini by the arithmetean of the lower and upper
bounds:
Gini =~ gap(1.5 — 0.5 gap) (2.17)
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Jain’s Fairness Inde

X

Lorenz Curve Gap

Gini Coefficient

(JFI) (gap) (Gini)
i 1 MA MD
Definition T CoV® o o
Eq.(2.2), Eq.(2.8) Eq.(2.6) Eq.(2.15)
Bounds S < JFI<1(MF) [(MF)0< gap<1-1 (MF)0 < Gini <1-—1
Relations W < JFI gap < Gini < gap(2— gap)
Equality only at MF Gini =~ gap(1.5 — 0.5 gap)
Exp(\), A > 0 0.5 1~ 0.368 0.5
f b b—a b—a
Uni (CL, ) 1_’_3((1;:;))22 4(a+b) 3(a+b)
0<a<b
(p—2) 1 1\ 1
Pareto p, o) fp’il)g » ( - ,;) 2p—1
x9>0,p>1 forp > 2

Table 2.1:Relationships between different fairness indices of a data set with n samples and empirical
mean m (MF = value when fairness is maximum, i.e all data points are equal).

SUMMARY

summary with some recommendations.

Since there are so many different variability and fairnesiices, we give here a

First, since the Gini coefficient can be essentially predidtom the Lorenz curve gap, we do not
use it further in this book. However, it may be useful to kndw telationship between the two
since you may find that it is used in some performance evalagsults.

Second, Jain’s fairness index and the Lorenz curve gap adafuentally different and cannot be
mapped to each other. The former is essentially the samesagahdard deviation or the coeffi-
cient of variation. If the data comes from a heavy tailedrdbstion, the theoretical coefficient of
variation is infinite, and CoV~ oo as the number of data points gets large. Comparing different
CoVs in such a case does not bring much information. In cefjttiae Lorenz curve gap continues
to be defined, as long as the distribution has a finite mearholild be preferred, if one has a

choice.

We recall the main inequalities and bounds in Table 2.1 oeBdg See also Figure 2.5 for some

examples.

2.2 CONFIDENCE INTERVALS

2.2.1 WHAT IS A CONFIDENCE INTERVAL ?

When we display a number such as the median or the mean oka séperformance results, it is
important to quantify their accuracy (this is part of theestific method, Chapter 1L onfidence
intervals quantify the uncertainty about a summarized data that istoltlee randomness of the

measurements.

EXAMPLE 2.2:COMPARISON OFTWO OPTIONS, CONTINUED.

We wish to quantify the improvement

due to the new system. To this end, we measure the reduction in run time for the same sequence
of tasks as on Figure 2.1 (both data sets on Figure 2.1 come from the same transaction sequences
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Figure 2.7:Data for Example 2.2: reduction in run time (in ms). Right: Box plot with mean and confidence
interval for mean.

— statisticians say that this is a paired experiment). The differences are displayed in Figure 2.7.

The last panel shows confidence intervals for the mean (horizontal lines) and for the median
(notches in Box plot). For example, the mean of the reduction in run time is 26.1 4+ 10.2.The
uncertainty margin is called the confidence interval for the mean. It is obtained by the method
explained in this section. Here, the mean reduction is non negligible, but the uncertainty about it
is large.

There is a confidence interval for every summarized quantitgdian, mean, quartile, standard
deviation, fairness index, etc. In the rest of this sectisa,explainhowto compute confidence
intervals.

2.2.2 (CONFIDENCE INTERVAL FOR MEDIAN AND OTHER QUANTILES

We start with the median and other quantiles, as it is botlpkkst and most robust; this section
also serves as an illustration of the general method for cimg confidence intervals.

The main idea (which underlies all classical statisticafaliae) is to imagine that the data we have
measured was in fact generated by a simulator, whose pragranknown to us. More precisely,
we are given some datg, ..., z,,; we imagine that there is a well defined probability disttibn
with CDF F'() from which the data is sampled, i.e. we have received one ledngpn a sequence
of independent and identically distributedl] random variables(y, ..., X,,, each with common
CDF F(). The assumption that the random variables are iid is capftél does not hold, the
confidence intervals are wrong. We defer to Section 2.3 aidson of when we may or may not
make this assumption. For now we assume it holds.

The distribution’() is non-random but is unknown to us. It has a well defined medianle-
fined by : for everyi, P(X; < m) = 0.5. We can never known exactly, but weestimateit
by m(x, ..., z,), equal to the sample median defined in Section 2.1. Note hieatdlue of the
estimated median depends on the data, so it is random: ferefit measurements, we obtain
different estimated medians. The goal of a confidence iateésvto bound this uncertainty. It is
defined relative to aonfidence level ~; typically v = 0.95 or 0.99:

DEFINITION 2.2.1. A confidence intervalat levely for the fixed but unknown parameteris an
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interval (u(Xy, ..., X,,), v(X1, .., X)) such that

P(u(Xq,..., X)) <m <ov(Xy,....,X,) > 7 (2.18)

In other words, the interval is constructed from the datahshat with at leasi5% probability (for
~ = 0.95) the true value ofn falls in it. Note thatt is the confidence interval that is random,
not the unknown parameter m.

A confidence interval for the median or any other quantileeis/\simple to compute, as the next
theorem shows.

THEOREM 2.2.1 (Confidence Interval for Median and Other Quantilé®t X, ..., X,, ben iid
random variables, with a common CDIF). Assume thai’() has a density, and fdr < p < 1 let
m,, be ap-quantile of (), i.e. F(m,) = p.

LetX ;) < X9 < ... < X(,,) be theorder statistic, i.e. the set of values of; sorted in increasing
order. LetB,, , be the CDF of the binomial distribution withrepetitions and probability of success
p. A confidence interval fom, at levely is

(X, X))

wherej andk satisfy
Bpp(k =1) = Bnp(i —1) 27

See the tables in Appendix A on Page 311 for practical valu&s. large n, we can use the
approximation

Jj o~ |np—nynp(l—p)]

k =~ [np+nyvnp(l—p)]+1
wheren is defined byVy 1 () = £ (e.g.n = 1.96 for = 0.95).

TheBinomial distribution B, ,, with n repetitions and probability of successs the distribution
of Z =3"" | Z, whereZ; are iid random variables such tiat= 0 or 1 andP(Z; = 1) = p, i.e. it
is the distribution of the number of successes in an expettinvigh » trials and individual success
probabilityp. (The random variables; are calledBernoulli random variables), ; is the CDF of
the gaussian distribution with meérand variance.)

Forn = 10, the theorem and the table in Section A say thab#-confidence interval for the
median (estimated a)é‘%xw)) is [X(2), X(9)]. In other words, we obtain a confidence interval for
the median of 10 results by removing the smallest and thesargould it be simpler ?

Note that, for small values of, no confidence interval is possible at the levet or 0.99. This
is due to the probability that the true quantile is outsidg @frthe observed data still being large.

For largen, the binomial distribution can be approximated by a gawsdgistribution, which ex-
plains the approximation in the theorem.

The assumption that the distribution has a density (alded¢&®DF, probability density function) is for simplicity
of exposition. IfF'() does not have a density (e.g. because the num¥gese integers) the theorem hold with the
modification that the confidence intervali§;), X (1)) (instead of Xy, X)]).
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2.2.3 (CONFIDENCE INTERVAL FOR THE MEAN

Here too there is a widely used result, given in the next #@orThe proof is standard and can be
found in probability textbooks [38, 76].

THEOREM 2.2.2. Let X, ..., X, ben iid random variables, the common distribution of which is
assumed to have well defined meaand a variancer?. Let/i,, ands? by

) 1 ¢
Hn = EZXZ (2.19)
=1
1 « X
sno= =) (Xi— )’ (2.20)
=1

The distribution of\/ﬁﬂ’;—;“ converges to the normal distributiaW, ; whenn — +o0o0. An approx-
imate confidence interval for the mean at leya$

Sn
0, 4 n— 2.21
fi n\/ﬁ (2.21)

wheren is the”T” quantile of the normal distributiodVy ;, i.e No1(n) = “T’Y For example,
n = 1.96 for v = 0.95 andn = 2.58 for v = 0.99.

Note that the amplitudes of the confidence interval deceela'i@%.

Also note however that some caution may be required whergubkim theorem, as it makes 3
assumptions:

1. the data comes from an iid sequence
2. the common distribution has a finite variance
3. the number of samples is large

each of these assumptions is worth screening, as thereaisticecases where they do not hold.
Assumption 1 is the same as for all confidence intervals & ¢hapter, and is discussed in Sec-
tion 2.3. Assumption 2 is true unless the distribution isviydailed, see Section 3.5. Assumption
3 is usually true even for small valuesofand can be verified using the method in Section 2.5.1.

NORMAL IID CASE

The following theorem is a slight variant of Theorem 2.22agplies only to the cases where we
know a priori that the distribution of the measured datacfei a common gaussian distribution
N,.»2, with o ando fixed but unknown. It gives practically the same result asofém 2.2.2 for
the confidence interval for the mean; in addition it gives afictence interval for the standard
deviation. This result is often used in practice, perhagsigbtfully, as the gaussian assumptions
are not always satisfied.

THEOREM 2.2.3. Let X1, ..., X,, be a sequence of iid random variables with common distriouti
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N, 2. Let
i, = Zn:X (2.22)
S N3 Z .
1 n
52 = X, — fin)? 2.23
on = — Z( fin) (2.23)
Then
e The distribution of. n“’;—;“ is Student’s,,_;; a confidence interval for the mean at level
is
[y, 1 On (2.24)
Hon 77\/5 .

wheren is the (+£2) quantile of the student distributian_;.

e The distribution of n — 1)% isx?_,.
A confidence interval at levelfor the standard deviation is

(6 nT_l,&n\/"gl] (2.25)

where¢ and¢ are quantiles of2_;: y2_(¢) = 2 andy?_, (&) = 2.

The distributions¢? andt,, are defined as followsChi-Square (x?) is the distribution of the sum
of the squares ofi independent random variables with distributi®dp, (its expectation is: and
its variance2n). Student (¢,,) is the distribution of

X
VY/n

whereX ~ Ny, Y ~ x2 andX andY are independent.

Unlike in Theorem 2.2.2, the magic numbets , ¢ depend on the confidence levebut also on
the sample size. For instance, witm = 100 and confidence level.95, we haven = 1.98,
¢ = 73.4, and¢ = 128.4. This gives the confidence intervals for mean and standarititen:

[fin — 0.1986,,, fin, + 0.1986,] and[0.865,,, 1.146,,].

QUESTION 2.2.1. Does the confidence interval for the mean in Theorem 2.2.8rakpn the
estimator of the variance ? Conversely ?

We can compare the confidence interval for the mean givenibyttirorem in Eq.(2.24) and by
Theorem 2.2.2 in Eq.(2.21). The latter is only approximataele, so we may expect some small
difference, vanishing with. Indeed, the two formulas differ by two terms.

1. The estimators of the varianéd = 1= 3" (X, —f1,)> ands? = L3 (X, — ji,)?
differ by the factor: versus—*. The factor-- may seem unnatural, but it is required for
Theorem 2.2.3 to hold exactly. The factg)lappears naturally from the theory of maximum
likelihood estimation (Section B.1). In practice, it is metjuired to have an extreme accu-
racy for the estimator of? (since it is a second order parameter); thus u%hgor % makes

little difference. Boths,, ands,, are calledsample standard deviation.

3Yes: No
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Normal Asymptotic and Bootstrap Percentile Confidence Intervals
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Figure 2.8:Confidence intervals for both compiler options of Example 2.1 computed with three different
methods: assuming data would be normal (Theorem 2.2.3) (left); the general method in and with the
bootstrap method (right).

2. 1 in EQ.(2.24) is defined by the student distribution, and by tlormal distribution in
Eq.(2.21). For large, the student distribution is close to normal; for examplghw = 0.95
andn = 100, we havey = 1.98 in Eq.(2.24) and) = 1.96 in Eq.(2.21).

See Figure 2.8 for an illustration.

2.2.4 (CONFIDENCE INTERVALS FOR FAIRNESS INDICES AND THE BOOT-
STRAP

There is no analytical general method, even wheslarge (but see [102] for some special cases,
if the data is i.i.d normal or log-normal). Instead, we usesnagic, computational method, called
the bootstrap. It is general and can be used for any estinmattbjust to fairness indices. It applies
to all cases where data is iid.

THE BOOTSTRAP Consider a samplé& = (x, ..., z,,), which we assume to be a realization of
an iid sequenc&, ..., X,,. We know nothing about the common distributifi) of the X;s. We
are interested in some quantityt) derived from the data, for which we want to find a confidence
interval (in this context(7) is called astatistic). For example, if the statistic of interest is the
Lorenz curve gap, then by Section 2.1.3:

n

H#) = oo E-i_l -3

J=1

n
>3

J n 4 ?
i=1

Thebootstrap method uses the samplé= (z4, ..., ,,) as an approximation of the true, unknown
distribution. It is justified by the Glivenko-Cantelli theson which says that the ECDF converges
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with probability 1 to the true CDF'() whenn gets large.
The method is described formally in Algorithm 1. The loopatessR bootstrap replicates X,

Algorithm 1 The Bootstrap, for computation of confidence interval at level  for the statistic ¢(Z). The data
set ¥ = (x1,...,x,) is @assumed to be a sample from an iid sequence, with unknown distribution. ry is the
algorithm’s accuracy parameter.

1: R=1[2ry/(1—=7)] -1 > For exampler, = 25, v = 0.95, R = 999
2. forr=1:Rdo
3 drawn numbers with replacement from the list, ..., z,,) and call themX7, ..., X7
4. letTr = (X7)
5

6

7

: end for
: (T(l), ...,T(R)) = SOFt(Tl, ...,TR)
. Prediction interval i$7(,,) ; T(r+1-ro)]

r = 1,..., R. Each bootstrap replicatﬁ" = (X7,...,X]) is a random vector of size, like the
original data. All.X] are independent copies of the same random variable, otayndrawing
from the list(x, ..., z,,) with replacement For example, if allz;, are distinct, we hav®( X! =
.Tk) = %, k = 1, ey T

For eachr, line 4 computes the value of the statistic obtained with-the'replayed” experiment.
The confidence interval in line 7 is thpercentile bootstrap estimate at levely. It is based on
the order statisti€7{,),—1,... .z Of (17),=1,. &

The value ofR in line 1 needs to be chosen such that there are sufficienthy p@ints outside the
interval, and depends on the confidence level. A good valie4s % — 1. For example, with
v = 0.95, take R = 999 and the confidence interval in line 7 [i&(25); T(g75)] -

ExAMPLE 2.3:CONFIDENCE INTERVALS FOR FAIRNESS INDICES. The confidence intervals for the
left two cases on Figure 2.5 were obtained with the Bootstrap, with a confidence level of 0.99,
i.e. with R = 4999 bootstrap replicates (left and right: confidence interval; center: value of index
computed in Figure 2.5).

\ | Jain’s Fairness Index | Lorenz Curve Gap |

Old Code | 0.5385 0.6223 0.7057 | 0.2631 0.3209 0.3809
New Code | 0.5673 0.6584 0.7530 | 0.2222 0.2754 0.3311

For the third example, the bootstrap cannot be applied directly, as the data set is not iid and the
bootstrap requires i.i.d data. Subsampling does not work as the data set is long range dependent.
A possible method is to fit a long range dependent model, such as fractional arima, then apply the
bootstrap to the residuals.

The bootstrap may be used for any metric, not just for fagmedices. Figure 2.8 gives a compari-
son of confidence intervaler the mearobtained with the bootstrap and with the classical methods
(heret(z) = 3" | ;).

In general, the percentile estimate is an approximationtdrals to be slightly too small. For a
theoretical analysis of the bootstrap method, and othdicaions, see [33].
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2.2.5 (CONFIDENCE INTERVAL FOR SUCCESSPROBABILITY

This is the frequent case where we dandependent experiments and are interested in a binary
outcome (success or failure). Assume we obserseeccesses (with < z < n). We would like to
find a confidence interval for the probabilipyof success, in particular whens small.

Mathematically, we can describe the situation as follows.N&ve a sequencé,, ..., X,, of inde-
pendent Bernoulli random variables such thaX; = 0) = 1 — p andP(X; = 1) = p, and we
observeZ = """ | X;. The numbemn of experiments is known, but not the success probability
p, which we want to estimate. A natural estimatorpaf = > | X, i.e. the mean of the out-
comes (this is the maximum likelihood estimator, see Seddid). Therefore, we can apply the
method for confidence intervals for the mean in Theorem 2l@®ever, this method is valid only
asymptotically, and does not work wheis very small compared te. A frequent case of interest
is when we observe no success= 0) out of n experiments; here, Theorem 2.2.2 gie3)| as
confidence interval fop, which is not correct. We can use instead the following itesul

THEOREM 2.2.4. [43, p. 110] Assume we obseryesuccesses out afindependent experiments.
A confidence interval at levelfor the success probabilityis [L(z); U(z)] with

L(0)=0
L(z) = ¢pns1 (BB2), 2=1,..un (2.26)
U(z)=1—L(n — 2)

whereg,, .(«) is defined fom = 2,3, ...,z € {0,1,...,n} anda € (0;1) by

¢n,z(05> = ﬁ
{ ny =2(z + 13, 7];2 =2(n—2), 1 —a = Fy a,(f) (2.27)

(F, 0 () is the CDF of the Fisher distribution with,, n, degrees of freedom). In particular, the
confidence interval fop when we observe = 0 successes i$; po(n)] with

po(n) =1— (1_—7) o log (L) +o (l) for largen (2.28)
) n 1—xv n

Whenever > 6 andn — z > 6, the normal approximation

L
U

~
~

2(1-3)

(2.29)
z(1-%)

~
~
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+

can be used instead, itk ; () = 2.
The confidence interval in the theorem is not the best onat lsuperhaps the simplest. It is based
on a symmetric coverage interval, i.e. the probability ahgeabove (or below) is< 1‘77 and it
is the smallest interval with this property. Other, non syetmg intervals can be derived and are
slightly smaller [12].

Note that the functiom,, .() is the reverse mapping of — B, ,(z) whereB,, ,() is the CDF of
the binomial distribution (this explains Eq.(2.28)). E427) is used in numerical implementations
[43].
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Forvy = 0.95, Eq.(2.28) giveg,(n) ~ 2822 and this is accurate with less thae relative error

for n > 20 already.
The confidence interval in EQ.(2.29) is obtained by applcadf the asymptotic confidence inter-
val for the mean; indeed, a direct application of Theorenm2g®/esji,, = £ ands? = 2n=z)

n

EXAMPLE: SENSORLOSSRATIO. We measure environmental data with a sensor network. There
is reliable error detection, i.e. there is a coding system which declares whether a measurement is
correct or not. In a calibration experiment with 10 independent replications, the system declares
that all measurements are correct. What can we say about the probability p of finding an incorrect
measurement ?

Apply Eq.(2.28): we can say, with 95% confidence, that p < 30.8%.

Later, in field experiments, we find that 32 out of 145 readings are declared incorrect. Assuming
the measurements are independent, what can we say about p ?

Apply EQ.(2.29) with z = 32, n = 145: with 95% confidence we can say that L < p < U with

L~
U~

Instead of the normal approximation in Eq.(2.29), we could have used the exact formula in Eq.(2.26),
which would give L = 15.6%, U = 29.7%.

—_

— L% 2 (1-2) =15.3%

n

+ L6, 2 (1— 2) = 28.8%

n n

S Sw

Theorem 2.2.4 is frequently used in conjunction with Mon#l@ estimation of the-value of a
test, see Example 6.7 on Page 175.

2.3 THE INDEPENDENCE ASSUMPTION

All results in the previous and the next section assume theeida sample of a sequence of inde-
pendent and identically distributed (iid) random variablg/e discuss here in detail the meaning
of this assumption (in Section 2.4.3 we also discuss thesg@usssumption, required by Theo-
rems 2.2.2 and 2.2.3).

2.3.1 WWHAT DOES IID MEAN ?

lid-ness is a property of a stochastic model, not of the d&ftilaen we say, by an abuse of language,
that the collected data set is iid, we mean that we can do &= itollected datay, ..., z, IS a
sample (i.e. a simulation output) for a sequence of randamablesX;, ..., X,,, whereXy, ..., X,

are independent and all have the same (usually unknowmipdison with CDF F'().

To generate such as sample, we draw a random number fromsthi&uation 7'(), using a random
number generator (see Section 6.6). Independence medrikglrandom numbers generated at
every step are discarded and not re-used in the future stepd, .... Another way to think of
independence is with conditional probabilities: for anydeaeal numbersA

]P)(XZ cA | X = X, -~-7Xi—1 = xi—l) = ]P)(XZ € A) (230)
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i.e. if we know the distribution F'(x), observingXy, ..., X;_; does not give more information
aboutX;.

Note the importance of the “if” statement in the last senéenemove it and the sentence is no
longer true. To understand why, consider a sample.., z,, for which we assume to know that
it is generated from a sequence of iid random variables..., X,, with normal distribution but
with unknown parametdj, o2). If we observe for example that the average:gf..., z,,_; is 100
and all values are between 0 and 200, then we can think ttsavéry likely thatz,, is also in the
interval [0, 200] and that it is unlikely that:;,, exceedsl000. Though the sequence is iid, we did
gain information about the next element of the sequencengavbserved the past. There is no
contradiction: if we know that the parameters of the rand@megator are: = 100 ando? = 10
then observing, ..., x,,_; gives us no information about, .

2.3.2 HowDO | KNOW IN PRACTICE IF THE IID ASSUMPTION IS VALID ?

If your performance data comes frondasigned experiment, i.e. a set of simulation or tests that
is entirely under your control, then it is up to you to desigimgs in such a way that the collected
data are iid. This is done as follows.

Every experiment has a number of factors, i.e., paramdtatste likely to influence the outcome.
Most of the factors are not really interesting, but you havadcount for them in order to avoid
hidden factor errors (see Section 1.2 for details). The exy@nt generates iid data if the values
of the factors are chosen in an iid way, i.e., according tond@an procedure that is the same for
every measured point, and is memoriless. Consider Examb|evBere the run time for a number
of transactions was measured. One factor is the choice dfdhsaction. The data is made iid
if, for every measurement, we choose one transactiandomly with replacement in a list of
transactions.

A special case of designed experiment is simulation. Haeeptethod is to generateplications
without resetting the random number generator, as exmlam8ection 6.3.

Else (i.e. your data does not come from a designed experimgnrom measurements on a
running system) there is little chance that the completaaece of measured data is iid. A simple
fix is to randomize the measurementsin such a way that from one measurement point to the
other there is little dependence. For example, assume yomaasuring the response time of an
operational web server by data mining the log file. The respdime to consecutive requests is
highly correlated at the time scale of the minute (due toquois like TCP); one common solution
is to choose requests at random, for example by selectingegniest in average every two minutes.

If there is some doubt, the following methods can be usedtibnial-ness:

1. (Autocorrelation Plot): If the data appears to be statigr(no trend, no seasonal compo-
nent), then we can plot the sample autocorrelation codftisjevhich are an estimate of the
true autocorrelation coefficientg (defined on Page 143). If the data is iid, thgn= 0 for
k > 1, and the sample autocorrelation coefficients fall withia ¥aluest1.96 //n (where
n is the sample size) with5% probability. An autocorrelation plot displays these bosind
as well. A visual inspection can determine if this assumptvalid. For example, on
Figure 2.9 we see that there some autocorrelation in thesikstliagrams but not in the
last two. If visual inspection is not possible, a formal temh be used (the Ljung-Box test,
Section 5.5.1). If the data is iid, any point transformatodthe data (such as the Box Cox
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Figure 2.9:Execution times for n = 7632 requests (top left) and autocorrelation function (bottom left), and
for the data sub-sampled with probability p = 1/2to 1/27 = 1/128. The data appears stationary and roughly
normal so the auto-correlation function can be used to test independence. The original data is positively
correlated, but the sub-sampled data looses correlation when the sampling probability is p = 1/64. The
turning point test for the subsampled data with p = 1/64 has a p-value of 0.52648, thus at confidence
level 0.95 we accept the null hypothesis, namely, the data is iid. The sub-sampled data has 116 points,
and the confidence interval obtained from this for the median of the sub-sampled data is [66.7, 75.2] (using
Theorem 2.2.1). Compare with the confidence interval that would be obtained if we would (wrongly) assume
the data to be iid : [69.0,69.8]. The iid assumption underestimates the confidence interval because the data
is positively correlated.

transformation for any exponesntSection 2.4.3) should appear to be non correlated as well.

2. (Lag-Plot): We can also plot the value of the data at titnversus at time + h, for different
values ofh (lag plots). If the data is iid, the lag plots do not show amntt. On Figure 2.10
we see that there is a negative trend at lag 1.

3. (Turning Point Test): A test provides an automated andweiis sometimes less sure than a
visual inspection. A test usually has a null hypothesis &arns a so calledp“value” (see
Chapter 4 for an explanation). If thevalue is smaller than = 1 — ~, then the test rejects
the null hypothesis at the confidence leyelSee Section 4.5.2 for details.

2.3.3 WHAT HAPPENSIF THE IID A SSUMPTION DOES NOT HOLD ?

If we compute a confidence interval (using a method that assuichdata) whereas the iid assump-
tion does not hold, then we introduce some bias. Data arfsimy high resolution measurements
are frequently positively correlated. In such cases, tididence interval is too small: there is not
as much information in the data as one would have if they wbeldid (since the data tends to
repeat itself); see Figure 2.9 for an example.
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It may still be possible to obtain confidence intervals whHendata does not appear to be iid. Two
possible methods are:

Sub-sampling This means select a fractigiof the measured data, and verify that the iid assump-
tion can be made for the selected data. The hope is that aboredisappears between data
samples that are far apart.

A simple way would be to keep evepy. data sample, wheneis the total number of points,

but this is not recommended as such a strict periodic sampfiay introduce unwanted

anomalies (called aliasing). A better method is to decidejpendently for each data point,
with probabilityp, whether it is sub-sampled or not.

For example, on Figure 2.9, sub-sampling works;fox 1/64; the confidence interval for
the median is much larger than if we would (wrongly) assuneeotiiginal data to be iid.

Sub-sampling is very simple and efficient. It does not alwagek, though: it does not work
if the data set is small, nor for some large data sets, whictaire correlated after repeated
sub-sampling (such data sets are called long range depgnden

Modelling is more complex but applies when sub sampling does not. Kistsin fitting a para-
metric model appropriate to the type of data, and computorgidence intervals for the
model parameters (for example using Section B.1). We itistthe method on the next
example.

EXAMPLE 2.4:JOE'S BALANCE DATA. Joe’s shop sells online access to visitors who download
electronic content on their smartphones. At the end of day ¢ — 1, Joe’s employee counts the
amount of cash ¢;_; present in the cash register and puts it into the safe. In the morning of day ¢,
the cash amount ¢;_4 is returned to the cash register. The total amount of service sold (according
to bookkeeping data) during day ¢ is s;. During the day, some amount of money b, is sent to the
bank. At the end of day ¢, we should have ¢; = ¢;_1 + s; — b;. However, there are always small
errors in counting the coins, in bookkeeping and in returning change. Joe computes the balance
Y, = ¢ — 1 — 8¢ + by and would like to know whether there is a systematic source of errors (i.e.
Joe’s employee is losing money, maybe because he is not honest, or because some customers
are not paying for what they take). The data for Y; is shown on Figure 2.10. The sample mean is
u = —13.95, which is negative. However, we need a confidence interval for p before risking any
conclusion.

If we would assume that the errors Y; are iid, then a confidence interval would be given by Theo-
rem 2.2.2 and we find approximately [—43, 15]. Thus, with the iid model, we cannot conclude that
there is a fraud.

However, the iid assumption is not valid, as Figure 2.10 shows (there is a strong correlation at
lag 1; this is confirmed by the lag plot). We use a modelling approach. A similar problem is
discussed in [18, Example 3.2.8], with oil rather than money leakage; the authors in [18] conclude
that a moving average model can be used. We apply the same approach here. First note that Y;
appears to be reasonably gaussian (also see Section 2.4.3), and has correlation only at lag 1. We
study such processes in Chapter 5; a gaussian process that has correlation only at lag 1 is the
moving average process, which satisfies

Yi—p=¢e+aegq

where ¢; is iid N, 2. This is a parametric model, with parameter (u, o, o). We can fit it using a
numerical package or the methods in Chapter 5. A confidence interval for 1 can be obtained using
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Figure 2.10:Daily balance at Joe’s wireless access shop over 93 days. The lag plots show y(t) versus
y(t + h) where y(t) is the time series in (a). The data appears to have some correlation at lag 1 and is thus

clearly not iid.



44 CHAPTER 2. SUMMARIZING PERFORMANCE DATA, CONFIDENCE INTBRLS

Theorem B.3.1 and Theorem D.5.1. Here, it is plausible that the sample size is large enough. For
any fixed p, we compute the profile log-likelihood. It is obtained by fitting an MA(1) process to
W; := Y; — u. Good statistical packages give not only the MLE fit, but also the log-likelihood of
the fitted model, which is exactly the profile log-likelihood pl(x). The MLE £ is the value of u that
maximizes pl(u), and —2(pl(f1) — pl(1)) is approximately x2. Figure 2.11 shows a plot of pi(u).

It follows that i = —13.2 and an approximate 95%-confidence interval is [—14.1, —12.2]. Contrary
to the iid model, this suggests that there is a loss of money, in average 13€ per day.
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-14.5 —-14 —-13.5 -13 —-12.5 -12

Figure 2.11:Profile Log Likelihood for the Moving Average model of Joe’s balance data. The horizontal
line is at a value /2 = 1.92 below the maximum, with x?(n) = 0.95; it gives an approximate confidence
interval for the mean of the data on the z axis.

QUESTION 2.3.1. Give an example of identically distributed but dependenticaan variables?

2.4 PREDICTION INTERVAL

The confidence intervals studied before quantify the acyuoda mean or median; this is useful
for diagnostic purposes, for example we can assert fromdh#dence intervals on Figure 2.7 that
the new option does reduce the run time, because the condidetecvals for the mean (or the
median) are in the positive numbers.

Sometimes we are interested in a different viewpoint andevike to characterize theariability

of the data: for example we would like to summarize which rmmetcan be expected for an
arbitrary future (non observed) transaction. Clearlyg thin time is random. Arediction interval

at levely is an interval that we can compute by observing a realizatioYy, ..., X,, and such that,
with probability v, a future transaction will have a run time in this intervahtuitively, if the
common CDF of allX;s would be known, then a prediction interval would simply Ilpeirater-
quantile interval, for examplen, 2, mi_q/2], With @ = 1 — ~. For example, if the distribution is
normal with known parameters, a prediction interval atlléveé5 would bey + 1.960. However,
there is some additional uncertainty, due to the fact thatt@ot know the distribution, or its
parameters a priori, and we need to estimate it. The prediatterval capture both uncertainties.
Formally, the definition is as follows.

“Here is a simple one: assumé, X3, X5, ... are iid with CDFF() and letX, = X;, X, = X3 etc. The
distribution of X; is F'() but the distribution ofX, conditional toX; = x; is a dirac atc;, thus depends om,. The
random choices taken fo¥; influence (here deterministically) the value ¥%.
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DEFINITION 2.4.1.Let X, ..., X,,, X,,.1 be asequence of random variables. A prediction interval
at levely is an interval of the formu (X, ..., X,,), v(X3, ..., X,,)] such that

P (w(X1, s Xp) < Xnir < 0(X1, o, X)) > (2.31)

Note that the definition does not assume tKats iid, however we focus in this chapter on the iid
case. The trick is now to find functionsandv that are pivots, i.e. their distribution is known even
if the common distribution of the&(;s is not (or is not entirely known).

There is one general result, which applies in practice topdausizes that are not too smatl &
39), which we give next.

2.4.1 PREDICTION FOR AN [ID SAMPLE BASED ON ORDER STATISTIC

THEOREM 2.4.1 (General IID Case).et X1, ..., X,,, X,,.1 be an iid sequence and assume that
the common distribution has a density. l}ég), ey X&) be the order statistic ok, ..., X,,. For
1< <k<n

P (X{y < X1 < X(jy) = nr1 (2.32)

thus fora > 2., [X7! (1—2)1)] is a prediction interval at level at least= 1 — a.
2

T X (a2 )y X

([(n+1)

For example, witm = 999, a prediction interval at level.95 (o = 0.05) iS [X(25), X(975)]. This
theorem is similar to the bootstrap result in Section 2.2 js exact and much simpler.

QUESTION 2.4.1. We have obtained simulation results and use the prediction interyal, M|
wherem is the smallest result andll/ the largest. For which values afis this a prediction interval
at level at leasp5% ? °

For very smalln, this result gives poor prediction intervals with valuesyadhat maybe far from
100%. For example, with = 10, the best prediction we can do|[i&,in, Tmax|, at levely = 81%.
If we can assume that the data is normal, we have a strongét, Igsown next.

5The interval IS X (1), X(n)] thus the level igﬁ_i- Itis > 0.95 for n > 39. We need at least 39 samples to provide
a 95% prediction interval.
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2.4.2 PREDICTION FOR A NORMAL IID SAMPLE

THEOREM2.4.2 (Normal IID Case)Let X1, ..., X,,, X, 41 be aniid sequence with common distri-
butionN,, 2. Letji, ands? be as in Theorem 2.2.3. The distribution\yﬁg%%ﬂl is Student’s
t,_1; a prediction interval at level — o/ is

, £y /1 + l& 2.33
fin £ 1 " (2.33)
n

wherer/ is the (1 — &) quantile of the student distributian_; .
For large n, an approximate prediction interval is

fon £ M0y (2.34)
wherer is the (1 — %) quantile of the normal distributiofV ; .

For example, form = 100 anda = 0.05 we obtain the prediction interval (we drop the index
[ —1.996, 1 + 1.996]. Compare to the confidence interval for the mean given by féme@.2.3
where the width of the interval is 10 = /n times smaller. For a large, the prediction interval is
approximately equal tp,, + ng,,, which is the interval we would have if we ignore the uncentiai
due to the fact that the parameterando are estimated from the data. Foas small ag6, the
difference between the two % and can be neglected in most cases.

The normal case is also convenient in that it requires thevledge of only two statistics, the mean
i1, and the mean of squares (from whighis derived).

Comment Compare the prediction interval in Eq.(2.34) to the confademterval for the mean
in Eq.(2.24): there is a difference %; the confusion between both is frequently done: when

comparing confidence interval, check if the standard dierias indeed divided by/n !

EXAMPLE 2.5:FILE TRANSFER TIMES. Figure 2.12 shows the file transfer times obtained in
100 independent simulation runs, displayed in natural and log scales. The last panel shows 95%-
prediction intervals. The left interval is obtained with the method of order statistic (Theorem 2.4.1);
the middle one by (wrongly) assuming that the distribution is normal and applying Theorem 2.4.1
— it differs largely.

The right interval is obtained with a log transformation. First, a prediction interval [u(Y7, ..., Y},),v(Y7,...Y},)]
is computed for the transformed data Y; = In(X;); the prediction interval is mapped back to the
original scale to obtain the prediction interval [exp(u(In(X1, ...,In(X,))), exp(v(In(X1, ..., In(X,,)))].

We leave it to the alert reader to verify that this reverse mapping is indeed valid. The left and right
intervals are in good agreement, but the middle one is obviously wrong.

The prediction intervals also show the central values (with small circles). For the first one, it is the
median. For the second one, the mean. For the last one, exp (Zn:le) i.e. the back transformed

of the mean of the transformed data (here, the geometric mean).

QUESTION 2.4.2. The prediction intervals in Figure 2.12 are not all symmearound the central
values. Explain why?

SFirst interval: the distribution of the data is obviouslytisymmetric, so the median has no reason to be in the
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Figure 2.12:File transfer times for 100 independent simulation runs, with prediction intervals computed
with the order statistic (1), assuming the data is normal (2) and assuming the log of data is normal (3).

There is no “larger” result for a prediction interval, like there is in Theoren22: a prediction
interval depends on the original distribution of thes, unlike confidence intervals for the mean,
which depend only on first and second moments thanks to thieatbmit theorem. Theorem 2.4.2
justifies the common practice of using the standard deviatga measure of dispersion; however
it provides useful prediction intervals only if the data epps to be iidand normal. In the next
section discuss how to verify normality.

2.4.3 THE NORMAL ASSUMPTION
QQPLOTS

This is a simple method for verifying the normal assumpthmsed on visual inspection. gxob-
ability plot, also calledyg-plot, compares two samples;, Y;, i = 1,...,n in order to determine
whether they come from the same distribution. C&l)) the order statistic, obtained by sorting
X; inincreasing order. ThuX ;) < X5 < .... The qg-plot displays the points((;), Y;)). If the
points are approximately along a straight line, then the&ibigions of X; andY; can be assumed
to be the same, modulo a change of scale and location.

Most often, we use qgplots to check the distributionYbfagainst a probability distributior’.

To do so, we plotz;, Y{;)), wherez; is an estimation of the expected valueli(;)), assuming
the marginal ofY; is /. The exact value of(Y{;)) is hard to obtain, but a simple approximation
(assuming that" is strictly increasing) is [32]:

7
Z‘Z:F_l
! <n+1)

A normal gqgplots, is a qgplot such that’ = N, ;, and is often used to visually test for normality
(Figure 2.13). More formal tests are the Jarque Bera testi(f®e4.5.1) and the goodness of fit
tests in Section 4.4.

middle of the extreme quantiles. Second interval: by nattisestrictly symmetric. Third interval: itis the expontsd
of a symmetric interval; exponential is not an affine transfation, so we should not expect the transformed interval
to be symmetric.
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Figure 2.13:Normal ggplots of file transfer times in Figure 2.12 and of an artificially generated sample
from the normal distribution with the same number of points. The former plot shows large deviation from
normality, the second does not.

RESCALING, HARMONIC , GEOMETRIC AND OTHER MEANS

Figure 2.12 illustrates that the use of standard deviat®oa hasis for a prediction interval may
be better if we re-scale the data, using a point tranformatibhe Box-Cox transformation is
commonly used for that. It has one shape paramed®d is given by

z¥—1 , s 7& 0
bs(z) = { nz . s=0 (2.35)
Commonly used parameters are= 0 (log tranformation)s = —1 (inverse),s = 0.5 ands = 2.
The reason for this specific form is to be continuous.in

It is easy to see (as in Example 2.5) tharadiction interval for the original data can be obtained
by reverse-transforming a prediction interval for the sfanmed data. In contrast, this does not
hold for confidence intervals Indeed, by reverse-transforming a confidence intervatfeirmean

of the transformed data, we obtain a confidence intervalrfotreer type of mean (harmonic, etc.).
More precisely, assume we transform a datacset., x,, by an invertible (thus strictly monotonic)
mappingd() into y1, ...y, i.e.y; = b(z;) andx; = b~ (y;) fori = 1, ..., n. We calledrransformed
sample mean the quantit)b‘l(% > v 1 vi), i.e. the back-transform of the mean of the transformed
data. Similarly, theransformed distribution mean of the distribution of a random variablg

is b~ (E(b(X)). Whenb() is a Box-Cox transformation with index= —1, 0 or 2 we obtain the
classical following definitions, valid for a positive datt $;,7 = 1...,n or a random variabl& :

Transformation Transformed Sample MegnTransformed Distribution Mean
1

Harmonic | b(z) =1/x T ﬁ
n Zwi=1 7, L X
Geometric | b(z) = In(x) (Il i) cE(n X)

Quadratic |  b(z) = 2 NI E(X?)

THEOREM 2.4.3. A confidence interval for a transformed mean is obtained byirtkierse trans-
formation of a confidence interval for the mean of the trarmefd data.
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For example, a confidence interval for the geometric medreigxponential of a confidence inter-
val for the mean of the logarithms of the data.

2.5 WHICH SUMMARIZATION To USE?

In the previous sections we have seen various summarizat@ods. In this section we discuss
the use of these different methods.

The methods differ in their objectivesonfidence interval for central value versuprediction
intervals. The former quantify the accuracy of the estimated centthle; the latter reflects how
variable the data is. Both aspects are related (the morabtarihe data is, the less accurate the
estimated central value is) but they are not the same.

The methods differ in the techniques used, and overlap toge kxtend. They fall in two cate-
gories: methods based on the order statistic (confideneevaitfor median or or other quantiles,
Theorem 2.2.1; prediction interval computed with ordetisti@, Theorem 2.4.1) or based on mean
and standard deviation (Theorems 2.2.3, 2.2.2, 2.4.2)tWbéypes of methods differ in theio-
bustness versus compactness

2.5.1 ROBUSTNESS
WRONG DISTRIBUTIONAL HYPOTHESES

The confidence interval for the mean given by Theorem 2.2j@ires that the central limittheorem
applies i.e. (1) the common distribution has a finite vareaand (2) the sample sizeis large
enough. While these two assumptions very often hold, it jgsartant to detect cases where they
do not.

Ideally, we would like to test whether the distributionBf= " | X, is normal or not, but we
cannot do this directly, since we have only one valu&'ofThe bootstrap method can be used to
solve this problem, as explained in the next example.

EXAMPLE 2.6:PARETO DISTRIBUTION.  This is a toy example where we generate artificial data,

iid, from a Pareto distribution on [1, +o00). It is defined by its cdf equal to F(c) := P(X > ¢) = &

cP
with p = 1.25; its mean is = 5, its variance is infinite (i.e. it is heavy tailed) and its median is 1.74.
Assume we would not know that it comes from a heavy tailed distribution and would like to use the
asymptotic result in Theorem 2.2.2 to compute a confidence interval for the mean.

We use the bootstrap method to verify convergence to the normal distribution, as follows. We are
given a data sample z1, ..., z,, from the Pareto distribution. We generate R replay experiments:
for each r between 1 and R, we draw n samples X! i = 1,...,n with replacement from the list
(x1,...,zy) and let T" = %X{. T" is the rth bootstrap replicate of T; we do a qgplot of the
T",r =1,..., R. If the distribution of 7" is normal, the qqplot should look normal as well.

We see that the ggplots do not appear normal, which is an indication that the central limit theorem
might not hold. Indeed, the confidence interval for the mean is not very good.

The previous example shows a case where the confidenceahf@rthe mean is not good, because
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Figure 2.14:(a) Left: Artificially generated sample of 100 values from a Pareto distribution with exponent
p = 1.25. Center: confidence intervals for the mean computed from Theorem 2.2.2 (left) and the bootstrap
percentile estimate (center), and confidence interval for the median (right). Right: qgplot of 999 bootstrap
replicates of the mean. The qgplot shows deviation from normality, thus the confidence interval given by
Theorem 2.2.2 is not correct. Note that in this case the bootstrap percentile interval is not very good either,
since it fails to capture the true value of the mean (= 5). In contrast, the confidence interval for the median
does capture the true value (= 1.74). (b) Same with 10000 samples. The true mean is now within the
confidence interval, but there is still no convergence to normality.
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Figure 2.15:File transfer times for 100 independent simulation runs with outlier removed. Confidence
intervals are without (left) and with (right) outlier, and with method (1) median (2) mean and (3) geometric
mean. Prediction intervals are without (left) and with (right) outlier, computed with the three alternative
methods discussed in Example 2.7: (1) order statistics (2) based on mean and standard deviation (3)
based on mean and standard deviation after re-scaling.

a distributional assumption was made, which is not corlaeatontrast, the confidence interval for
the medians correct (Figure 2.14), as it does not require any distrdngl assumption (other than
the iid hypothesis).

OUTLIERS
Methods based on the order statistic are more robust teeasitlAnoutlier is a value that signifi-
cantly differs from the average. The median and the prexfictiterval based on order statistic are

not affected by a few outliers, contrary to the mean and tkdiption interval based on mean and
standard deviation, as illustrated by the following exaenpl

EXAMPLE 2.7:FILE TRANSFER WITHONE OUTLIER. In fact in the data of Example 2.7 there is
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| | Index | Lower Bound, CI| Index | Upper Bound, CI|

Without Outlier | JFI 0.1012| 0.1477| 0.3079
gap 0.4681| 0.5930| 0.6903
With Outlier JFI 0.0293| 0.0462| 0.3419
gap 0.4691| 0.6858| 0.8116

Table 2.2:Fairness indices with and without outlier.

one very large value, 5 times larger than the next largest value. One might be tempted to remove
it, on the basis that such a large value might be due to measurement error. A ggplot of the data
without this “outlier” is shown on Figure 2.15, compare to the corresponding qg-plot with the outlier
in Figure 2.13 (a,b). The prediction intervals based on order statistics are not affected, but the one
based on mean and standard deviation is completely different.

Table 2.2 shows the values of Jain’s fairness index and the Lorenz curve gap is very sensitive to
the presence of one outlier, which is consistent with the previous observation since Jain’s fairness
index is defined by the ratio of standard deviation to mean (coefficient of variation). The Lorenz
curve gap is less sensitive.

The outlier is less of an outlier on the re-scaled data (with the log transformation). The qqgplot
of the rescaled data is not affected very much, neither is the prediction interval based on mean
and standard deviation of the rescaled data. Similarly, the confidence intervals for median and
geometric mean are not affected, whereas that for the mean is. We do not show fairness indices
for the re-scaled data since re-scaling changes the meaning of these indices.

Care should be taken to screen the data collection procéaiutieie outliers, namely values that
are wrong because of measurement errors or problems. Ire¢ki@ps example, we should not
remove the outlier. In practice it may be difficult to diffat&ate between true and spurious outliers.
The example illustrates the following facts:

e Outliers may affect the prediction and confidence inter@lsed on mean and standard
deviation, as well as the values of fairness indices. J&airaess index is more sensitive
than the Lorenz curve gap.

e This may go away if the data is properly rescaled. An outlesome scale may not be an
outlier in some other scale.

¢ In contrast, confidence intervals for the median and priedichtervals based on order statis-
tics are more robust to outliers. They are not affected bgcading.

2.5.2 (COMPACTNESS

Assume we wish to obtain both a central value with confidentaval and a prediction interval for
a given data set. If we use methods based on order statisgosjll obtain a confidence interval
for the median, and, say, a prediction interval at |&h. Variability and accuracy are given by
different sample quantiles, and cannot be deduced from ooier. Furthermore, if we later are
interested iM9% prediction intervals rather than 95%, we need to recompete estimates of

the quantiles. The same argument speaks in favour of qyengtithe variability by means of the
Lorenz curve gap.
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In contrast, if we use methods based on mean and standasmtidayiwe obtain both confidence
intervals and prediction intervals at any level with just&ameters (the sample mean and the
sample standard deviation). In particular, the sampledstahdeviation gives indication on both
accuracy of the estimator and variability of the data. Hasveas we saw earlier, these estimators
are meaningful only in a scale where the data is roughly nhifrtaere is any.

Also, mean and standard deviation are less complex to cartpah estimators based on order
statistics, which require sorting the data. In particutagan and standard deviation can be com-
puted incrementally online, by keeping only 2 counters (&fimalues and sum of squares). This
reason is less valid today than some years ago, since theeseding algorithms with complexity
nlin(n).

2.6 OTHER ASPECTS OFCONFIDENCE/PREDICTION INTER-
VALS

2.6.1 INTERSECTION OF CONFIDENCE/PREDICTION INTERVALS

In some cases we have several confidence or prediction aisdor the same quantity of interest.
For example, we can have a prediction interydbased on mean and standard deviation’or
based on order statistics. A natural deduction is to considg the intersectiod N I’ is a better
confidence interval. This is almost true:

THEOREM 2.6.1. If the random intervald, I’ are some confidence intervals at leyek 1 — «,
~v" =1 — &/ then the intersectioh N I’ is a confidence interval at level at lealst- « — o/. The
same holds for prediction intervals.

EXAMPLE 2.8:FILE TRANSFERTIMES. (Continuation of Example 2.7). We can compute two predic-
tion intervals at level 0.975, using the order statistic method and the mean and standard deviation
after rescaling (the prediction obtained without rescaling is not valid since the data is not normal).
We obtain [0.0394, 336.9] and [0.0464,392.7]. We can conclude that a prediction interval at level
0.95 is [0.0464, 336.9], which is better than the two.

Compare this interval to the prediction intervals at level 95% for each of the two methods; they are
[0.0624, 205.6] and [0.0828,219.9]. Both are better.

Thus, for example if we combine two confidence intervals alle7.5% we obtain a confidence
interval at levelo5%. As the example shows, this may be less good than an origamdidence
interval at leveb5%.

2.6.2 THE MEANING OF CONFIDENCE

When we say that an intervdlis a confidence interval at level 0.95 for some paraméteve
mean the following. If we could repeat the experiment mames, in about 95% of the cases, the
interval [ would indeed contain the true valde

QUESTION 2.6.1. Assume 000 students independently perform a simulation of an M/M/lugue
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with load factorp = 0.9 and find @5% confidence interval for the result. The true result, unknown
to these (unsophisticated) students.ig he students are unsophisticated but conscientious, hknd a
did correct simulations. How many of the 1000 students doexpect to find a wrong confidence
interval, namely one that do@®t contain the true value ?

2.7 PROOFsS

THEOREM 2.2.1 LetZ =3}, 1{x,<m,} be the number of samples that lie below orgt. The CDF ofZ
is B,, , since the eventsX;, < m,} are independent ar®l( X, < m,,) = p by definition of the quantile,. Further:

<2 & X smy
k>Z+1 & X(k)>mp
thus we have the event equalities
{(Xgysmpy <X} ={i<Z<k-1}={j-1<Z<k-1}

and
P (X(J') <my < X(k)) =Bnp(k—1) = Bnp(j — 1)
It follows that [ X (;), X (1)) is a confidence interval fon,, at levely as soon a#3,, ,(k — 1) — B, ,(j — 1) > 7.

The distribution of theX;s has a density, thys(;), X(x)) aswelland® (X ;) < m, < X)) =P (X <mp < X)),
thus[X(;y, X (1] is also a confidence interval at the same level.

For largen, we approximate the binomial CDF by, = with 1 = np ando? = np(1 — p), as follows:
Pl—-1<Z<k-1)=P{l<Z<k—-1)=N,,(k—1)—N,-(j)

and we pickj andk such that

Noo2(k—1) > 05+ %
. v
N,u,a2 (]) S 0.5 — 5

which guarantees tha{,, ,»(k — 1) — N,

+2(7) > . It follows that we need to have
k=1 > no+u
J < —no+p

We take the smallegt and the largest which satisfy these constraints, which gives the formuiabé theorem.

THEOREM 2.4.1 TransformX; into U; = F(X;) which is iid uniform. For uniform RVs, use the fact that
E(U(j)) = %H Then

P (Uf) < Unia < Uy lUB) = uqays o Uy = )
P (ug) < U1 < ugr))
= ur) U

The former is sinc&/,, 1 is independent ofU1, ..., U,,) and the latter sinc#,, 1 has a uniform distribution oft, 1].
Thus
k—j

P (U("j) <Upyr1 < U(T}g)) =E (U&) - U(nj)) T hnt1

’Approximately 50 students should find a wrong interval.
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THEOREM 2.4.2 First note thatX,,, is independent of.,,, 6,,. ThusX,, .1 — /i, is normal with mear) and

variance )
var(X, 1) + var(ji,) = 0% + EUQ

Further,(n — 1)62 /o2 has ax?_, distribution and is independent of,, .1 — fi,,. By definition of Students, the
theorem follows.

THEOREM 2.4.3 Letm/ be the distribution mean df{ X). By definition of a confidence interval, we have
P(u(Y1,....Ys) <m’ < v(Y1,...,Y,)) > v where the confidence intervallig, v]. If b() is increasing (like the Box-

Cox transformation witk > 0) then soi$ () and this is equivalentt® (b~ (u (Y1, ..., Y,)) < b~ '(m’) <b ' (v(Y1,....Ys))) >
. Now b~1(m’) is the transformed mean, which shows the statement in teis déb() is decreasing (like the Box-

Cox transformation witts < 0) then the result is similar with inversion efandv.

THEOREM 2.6.1 We do the proof for a confidence interval for some quarttitghe proof is the same for a
prediction interval. By definitio?(6 ¢ I) < candP(0 ¢ I') < o’. Thus

POZINT)=P(OgHor (0L T) <POLD+POgI)) <a+d

2.8 REVIEW

2.8.1 SUMMARY

1. A confidenceinterval is used to quantify theccuracy of a parameter estimated from the
data.

2. For computing the central value of a data set, you can uilserenean or median. Unless
you have special reasons (see below) for not doing so, theemexa preferred choice as it
is more robust. You should compute not only the median but alsonfidence interval for
it, using Table A.1 on Page 313.

3. A prediction interval reflects theariability of the data. For small data sets € 38) it is
not meaningful. For larger data sets, it can be obtained l®piidm 2.4.1. The Lorenz curve
gap also gives a scale free representation of the variabflihe data.

4. Fairness indices are essentially the same as indicesriabifdy. Jain’ Fairness index is
based on standard deviation, and is less robust than thez.@rerve gap, which should be
preferred.

5. A confidence interval for the mean characterizes bothvérability of the data and the
accuracy of the measured average. In contrast, a confidence intesv#hé median does
not reflect well the variability of the data, therefore if weeuthe median we need both a
confidence interval for the median and some measure of althe quantiles, as on a
Box Plot). Mean and standard deviation give an accurateafldee variability of the data,
but only if the data is roughly normal. If it is not, it should be-scaled using for example a
Box-Cox transformation. Normality can be verified with a jpjgt.

6. The standard deviation gives an accurate idea oatuweracy of the mean if the data is
normal, but also if the data set is large. The latter can bée@with a bootstrap method.
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7. The geometric [resp. harmonic] mean is meaningful if th&ads roughly normal in log
[resp.1/z] scale. A confidence interval for the geometric [resp. haritianean is obtained
as the exponential [resp. inverse] of the mean in log [régp] scale.

8. All estimators in this chapter are valid only if the datant® are independent (non cor-
related). This assumption must be verified, either by d@sggthe experiments in a ran-
domized way, (as is the case with independent simulatios)rwor by formal correlation
analysis.

9. If you have a choice, use median and quantiles rather tleammand standard deviation, as
they are robust to distributional hypotheses and to ostlietse prediction intervals based
on order statistic rather than the classical mean and stahid@aiation.

2.8.2 ReVIEW QUESTIONS

QUESTION 2.8.1. Compare (1) the confidence interval for the median of a saoiplelata values,
at level95% and (2) a prediction interval at level at leas5%, for n = 9,39, 99. 8

QUESTION 2.8.2. Call L = min{X;, X5} andU = max{X;, X»}. We do an experiment and
find L = 7.4, U = 8.0. Say which of the following statements is correétig the median of the
distribution). (1) the probability of the eveltf. < 6 < U} is 0.5 (2) the probability of the event
{7.4<60<80}is0.5 °

QUESTION 2.8.3. How do we expect 80% confidence interval to compare t®a% one ? Check
this on the tables in Section A’

QUESTION 2.8.4. A data set has 70 points. Give the formulae for confidencevial® at level
0.95 for the median and the me&n

QUESTION 2.8.5. A data set has 70 points. Give formulae for a prediction s at level 95%
12

QUESTION 2.8.6. A data setry, ...z, is such that;, = In z; looks normal. We obtain a confidence
interval [¢, u] for the mean of;. Can we obtain a confidence interval for the mean:pby a
transformation of/, u] ? 13

8From the tables in Chapter A and Theorem 2.4.1 we obtainfigemce interval for median, prediction interval):
n = 9 [(E(Q),(E(g)], impOSSib|e;n = 39: [l’(lg),(ﬂ(27)], [l’(l), (E(gg)], n = 99: [(E(gg)7 x(Gl)], [x(2)7 x(97)]. The
confidence interval is always smaller than the predictideriral.

°In the classical (non-Bayesian) framework, (1) is correct ) is wrong. There is nothing random in the event
{7.4 < 6 < 8.0}, sinced is a fixed (though unknown) parameter. The probability of ehient is eithed or 1, here it
happens to bé. Be careful with the ambiguity of a statement such as “thdabdity thaté lies between. andU is
0.5". In case of doubt, come back to the roots: the probabilitsroEvent can be interpreted as the ideal proportion of
simulations that would produce the event.

101t should be smaller. If we take more risk we can accept a smiatterval. We can check that the valueg @fesp.

k] in the tables confidence intervals at lewel= 0.95 are larger [resp. smaller] than at confidence level 0.99.
Median: from the table in Section Beo7), 2(44)]. Mean: from Theorem 2.2.24 + 0.2343S wherej is the
sample mean anfl the sample standard deviation. The latter is assuming theal@pproximation holds, and should

be verified by either a qgplot or the bootstrap.
2From Theorem 2.4.1min; x;, max; z;].
13No, we know thafe’, e¥] is a confidence interval for the geometric mean, not the méan.dn factz; comes

(7‘2 . . . . . .
from a log-normal distribution, whose meareis" 2 wherey is the mean of the distribution gf, ando? its variance.
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QUESTION 2.8.7. Assume a set of measurements is corrupted by an error termstimormal,
but positively correlated. If we would compute a confidemterval for the mean using the iid
hypothesis, would the confidence interval be too small otame ? 14

QUESTION 2.8.8. We estimate the mean of an iid data set by two different mstand obtain 2
confidence intervals at leveb%: I, = [2.01,3.87], I, = [2.45,2.47]. Since the second interval is

smaller, we discard the first and keep only the second. Isatbimrect95% confidence interval ?
15

14Too small: we underestimate the error. This phenomenorigkiin physics under the terpersonal equation:
if the errors are linked to the experimenter, they are paditicorrelated.

5No, by doing so we keep the interval= I, N I, which is a90% confidence interval, not 85% confidence
interval.
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CHAPTER 3

MODEL FITTING

In this chapter we study how *~
derive a model from data, for e
ample, by fitting a curve to a s
ries of measurements. The mett

of least squares is widely use
and gives simple, often linear ¢ —.
gorithms.  However, it shoul
be used with care, as it mak _
the hidden assumption that er
terms are gaussian with same vi é{ { ! ;
ance. We also discussed the | % Qg fj
known alternative called! norm @ "f’
minimization, which implicitly as %i& g
sumes that error terms have a

Laplace instead of gaussian distri-

bution.

The resulting algorithms may be less simple, but are oftaetdble, as they correspond to convex
(rather than linear) optimization, and the method is mobeisbto outliers or wrong distributional
assumptions.

We discuss in detail the so-called “linear models”; whairisar here is the dependence on the hid-
den parameters, not the model itself. This is a very rich faofimodels with wide applicability.
We discuss both least square @hashorm minimization in this context.

7
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Then we discuss the issue of fitting a distribution to a datarsedescribe commonly used
features that are helpful to pick an appropriate distrdutdistribution shape, power laws, fat tail
and heavy tail. The latter property is often encounteredacte and is often interesting or
annoying. We address the practical issues of fitting cedstaia (i.e. when we could observe
only values smaller than some unknown threshold) and howparsitely fit the body and the tail
of a distribution. We illustrate how the concepts and tegbes could be used to build a load
generation tool.
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3.1 MODEL FITTING CRITERIA

3.1.1 WHATIS MODEL FITTING ?

We start with a simple example.
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ExXAMPLE 3.1:VIRUS SPREAD DATA. The number of hosts infected by a virus is plotted versus
time in hours.
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The plot suggests an exponential growth, therefore we are inclined to fit these data to a model of
the form

Y (t) = ae™ (3.1)
where Y () is the number of infected hosts at time ¢. We are particulary interested in the parameter
«, which can be interpreted as the growth rate; the doubling time (time for the number of infected
hosts to double) is 1%2 On the plot, the dashed line is the curve fitted by the method of least
squares explained later. We find o« = 0.4837 per hour and the doubling time is 1.43 hour. We can
use the model to predict that, 6 hours after the end of the measurement period, the number of
infected hosts would be ca. 82'000.

In generalmodel fitting can be defined as the problem of findingexplanatory model for the
data, i.e. a mathematical relation of the form

-,

yi = fi(B) (3.2)

that “explains the data well”, in some sense. Hgrés the collection of measured datais the
index of a measuremen; is an array of functions, and is the parameter that we would like to
obtain. In the previous example, the parametet is (a, ) and f;(3) = fi(a, @) = ac® where
t; is the time of theth measurement, assumed here to be known.

What does it mean to “explain the data well” ? It is generatly possible to require that Eq.(3.2)
holdsexactlyfor all data points. Therefore, a common answer is to regh@éthe model mini-

mizes some metric of the discrepancy between the explanatodel and the data. A very com-
S0\ 2
mon metric is the mean square distarjce (yZ - fi(ﬁ)> . The value of the growth rate in

the previous example was obtained in this way, namely, wepcteda and o« that minimize
X — ae™t)?

But this raises another question. What metric should one€?us#¢hat is so magical about least

-,

squares ? Why not use other measures of discrepancy, fopgxam|y;,— f;(5)| or>_, <ln(yi) — In(fi(

The following example shows the importance of the issue.

EXAMPLE 3.2:VIRUS SPREAD DATA, CONTINUED. AMBIGUITY IN THE OPTIMIZATION CRITERION.
We also plotted the number of infected hosts in log scale:

)
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and computed the least square fit of Eq.(3.2) in log scale (plain line). Namely, we computed « and
a that minimize ), (In(y;) — In(a) — at;)?. We found for « the value 0.39 per hour, which gives a
doubling time of 1.77 hour and a prediction at time +6 hours equal to ca. 39’000 infected hosts
(instead of previously 82’000).

The two different models are compared below (in linear and log scales).
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Both figures show that what visually appears to be a good fit in one scale is not so in the other.
Which one should we use ?

An answer to the issue comes from statistics. The idea is dotadhe explanatory model a
description of the “noise” (informally defined as the dematbetween the explanatory model and
the data), and obtainsatistical model. We can also think of the statistical model as a description
of a simulator that was used to produce the data we have. risneders are well defined, but not
known to us.

The statistical model usually has a few more parametersttteaaxplanatory model. The param-
eters of the statistical model are estimated using theicksgpproach of maximum likelihood. If
we believe in the statistical model, this answers the previesue by saying that the criterion to
be optimized is the likelihood. The belief in the model carchecked by examining residuals.

EXAMPLE 3.3:VIRUS SPREAD DATA, CONTINUED. A STATISTICAL MODEL. One statistical model
for the virus spread data is
Y; = ae™ + ¢ with ¢; iid ~ Ny 42 (3.3)

in other words, we assume that the measured data y; is equal to the ideal value given by the
explanatory model, plus a noise term ¢;. Further, we assume that all noises are independent,
gaussian, and with same variance. The parameter is § = (a, o, o).
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In Eq.(3.3), we write Y; instead of y; to express that Y; is a random variable. We think of our data
y; as being one sample produced by a simulator that implements Eq.(3.3).

We will see in Section 3.1.2 that the maximum likelihood estimator for this model is the one that
minimizes the mean square distance. Thus, with this model, we obtain for o the value in Exam-
ple 3.1.

A second statistical model could be:
In(Y;) = In (ae™) + € with € iid ~ Ny ,2 (3.4)

Now, we would be assuming that the noise terms in log-scale have the same variance, in other
words, the noise is proportional to the measured value. Here too, the maximum likelihood es-
timator is obtained by minimizing the least square distance, thus we obtain for « the value in
Example 3.2.

We can validate either model by plotting the residuals:

100

501

50}
-100f
—150r
—200r
—-250f
-300f

-350

0.4

0.3r
0.2r
0.1r

-0.1f
-0.2}
-0.31

10

15

20

-0.5
0

10

15

20

We see clearly that the residual for the former model do not appear to be normally distributed,
and the converse is true for the former model, which is the one we should adopt. Therefore, an
acceptable fitting is obtained by minimizing least squares in log-scale.

We summarize what we have learnt so far as follows.

FITTING A MODEL TO DATA

1. Define a statistical model that contabwth the deterministic part (the one we are interested
in) and a model of the noise.

2. Estimate the parameters of the statistical model usingmuan likelihood. If the number
of data points is small, use a brute force approach (e.g nisesear ch). If the number of
data points is large, you may need to look in the literatureeficient, possibly heuristic,
optimization methods.

3. Validate the model fit by screening the residuals, eitligrally, or using tests (Chapter 4).
In practice, you will seldom obtain a perfect fit; howevergkdeviations indicate that the
model might not be appropriate.
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3.1.2 LEAST SQUARES CORRESPOND TO GAUSSIAN, SAME VARIANCE

A very frequent case is when the statistical model has tha for

—

}/;:fz( )—FEZ fori = 1,,]W|th €; iid NN0’02 (35)

as in the examples before (Models in Equations (3.3) and)(amely, the discrepancy between
the explanatory model and the data is assumed to be gaustlasame variance In some
literature, the “same variance” assumption is calechoscedasticity.

The next theorem explains what we do when we fit the explayabadely; = f;(5) to our data
using least squares: we implicitly assume that the errorgén our data are independent, gaussian,
and of same amplitude. We have seen in the examples aboveatieatust be taken to validate
this assumption, in particular, some rescaling may be rekmtea better validation.

THEOREM 3.1.1 (Least Squares)or the model in Eq.(3.5),
1. the maximum likelihood estimator of the paraméfﬁra) is given by:
. ‘ S\ 2
(@) = argming X, (vi — £i(9))
A% 1 K
(b) 5 = 3%, (v — £(8)
2. LetK be the square matrix of second derivatives (assumed t9,edésined by

_ 1 0/ 0fi
Kor =2 Z 0B; 0B

If K is invertible and if the numbeir of data points is larges — Bis approximately gaussian
with 0 mean and covariance matrix .

Alternatively, for largel, an approximate confidence set at leydbr the jth componeng;
of 3 is implicitly defined by

—2I'In(6) + 27 In (&(Bl, e B0 B Bj+1...ffp)) > &

— S\ 2
wheres?(3) = 13, <y2~ — fi(5)> and ¢, is the~ quantile of they? distribution with 1
degree of freedom (for example, fpe= 0.95, & = 3.92).

The set of points iR’ that have coordinates of the forfg’(ﬁ) constitue a “manifold” (fop = 2,
it is a surface). Item 1 (a) says thatis the parameter of the poigton this manifold that is the
nearest to the data poifitin euclidian distance. The poitis called thepredicted response; it
is an estimate of the value thatvould take if there would be no noise. It is equal to the orthreag
projection of the datg onto the manifold.

The rest of the theorem can be used to obtain accuracy boanttefestimation. A slight variant
of the theorem can be used to make predictions with accuraayds, see Theorem 5.2.1.
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3.1.3 /1 NORM MINIMIZATION CORRESPONDS TOLAPLACE NOISE

Although less traditional than least square, minimizatbthe absolute deviation of the error is
also used. The absolute deviation is thenorm of the errof, so this method is also called
norm minimization. Since it gives less weight to outliers, it is expected to lweerobust. As
we see now, it corresponds to assuming that errors followalca distribution (i.e. bilateral
exponential).

The Laplace distribution with 0 mean and rate is the two sided exponential distribution, or, in
other words, X ~ Laplacé)) if and only if | X| ~ Exp()\). It can be used to model error terms
that have a heavier tail than the normal distribution. It$-R®defined forr € R by

A

f(z) = 56—”1" (3.6)

—

The next theorem explains what we do when we fit the explayabadely; = f;(5) to our data
by minimizing the/! norm of the error: we implicitly assume that the error termsir data are
independent, Laplace with the same parameter, i.e., the/gas a sample generated by the model

-,

Y; = fi(B) + e with ¢;iid ~ Laplacé)) (3.7)

THEOREM 3.1.2 (Least Deviation)For the model in Eq.(3.7), the maximum likelihood estimator

of the paramete(, \) is given by:

1. 8= argming >, y; — fz(g)‘
2. i =12 |¥i— fi(B)
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Figure 3.1: Fitting an exponential growth model to the data in Example 3.1, showing the fits obtained
with least square (plain) and with ¢' norm minimization (dashed) . First panel: original data; both fits are
the same; Second panel: data corrupted by one outlier; the fit with ¢! norm minimization is not affected,
whereas the least square fit is.

EXAMPLE 3.4:VIRUS PROPAGATION WITH ONE OUTLIER. Assume the data in the virus propagation
example (Example 3.1) is modified by changing the value of the second data point. Assume we

The ¢! norm of a sequence= (z1, ..., z,) is ||z|, = D1, |z
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fit the data in log scale. The modified data is an outlier; perhaps one would be tempted to remove
it; an alternative is to fit the log of the data to Laplace noise instead of gaussian noise (i.e. do ¢*
norm minimization instead of least squares), as this is known to be more robust. Figure 3.1.3, and
the table below shows the results (the prediction in the table is a 6-hours ahead point prediction).

Least Square ¢' norm minimization
rate | prediction | rate | prediction
no outlier | 0.3914 | 30300 0.3938 32300
with one outlier | 0.3325 14500 0.3868 30500

We see that one single outlier completely modifies the result of least square fitting, whereas ¢!
norm minimization fitting is not impacted much.

The following example is important to understand the défere between least square @hdorm
minimization.

EXAMPLE 3.5:MEAN VERSUSMEDIAN. Assume we want to fit a data set y;, ¢ = 1,...,I against a
constant .

With least square fitting, we are looking for x that minimizes Zle (yi — M)Q. The solution is easily
found to be i = 1 327, y;, i.e. pis the sample mean.

With ¢! norm minimization, we are looking for x that minimizes Zle ly; — p|. The solution is the
median of y;.

To see why, consider the mapping f : u +— Zle ly; — p|. Consider to simplify the case where all
values y; are distinct and written in increasing order (y; < y;+1). The derivative f’ of f is defined
everywhere except at points y;, and for y; < p < yi+1, f'(n) =i — (I —i) =2 — 1. If I is odd, f
decreases on (—o0, y(21+1)/2) @and increases on [yar41)/2, +00), thus is minimum for 11 = ya741) /2,
which is the sample median. If I is even, f is minimum at all values in the interval [y; /2, y1/2+1]
thus reaches the minimum at the sample median #2412+

In terms of computation/! norm minimization is more complex than least squares, thdaagh
are usually tractable. For example, if the dependency orp#inameter is linear, least square
fitting consists in solving a linear system of equations whef' norm minimization uses linear
programming (as shown in the next section).

3.2 LINEAR REGRESSION

This is a special case of least square fitting, where the eaplay model depends linearly on its
parameteﬁ. This is called thdinear regression model. The main fact here is that everything
can be computed easily, using linear algebra. Be careftttibderm “linear regression” implicitly
assumes least square fitting. The popular fitting methodd&NOVA” is a special case of linear
regression.

Assume thus that th&tatistical modebf our experiment has the form:
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DEFINITION 3.2.1 (Linear Regression Model).

-,

Y, =(XpB); +efori=1,... . Iwithe; iid ~ Ny, (3.8)

where the unknown parametEris inR? and X is al x p matrix. The matrixX supposed to be
known exactly in advance. We also assume that

H X has rankp

AssumptiorH means that different values Efgive different values of the explanatory modép,
i.e. the explanatory model is identifiable.

The elements of the known matriX are sometimes callegkplanatory variables, and then the
;S are called theesponse variables.

EXAMPLE 3.6:JOE’'S SHOP AGAIN, FIGURE 1.3(B). We assume that there is a threshold ¢ beyond
which the throughput collapses (we take ¢ = 70). The statistical model is

Yi = (a + bxi)lmigg + (C + d(Ei)l{xi>£} + € (39)

where we impose
a+bf=c+dE (3.10)

In other words, we assume the throughput response curve to be piecewise linear. Eq.(3.10) ex-
presses that the curve is continuous. Recall that z; is the offered load and Y] is the actual through-
put.

Here we take 3 = (a,b,d) (we can derive ¢ = a + (b — d)¢ from Eq.(3.10)). The dependency of Y;
on S is indeed linear. Note that we assume that £ is known; see in Example 3.8 how to estimate &.

Assume that we sort the z;s in increasing order and let i* be the largest index i such that z; < €.
Re-write Eq.(3.9) as

&

= a+br;+efori=1...7"
Yi = a+bé+dxz;—&) +efori=i"4+1...1

thus the matrix X is given by:

1 T 0

1 ) 0

1 & wpyr—§
& xr-¢

It is simple to see that a sufficient condition for H is that there are at least two distinct values of
z; < & and at least one value > ¢.

QUESTION 3.2.1. Show this?

2We need to show, if the condition is true, that the maftishas rankp = 3. This is equivalent to saying that the
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A model as in this example is sometimes called Intervention Analysis.

With the linear regression model, the manifold mentionetthendiscussion after Theorem 3.1.1 is
a linear manifold (fop = 2, a plane). Itis equal to the linear sub-space spanned bythmas of
matrix X. The nearest point is given by an orthogonal projectionctvicen be computed exactly.
The details are given in the following theorem which is a empgence of Eq.(C.3) on Page 329
and Theorem C.4.2; a complete proof is in [32, section 2.3].

THEOREM 3.2.1 (Linear RegressionjConsider the model in Definition 3.2.1; Igtbe thel x 1
column vector of the data.

1. Thep x p matrix (X7 X) is invertible
2. (Estimation) The maximum likelihood estimatofaé 3 = Kjwith K = (X7 X)) !XT

3. (Standardized Residuals) Define tiie residual ase; = (gj— Xﬁ) . The residuals are
zero-mean gaussian but are correlated, with covariancerimnat’(Id; — H), whereH =
KO,

Let s? = ﬁ el = I%p >, €7 (rescaled sum of squared residualsy’ is an unbiased
estimator ofr2.

The standardized residuals defined/hy= T

This can be used to test the model by checkingthate approximately normal with unit
variance.

have unit variance and; ~ t;_,_;.

4. (Confidence Intervals) L&t = (XTX)_1 = KKT; the distribution of3 is gaussian with
mean3 and covariance matrix>2G, and 3 is independent of.
In particular, assume we want a confidence interval for a ¢namdom) linear combi-
nation of the parameters = >7¥_, ;Ljﬁj; ¥ = >_;u;B; is our estimator ofy. Let
9=, uGirur =3, (Zj quj,k> (g is called thevariance bias). Then% ~tr_p.
This can be used to obtain a confidence intervahfor

Comments. Item 4 is often used as follows : if we ignore the uncertainig ¢b the estimation
of o, the estimation error (in estimating is approximately gaussian with covariance matkix
(sometimes called the “variance-covariance matrix”).

Item 3 states that the residuals are (slightly) biased, aisdetter to use standardized residuals.

The matrix H is the projection onto the subspace spanned by the columis (&q.(C.3) on
Page 329). The predicted responsg is X . It is equal to the orthogonal projection gfand is

(i)

has only the solutiom = b = d = 0. Consider firsiz andb. If there are two distinct values of;, i < i*, sayz;
andzxs thena + bxy = a + bros = 0 thusa = b = 0. Since there is a valug; > &, it follows thati* + 1 < I and
d(zy — &) = 0thusd = 0.

equation
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given by
y=Hy (3.11)

The scaled sum of squared residusisis also equal to;~ (171> = 1911%). Its distribution is
I%pxi_p. This can be used to compute a confidence intervadfor

EXAMPLE 3.7:JOE'S SHOP AGAIN. CONTINUATION OF EXAMPLE 3.6. We can thus apply matrix
computations given in Theorem 3.2.1; item 2 gives an estimate of (a,b,d) and thus of c¢. Item 4
gives confidence intervals. The values and the fitted linear regression model are shown in the
table and figure below.

10

oo oo

Achieved Throughput (tps)

a 0.978 +£0.609

b 0.0915+0.0137

C 15.8 +£2.99

d —0.121 + 0.037 % 10 20 30 0 50 60 70 80 % 100

Offered Load (tps)

We also computed the residuals e; (crosses) and standardized residuals r; (circles). There is
little difference between both types of residuals. They appear reasonably normal, but one might
criticize the model in that the variance appears smaller for smaller values of z. The normal qqgplot
of the residuals also shows approximate normality (the qgplot of standardized residuals is similar
and is not shown).
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QUESTION 3.2.2. Can we conclude that there is congestion collapse ?

3Yes, since the confidence interval fbis entirely positive [resp. negative].
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WHERE IS LINEARITY ? In the previous example, we see that thas a linear function of5,
butnot of z;. This is quite general, and you should avoid a widespreaflismn: linear regression
is not restricted to models where the datés linear with the explanatory variables.

EXAMPLE 3.8:JOE’'S SHOP - BEYOND THE LINEAR CASE - ESTIMATION OF £. In Example 3.6 we
assumed that the value ¢ after which there is congestion collapse is known in advance. Now
we relax this assumption. Our model is now the same as EQ.(3.9), except that ¢ is also now a
parameter to be estimated.

To do this, we apply maximum likelihood estimation. We have to maximize the log-likelihood
lj(a,b,d,&,0), where ¢/, the data, is fixed. For a fixed &, we know the value of (a,b,d, o) that
achieves the maximum, as we have a linear regression model. We plot the value of this maximum
versus ¢ (Figure 3.2) and numerically find the maximum. It is for £ = 77.

To find a confidence interval, we use the asymptotic result in Theorem B.3.1. It says that a 95%

confidence interval is obtained by solving 1(§) — 1(£) < 1.9207, which gives £ € [73, 80].
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Figure 3.2:Log likelihood for Joes’ shop as a function of ¢.

3.3 LINEAR REGRESSION WITH /1 NORM M INIMIZATION

This is a variant of the linear regression model, but withlaap instead of Gaussian noise. The
theory is less simple, as we do not have explicit linear esgioms. Nonetheless, it uses linear
programming and is thus often tractable, with the benefit @femobustness to outliers.

The statistical modebf our experiment has the form:

DEFINITION 3.3.1 (Linear Regression Model with Laplace Noise).

-,

Y, = (Xp)i+efori=1,...,1withe; iid ~ Laplace()\) (3.12)
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where the unknown parametéris inRP and X is al x p matrix. The matrixX supposed to be
known exactly in advance. As in Section 3.2, we assumeilhas rankp, otherwise the model is
non identifiable.

The following is an almost immediate consequence of The@dn?2.

THEOREM 3.3.1. Consider the model in Definition 3.2.1; Igtbe thel x 1 column vector of the
data. The maximum likelihood estimator/is obtained by solving the linear program:

I
minimize Z“Z
i=1
over [eRueR!
subject to the constraints  u; > y; — (XE)
u; > =y + <X5>

The maximum likelihood estimator of the noise parambﬁer(% S

R —1
Yi— <Xﬁ>z ) '
In view of Example 3.5, there is little hope to obtain nicesgld form formulas for confidence
intervals, unlike what happens with the least square methotheorem 3.2.1, and indeed the

theorem does not give any. To compute confidence intervassam use the bootstrap, with re-
sampling from residuals, as described in Algorithm 2.

Algorithm 2 The Bootstrap with Re-Sampling From Residuals. The goal is to compute a confidence

interval for some function ¢(5) of the parameter of the model in Definition 3.2.1. ry is the algorithm’s
accuracy parameter.

1: R=1[2ry/(1—=7)] -1 > For exampler, = 25, v = 0.95, R = 999

2. estimates using Theorem 3.3.1; obtajh

3: compute the residuals = y; — (Xﬁ) _

4: forr=1:Rdo Z > Re-sample from residuals
5: draw I numbers with replacement from the list, ..., e;) and call them&] | ..., E}

6: generate the bootstrap replicatg, ..., Y; from the estimated model:

7. Y7 = (XB) B fori=1..1

8: re-estimate?, uslingY[ as data, using Theorem 3.3.1; obtﬁ?‘n

9: end for . .
10: ((p(l), . QO(R)) = SOI’t((p(ﬁl), . QO(BR))

-,

11: confidence interval fop(5) is [¢ () i ©(r+1-r0)]

Note that the algorithm applies to any model fitting methaat, jost to models fitted with The-
orem 3.3.1. As always with the bootstrap, it provides apjpnake confidence intervals, with a
tendency to underestimate.

EXAMPLE 3.9:JOE'S SHOP WITH/! NORM MINIMIZATION . We revisit Example 3.6 and estimate a
piecewise linear throughput response (as in Eq.(3.9)) with #! norm minimization, i.e. assuming the
error terms ¢; come from a Laplace distribution.
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Figure 3.3: Modelling congestion collapse in Joe's shop with a piecewise linear function and ¢' norm
minimization of the errors.

The problem is linear and has full rank if we take as parameter for example (a, b, ¢), but it is not
linear with respect to £. To overcome this issue, we first estimate the model, considering £ as
fixed, using linear programming. Then we vary ¢ and look for the value of ¢ that maximizes the
likelihood.

In Figure 3.3(b) we plot ¢ versus the score (¢! norm of the error). By Theorem 3.1.2, maximizing
the likelihood is the same as minimizing the score. The optimal is for £ = 69 (but notice that the
score curve is very flat, so any value around 70 would be just as good). For this value of ¢, the
estimated parameters are: ¢ = 1.35,b = 0.0841,¢ = 13.1,d = —0.0858. We compute the residuals
(Figure 3.3(c)) and do a Laplace qg-plot to verify the model assumption.

As explained in Section 2.4.3, a Laplace qqg-plot of the residuals r;, i = 1...1 is obtained by plotting
F~*(4L7) versus the residuals ;) sorted in increasing order. Here F is the CDF of the Laplace
distribution with rate A = 1. A direct computation gives

F™q) = In(29) if0<¢<05
= —In(2(1—-q)) if05<¢g<1

Figure 3.3(d) shows the Laplace qqg-plot of the residuals; there is a better fit than with least squares
(Example 3.7).

We compute 95% confidence intervals for the parameters using the bootstrap (Algorithm 2) and
obtain:
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1.32 £ 0.675
0.0791 £ 0.0149
11.7 £ 3.24
—0.0685 £ 0.0398

o 0O T oD

The parameter of interest is d, for which the confidence interval is entirely negative, thus there is
congestion collapse.

3.4 CHOOSING A DISTRIBUTION

Assume we are given a data set in the form of a sequence of marabd would like to fit it to

a distribution. Often, the data set is iid, but not alwaysthiis section and the next, we review a
number of simple guidelines that are useful for finding tlgitidistribution. We illustrate in the
next section how this can be used to build a load generatoR ().

In this section and the next, a distribution means a proidglblistribution on the set of real num-
bers.

3.4.1 SHAPE

Perhaps the first attribute of interest is the shape of thtahliton, or more precisely, of its PDF.
We say that two distributions dR, with CDFs F'() andG(), have the samdistribution shape

if they differ by a change of scale and location, i.e., thedistesomemn € R ands > 0 such that
G(sz+m) = F(x)forall z € R. This is equivalent to saying that there are some randorahias
X, Y with distribution functions¥(), G() respectively, and with” = s X + m.

For example, the normal distributia¥, ,- and the standard normal distributidf ; have the same
shape, in other words, all normal distributions are esaliythe same.

When looking for a distribution, one may get a first feelingtphg a histogram, which is a coarse
estimate of the PDF. Since most plotting tools automaticadlapt the scales and origins on both
axes, what one really gets is a coarse estimate of the distibshape.

A distribution is usually defined with a number of paramete¥¥hen browsing a distribution
catalog (e.g. on Wikipedia) it is important to distinguish@ng those parameters that influence
the shape and those that are simply location and scale pa@n€or example, with the normal
distribution N, 2, p is a location parameter anda scale parameter; if a random varialenas
distributionN,, 2, one can writeX = 0Z + p, whereZ ~ Ny ;.

In Tables 3.1 and 3.2 we give a small catalog of distributittvad are often used in the context
of this book. For each distribution we give only the set ofgpaeters that influence the shape.
Other distributions can be derived by a change of locatiahsmale. The effect of this on various
formulas is straightforward but is indicated in the tablevadl, for completeness.

Thelog-normal distribution with parameterg:, o > 0 is defined as the distribution of = ¢
whereZ is gaussian with mean and variancer?. It is often used as a result of rescaling in log
scale, as we did in Eq.(3.2). Note that

X = GUZ(H_M =et (620)0 with Ly ~ N071
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thusu corresponds to a scale parameter e. In contrast (unlike for the normal distribution),
o is a shape parameter. Table 3.1 gives properties of theathmhol-normal distribution (i.e.

for 4 = 0; other values of: can be obtained by re-scaling). Figure 3.4 shows the shapeof
log-normal distribution for various values of rescaled such that the mean is constant equial to

QUESTION 3.4.1. What are the parameteys o of the lognormal distributions in Figure 3.4?

0 =0.2 (y2 =0.678) 0=0.4 (y2 =3.26) 0=0.6 (y2 =10.3)

2 2 2
a a a
ol ol ol
0] 0 0
0 5 0 5 0 5
X X X

0 =0.8 (y2 =31.4) o=1 (y2 =111) o0=1.2 (y2 =515)

2 2 2
a a a
ol ol ol
0 0 0
0 5 0 5 0 5
X X X

Figure 3.4:Shape of the log-normal distribution for various values of o. The shape is independent of . p
is chosen such that the mean is 1 for all plots. v, is the Kurtosis index.

3.4.2 KEWNESS AND KURTOSIS

These are indices which may be used to characterized bdisdm shape. They are defined for a
distribution that has finite moments up to order 4. The deédfinitises theeumulant generating

(7‘2 . .
4By Table 3.1 the mean is> wheny, = 0; other values of: correspond to re-scaling ly* therefore the mean is

(7‘2 -
ez T, In the figure we take the mean equallidhus we must have = —"72
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function of the distribution of a real random variahl& defined by
cgf(s) := InE (e*)

Assume thafE(e®!*1) < oo for somes, so that the above is well defined for reairounds = 0.
This also implies that all moments are finite. Then, by a Taglkpansion:

52 s3 sk
cof(s) = kis + /425 + 535 + ...+ "kg + ...

wherer), = %cgf(o) is called thecumulant of order £ . The first four cumulants are :

K1 = E(X)

ko = B (X —E(X))* = var(X)

k3 = E (X — E(X))® (3.13)
kg =E (X —E(X))" — 3var(X)?

For the normal distributioV,, 2, cgf(s) = ps + "2—252 thus all cumulants of ordér > 3 areo.

QUESTION 3.4.2. Show that theith cumulant of the convolution ef distributions is the sum of
the kth cumulant®

SKEWNESS INDEX k3 is calledskewness. Theskewness index (sometimes also called skew-
ness) is

Y= Iig/lig/2 = K3/0”

The skewness index is insensitive to changes in scale (bysiéivaofactor) or location. For a
density which is symmetric around its mean, . ; = 0; ~; can be taken as a measure of asymmetry
of the distribution. Wheny; > 0 the distribution is right-skewed, and vice-versaglis convex,
then¢(X) has greater skewness index thén

KURTOSIS INDEX k4 IS called Kurtosis. Th&urtosis index, also callecexcess kurtosis, is
2 4
Vo 1= Ry/K5 = Ky4/0

The Kurtosis index is insensitive to changes in scale ortionalt is used to measure departure
from the normal distribution. Whem, > 0, the distribution has a sharper peak around the mean
and heavier tail; when, < 0, it has a flatter top and decays more abruptly. Note that —2,

with equality only if the distribution is degenerate, i.gual to a constant.

The kurtosis index gives some information about the distrdn tail. When large and positive it
indicates that the contribution of the tail is large. We sweskample in Figure 3.4 and in Table 3.1
that the log-normal distribution has larger tail for larger

5By independencdnE (es(Xit-+Xu)) = 37 InE (e3X7).
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3.4.3 ROWER LAWS, PARETO DISTRIBUTION AND ZIPF'S L AW

Power laws are often invoked in the context of workload gatien. Generally speaking, a power
law is any relation of the forny = ax® between variables andy, wherea andb are constants.
In log scales, this gives a linear relationshipy = bIn x + In a. Power laws were often found to
hold, at least approximately, for tm®mplementary CDFs® of some variables such as file sizes
or popularity of objects. They are discovered by plotting #mpirical complementary CDF in
log-log scales and seeing if a linear relationship existspdhding on whether the distribution is
continuous or discrete, we obtain the Pareto and Zetaldlisions.

The standardPareto distribution with indexp > 0 has CDF and PDF

F(z) = <1—$) 1ia>1)
flz) = Ll{le}

ij-i-l

i.e. the complementary CDF and the PDF follow a power lawzfor 1 (see Table 3.2). The
general Pareto distribution is derived by a change of saadehas CDF1 — £) 1, and PDF
L7 1, for somes > 0.

The Zeta distribution is the integer analog of Pareto. It is definedrfoc N by P(X = n) =

W, where((p + 1) is a normalizing constant (Riemann’s zeta function).

Forp < 2 the Pareto distribution has infinite variance andzgor. 1 infinite mean. The kurtosis
index is not defined unlegs > 4 and tends tao whenp — 4: its tail is called “heavy”, (see
Section 3.5). Figure 3.4.3 shows the CDF of a Pareto digtabuogether with normal and log-
normal distributions.

10"-8 10"-6 10M-4 10n-2 100
1 1 1 1 1 1 1 1 1 1

10712 107-10
1

T T T T T T T
1 5 10 50 100 500 1000

Figure 3.5:P(X > z) versus = on log-log scales, when X is normal (dots), log-normal (solid) or Pareto
(dashs). The three distributions have same mean and 99%-quantile.

5The complementary CDF is— F() whereF () is the CDF.
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Zipf's law is not a probability distribution, but is related to the Ramdistribution. It states that the
popularity of objects is inversely proportional to rank neore generally, to a power of rank. This
can be interpreted as follows.

We have a collection oV objects. We choose an object from the collection at randaograing
to some stationary process. Céllithe probability that object is chosen; this is our interpretation
of the popularity of objecj.

Lett,) > 02y > ... be the collection of's in decreasing order. Zipf's law means

C
Oy ~ =
J
where(C'is some constant and > 0. In Zipf’'s original formulation,o = 1.

Now we show the relation to a Pareto distribution. Assume wWeadraw thef/s at random (as
we do in a load generator) by obtaining some random valudor objecti, and lettingd; =
X;/(3°X | X;). Assume that the number of objects is large &h$ marginal distribution is some
fixed distribution onR*, with complementary distribution functiof(x). Let X, be the reverse
order statistic, i.eX(;) > X() > .... We would like to follow Zip’s law, i.e., for some constaft
C
Xg) ~ — (3.14)
J
Now let us look at the empirical complementary distributigrit is obtained by putting a point at
eachX;, with probability1 /N, whereN is the number of objects. More precisely:

1 N
G('T) = N Z 1{XZZI}
i=1

Thus G(X(;) = j/N. Combine with Eq.(3.14): we find that, whenever= X;), we have
Gz) ~ K, withp = L andK = #/N. If we take the empirical complementaty CDF as
approximation of the true complementary CDF, this meanstti@distribution ofX; is Pareto
with indexp = 1.

In other words, Zipf's law can be interpreted as follows. Tmebability of choosing objectis
itself a random variable, obtained by drawing from a Paréstridution with tail indexp = é
then re-scaling to make the probabilities sum to 1.

3.4.4 HazARD RATE

The hazard rate provides another means of deciding whettistrébution is well suited. Consider
a distribution with support that includés, +oo) for somea, with a PDFf() and with CDFF'().
Thehazard rate is defined forr > a by

[l
Ao =150

It can be interpreted as follows. L&t be a random variable with distributidn(). Then, forz > a

1
Az) = lim —P(X <z +dzr|X > x)

dz—0 dx
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If X is interpreted as a flow duration or a file si2éz)dx is the probability that the flow ends in
the nextdx time units given that it survived until now. See Tables 3.d &2 for the hazard rates
of several distributions.

The behaviour of the hazard ratér) whenz is large can be used as a characteristic of a distribu-
tion. Qualitatively, one may distinguish the following ¢ertypes of behaviour:

1. (Aging Property)im, .., A(z) = oo: the hazard rate becomes large for largeThis is
very often expected, e.g. when one has reasons to beliewva fha or flow is unlikely to
be arbitrarily large. 1fX is interpreted as system lifetime, this is the property ahggThe
gaussian distribution is in this case.

2. (Memoriless Property)m, .., A(z) = ¢ > 0: the hazard rate tends to become constant for
largex. This is in particular true if the system is memoriless, wdien A(z) is a constant.
The exponential distribution is in this case (as is the Leplistribution).

3. (Fat Tail) lim,_,,, A(x) = 0 : the hazard rate vanishes for large This may appear sur-
prising: for a flow duration, it means that, given that youtedia large time for completion
of the flow, you are likely to continue waiting for a very lorighe. The Pareto distribution
with index p is in this case for all values gf, as are all lognormal distributions. We may,
informally, call this property a “fat tail”. Heavy tail disbutions (defined in Section 3.5) are
in this case, but there are also some non heavy tail disinitsias well.

The Weibull distribution is often used in this context, as it spans the three casesndim on

its parameters. The standard Weibull distribution withanentc has support o0, co) and is
defined by its CDF equal to — ¢(**). The general Weibull distribution is derived by a change of
scale and location; also see Tables 3.1 and 3.2.cFerl it is the exponential distribution; for

¢ > 1 it has the aging property and for< 1 it is fat tailed. Figure 3.6 shows the shape of the
Weibull distributions. The Kurtosis is minimum ats 3.360128 and goes tec asc — 0 [87].

3.4.5 HTTING A DISTRIBUTION

Fitting a distribution to a dataset is often a two step precdsrst, a qualitative analysis is per-
formed, where one attempts to get a feeling for the distidbushape. Here, one tries to make
statements about the distribution shape, the hazard rahe @xistence of power laws. These are
obtained by appropriate plots (histograms, qqg-plots, engiCDFs, etc). One can also try to
determine whether a heavy tailed distribution is the rightlel, using for example theest tool
described in Section 3.5. The goal is to obtain a set of caelihmilies of distributions.

The second step is to fit the parameters of the distributidrithed data set can be assumed to
come from an iid sequence, the method of choice is maximueiiti&od estimation (MLE), as
explained in Section B.1.2, and illustrated in the next gx@min particular, MLE is invariant by
re-parametrization and change of scale.

If, as is frequent in practice, the data set may not be assumedme from an iid sequence,
then there is no simple method; maximum likelihood estiorais often used in practice (but no
confidence interval for the estimated parameters can béeba
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c=0.5 (y2:84.7) c=0.8 (y2:12.7) c=1 (y2:6)
8 3 1
6
2
LL LL LL
Q 4 &) 0 0.5
o o o
1
2
0 0 0
0 2 4 0 2 4 0 2 4
X X X
c=1.2 (y2=3.24) c =3.3601 (y2=—0.289) c =10 (y2=0.57)
0.8 1.5 4
0.6 3
1
LL LL LL
Q 0.4 a) Q2
o o o
0.5
0.2 1 {
0 0 0
0 2 4 0 2 4 0 2 4
X X X

Figure 3.6: Shape of the Weibull distribution for various values of the exponent c¢. The distribution is
re-scaled to have mean = 1. ~ is the Kurtosis index.
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3.4.6 (CENSORED DATA

When fitting the distribution parameters, it may be impartaraccount for the fact that some very
large or very small data values are not present, due to iniplitsss of the measurement system
(for example, flow size durations may not measure very longgjo This is calleccensoring in
statistics.

A technique for accounting for censoring is as follows. Assuve know that the data is truncated
to some maximum, called The distribution for the data can be described by the PDF

fx(z) = %(a)fo(x)l{wga} (3.15)

where fj [resp. Fy] is the PDF [resp. CDF] of the non truncated distribution.eTeason for

Eq.(3.15) lies in the theory of rejection sampling (Seckob.2) which says that when one rejects

the data samples that do not satisfy a condition (lér€ ) one obtains a random variable with

PDF proportional to the non censored PDF, restricted to éhefsvalues given by the condition.
1

The termzo; is the normalizing constant.

Assume that the non truncated distributiBndepends on some parameterThe log likelihood
of the datary, ..., =, is

00,a) =) _log fo(:0) — nlog Fo(al) (3.16)
i=1
We obtain an estimate éfanda by maximizing Eq.(3.16). Note that we must have> max; z;
and for any, the likelihood is nonincreasing with Thus the optimal is foé = max; x;.

It remains to maximizé(0, a) overd. This can be done by brute force when the dimensionality of
the parametef is small, or using other methods, as illustrated in the neaigle.

EXAMPLE 3.10:CENSOREDLOG-NORMAL DISTRIBUTION. Figure 3.7(a) shows an artificial data
set, obtained by sampling a log-normal distribution with parameters ; = 9.357 and o = 1.318,
truncated to 20000 (i.e. all data points larger than this value are removed from the data set).

Here, Iy is the log-normal distribution with parameters 1 and o. Instead of brute force optimization,
we can have more insight as follows. We have to maximize ¢(u, o) over u € R, o > 0, with

n

1

202
i=1

n

—5 In(2m) - > I (3.17)

i=1

lp,0) = —nln(o) — (Ina; — pu)> —nln Ny (p+ olna)

We can ignore the last two terms, which do not depend on (u,0). We can also do a change of
variables by taking as parameters o, z instead of o, i, with
1 _
p= 20T H (3.18)

o

For a fixed z, the optimization problem has a closed form solution (obtained by computing the
derivative with respect to ¢); the maximum likelihood is obtained for o = 6(z) with

() = —Bz+\/4322—|—52(4+22) (3.19)

. 1 — 1
with g = Ina—y, y1 = - g In z;, == E (Inx; — y1)2
i=1 j
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Figure 3.7 Fitting Censored Data in Example 3.10. The data set is an iid sample of a truncated log-normal
distribution. Thick lines: data set; plain lines: fit obtained with a technique for censored data; dashed lines:
fit obtained when ignoring the censored data.
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and the corresponding value of the likelihood (called “profile log-likelihood”) is (we omit the con-
stant terms in EQ.(3.17)):

pl(z) = —n |In(6(2)) — Fl(z) ((a(z)z - ﬁ)z + 32> —InNo (z)] (3.20)

We need now to minimize the square bracket as a function of z € R. This cannot be done in closed
form, but it is numerically simple as it is a function of one variable only. Figure 3.7(c) shows pl(z).
There is a unique maximum at z = 0.4276, which, with Eq.(3.19) and Eq.(3.18), gives

i=9.3428 6 =1.3114

Compare to the method that would ignore the truncation. Since MLE is invariant by change of
scale we can use the log of the data; we would estimate ;. by the sample mean of the log of the
data, and ¢ by the standard deviation, and would obtain

iy, = 8.6253 &, = 0.8960

3.4.7 COMBINATIONS OF DISTRIBUTIONS

It is often difficult to find a distribution that fits both theltand the body of the data. In such case,
one may use a combination of distributions, also catieshpound distribution.

Given two distributions with CDF$', and F;, [resp. PDFsf; and f,], a mixture distribution of
F, andF, is a distribution with PDF

f(x)=pfi(z) + (1 —p)fo(z)

with p € [0, 1]. A mixture is interpreted by saying that a sample is drawrwiobabilityp from
Fy and with probabilityl — p from F5.

We are more often interested ircambination of mixture and truncation, i.e. in a combination
whose PDF has the form

f(l') - all{xﬁa}fl(x) + a21{x>a}f2(x) (321)

wherea;,ay > 0 anda € R. This is useful for fitting a distribution separately to tla tind
the body of the data set. Note that we do not necessarily havea, = 1 as in a pure mixture.
Instead, one must have the normalizing conditig’, (a) + a2(1 — Fy(a)) = 1, thus (by letting
p = a1 Fi(a)) we may rewrite Eq.(3.21) as

l—p

1) = Fragleza i) + T S Tesa folo) (3:22)

with p € [0, 1].

Assume the distributionsy, F» depend on some parameters, independent ahd need to be
fitted. Note thap anda need to be fitted as well. If one uses MLE, one can somewhatligyrtipe
fitting by observing that the maximum likelihood estimatestneatisfy

p="20) (3.23)
n
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wheren, (a) is the number of data points a.

To see why, assume that we are given a data;set n data points, sorted in increasing order, so
thatn,(a) = > | 1{;,<4. The log-likelihood of the data is

ni(a) n
(= "Wmfi(z)+ Y Infoz)+ni(a) (Inp —InFi(a)+(n—ni(a) (In(l - p) — In(1 — Fy(a)))
i=1 i=n1(a)+1

and maximizing’ with respect tg shows Eq.(3.23).

In summary, fitting a compound distribution separately #olibdy and the tail of a data set is based
on fitting EQ.(3.22) to the data, withgiven by Eq.(3.23). It remains to fitand the parameters of
Fy andF,. This may be done by: assumings known, fittingF; and F3, and computing the value
of a which maximizes the likelihood, as illustrated in the exaripelow.

0

10
5
) 9.8035% 10
10 ¢
9.8034f
107}
9.8033r
-3
10 9.8032r
107" 9.8031
" 9.803 : : :
104 - = ‘ - . 12 1.3 1.4 15 16
10 10 10 10 10 x 10°
(a) CCDFs (b) Profile log-likelihood of breakpoint

Figure 3.8:Fitting a combination of Log-Normal for the body and Pareto for the tail. Dashed vertical line:
breakpoint.

EXAMPLE 3.11:COMBINATION OF LOG-NORMAL AND PARETO. Figure 3.8(a) shows an empirical
complementary CDF in log-log scales for a set of 10° data points representing file sizes. The plot
shows an asymptotic power law, but not over the entire body of the distribution. We wish to fit
a combination mixture of truncated log-normal distribution for the body of the distribution (left of
dashed line) and of Pareto distribution for the tail. truncated on [0, a) and Pareto rescaled to have
support on [a, +0o0). The model is thus

fX(x) = Q%l{xga} + (1 - q)l_LFiza)l{r>a}

where F is a log-normal distribution, F; is Pareto with exponent p, and breakpoint a. Note that
F5(a) =0, so the PDF is

g Lty = p-2q (3.24)
= 20 — _— .
Noi (p+olna) 27Taxe {0<w<a) 1 ppr {wza}

fx(x)
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The parameters to be fitted are ¢, i1, o, p and the breakpoint a. We first fix ¢ to any arbitrary value
and fit the other parameters. By Eq.(3.23), ¢ = ( ) where n1(a) is the number of data points < a.
The log-likelihood is thus

lp,o,p,a) = mni(a)lnni(a) 4+ n2(a)lnna(a) —nlnn
+€1 (//H g, CL) + 62(})7 CL)

where ns(a) = n —nq(a), ¢ is as in EqQ.(3.17) (with n;(a) instead of n) and

n

ly(a,p) = mng(a)(Inp+plna)—(p+1) Z Inx;
i=n1(a)+1

where we assumed that the data x; is sorted in increasing order. For a fixed a, the optimization
of u,o on one hand, p on the other, are separated. The optimal /i(a),5(a) are obtained as in
Example 3.10 using techniques for censored data.
The optimal p is obtained directly:
maxly(a,p) = mna(a)(lnpla) —1) — Z In x; (3.25)
P i=n1(a)+1
1

—Ina+ n21(a) Z?:nl(a)—i-l Inz;

with p(a) =

Putting things together we obtain the profile log-likelihood of a

pla) = max_{(u,0,p,a)

p,0>0,p>0
In(2m) 1

— —nl(a)[ 5 (@) + 5 ((6(a)2(a) = B(a))* + 5()) + In Noj (3(a ))}

+n2(a) (Inp(a Zlnxl

where 3(a),é(a), s*(a) and ji(a) are as in Example 3.10 and 2(a) maximizes Eq.(3.20). We deter-
mine the maximum of pl(a) numerically Figure 3.8(b) shows that there is some large uncertainty
for the value of @, which can be explained by the fact that, in this region, the log-normal distribution
locally follows a power law. We find & = 136300, i = 9.3565, 6 = 1.3176 and p = 1.1245.

3.5 HEAvY TAIL

3.5.1 DEFINITION

In Section 3.4.4 we have seen the definition of fat tail, i.diséribution that has vanishing hazard
rate. In this section we see an extreme case of fat tail,ccétleavy tail”, which has unique, non
intuitive features. It is frequently found in models of fiiges and flow durations.

We use the following definition (which is the simplest). We $hat the distribution orja, o),
with CDF F, is heavy tailed with index0 < p < 2 if there is some consta®itsuch that, for large
1—F(x) ~— (3.26)

xP
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Heref(x) ~ g(x) means thaf (z) = g(x)(1 + €(x)), with lim,_,, €(z) = 0.
A heavy tailed distribution has an infinite variance, andifet 1 an infinite mean.

e The Pareto distribution with exponemts heavy tailed with indey if 0 < p < 2.
e The log-normal distribution is not heavy tailed (its vagarns always finite).
e The Cauchy distribution (densi%) is heavy tailed with index.

3.5.2 HeAvy TAIL AND STABLE DISTRIBUTIONS

Perhaps the most striking feature of heavy tailed distidimstis that the central limit theorem does
not hold, i.e. aggregating many heavy tailed quantitiesdoéproduce a gaussian distribution.

Indeed, if X; are idd with finite variancer? and with meary, theni% Yo (X; — p) tends in
distribution to the normal distributiotV, ,2. In contrast, ifX; are iid?heavy tailed with indey,

then there exist constanis such that

T distrib
_;ZXZ' +d, — S,
ne = n — 00

whereS, has astable distribution with indexp. Stable distributions are defined for< p < 2,
for p = 2 they are the normal distributions. Fok 2, they are either constant or heavy tailed with
indexp. Furthermore, they have a property of closure under aggoegaf X; are iid and stable
with indexp, theni%(Xl + ...+ X,,) has the same distribution as ties, shifted by some number

dp.

The shape of a stable distribution wjth< 2 is defined by one skewness paraméter [—1, 1] (but

the skewness index in the sense of Section 3.4.2 does not ei}ie standardstable distribution

is defined by its indey, and wherp < 2, by 5. The general stable distribution is derived by a
change of scale and location. Whénr= 0 the standard stable distribution is symmetric, otherwise
not. The standard stable distribution with skewness pa&me’ is the symmetric (by change of
sign) of the standard stable distribution with paraméteWhenp < 2 andg = 1, the support of
the stable distribution if0, +00) (and thus whers = —1 the support i§—oo, 0]), otherwise the
support isR.

Stable distributions that are not constant have a contimdeunsity, which it is not known explicitly,
in general. In contrast, their characteristic functiores kavown explicitly [93, 73], see Table 3.2 .
Note that the Pareto distribution is not stable.

Figure 3.9 illustrates the convergence of a sum of iid Paatdom variables to a stable distribu-
tion. In practice, stable distributions may be difficult tonk with, and are sometimes replaced by
heavy tailed combinations, as in Example 3.11.

3.5.3 Heavy TAIL IN PRACTICE

Heavy tail concretely means that very large outliers aresiptes We illustrate this on two exam-
ples.
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Figure 3.9:Aggregation a sum of iid Pareto random variables (a = 1, p € {1,1.5,2,2.5,3}). On every row:
The first three diagrams show the empirical distribution (normal qg-plot, histogram, complementary CDF in
log-log scale) of one sample of n, = 10* iid Pareto random variables. The last three show similar diagrams
for a sample (Y;)1<;j<» of n = 10° aggregated random variables: Y; = - >>", X, where X ~ iid Pareto.
The figure illustrates that for p < 2 there is no convergence to a normal distribution, and for p > 2 there is.
It also shows that for p > 2 the power law behaviour disappears by aggregation, unlike for p < 2. Note that
for p = 2 X is heavy tailed but there is convergence to a normal distribution.
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Figure 3.10: Simulation of Random Waypoint with speed density equal to f{(v) = Kav*1{o<p<p,uc}s
showing instant speed and average speed (smoother line) for one user.

EXAMPLE 3.12:RANDOM WAYPOINT WITH HEAVY TAILED TRIP DURATION. Consider the following
variant of the random waypoint mobility model as in Figure 6.3 on Page 170. A mobile moves in
some area from one point to the next (we call trip the movement from one point to the next). The
velocity on one trip is sampled from the distribution with PDF f{,(v) = Kov*1{g<y<imar}s With o >0
and where K, is a normalizing constant. It follows that the complementary CDF of trip duration is
equal to

KoD 1

where D is the average length (in meters) of a trip.

For o = 0.5 the trip duration is heavy tailed, for « = 1.5, it has finite variance and is thus not heavy
tailed. Figure 3.10 shows a sample simulation of both cases. In the heavy tailed case, we see that
most trip durations are very short, but once in a while, the trip duration is extraordinarily large.

ExXAMPLE 3.13:QUEUING SYSTEM. Consider a server that receives requests for downloading
files. Assume the requests arrival times form a Poisson process, and the requested file sizes are
iid ~ " where F'is some distribution. This is a simplified model, but it will be sufficient to make the
point.

We assume that the server has a unit capacity, and that the time to serve a request is equal to
the requested file size. This again is a simplifying assumption, which is valid if the bottleneck is
a single, FIFO I/O device. From Chapter 8, the mean response time of a request is given by the
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Pollaczek-Khintchine formula ,
PP+ %)
2(1=p)

where: ;. is the mean and o2 the variance, of F' (assuming both are finite); p is the utilization factor
(= request arrival rate xu). Thus the response time depends not only on the utilization and the
mean size of requests, but also on the coefficient of variation C := o /u. As C grows, the response
times goes to infinity.

R=p+

If the real data supports the hypothesis that F' is heavy tailed, then the average response time is
likely to be high and the estimators of it are unstable.

3.5.4 TESTING FOR HEAVY TAIL

There are many methods for deciding whether a data set iy tesdad or not. One method consists
in fitting a Pareto distribution to the tail, as in Example13.1

A more general method is the tool by Crovella and Taqqu calkest [31]. It uses the scaling
properties and convergence to stable distributions. @ensi; iid and heavy tailed, with index.

Call Xfm) the aggregate sequence, where observations are groupai#srobr.:

X .= zm: X,

j=(i—1)m+1

For largem, ms, by the convergence result mentioned earlier, we should hpproximately the
distribution equalities

1 1

(m1)
TX; ~ T
P p
my msy

(m2)
x(me (3.28)

The idea is now to plot the empirical complementary distidns oin(m) for various values of
m. Further, the deviation between two curves of the plot idyeneal by means of horizontal and
vertical deviation® andr as shown in Figure 3.11. We ha¥e= log z; — log z;. By EQq.(3.28),
we haver, = (my/mq)'/Px, thus
1
0 = —log 12
p ma
Also, if X; is heavy tailed, andh is large, thenX'i(m) is approximately stable. Thusif,/m is an
integer, the distribution on(.mQ) (which is a sum of{™") is the same as that O, /m1) /P X",
We should thus have
7 =logP(X™ > 2;) = log P(X™ > ;) ~ log 2
my
The method iraest consists in use only the points where the above holds, then, at such points,
estimatep by

Then the average of these estimates is used. See FigureoBdr iflustration.
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Figure 3.11:First Panel: Deviations used in the aest tool. Second panel: application to the dataset in
Example 3.11. There is heavy tail, with an estimated index p = 1.12 (same as obtained by the direct method
in Example 3.11).

3.5.5 APPLICATION EXAMPLE : THE WORKLOAD GENERATOR SURGE

Many of the concepts illustrated in this chapter are usedéntdvol Surge[9], which is a load
generator for web servers.

The loadintensityis determined by the number tfser Equivalents (UEs), each implemented
as an independent thread of execution, on one or severalimeachhe loadchatureis defined by

a set of constraints on the arrival process, the distribubiorequest sizes and the correlation of
successive requests to the same object, as described bEf@Aparameters of the distributions
were obtained by fitting measured values (Table 3.3).

1. One UE alternates between ON-object periods and “Inra€diFF periods”. Inactive OFF
periods are iid with a Pareto distribution .

2. During an ON-object period, a UE sends a request with eddxbdeferences. Once the

first reference is received, there is an “Active OFF peridd&n the request for the second

reference is sent, and so on, until all embedded referemeageeived. There is only one

TCP connection at a time per UE, and one TCP connection forrederence (an assumption

that made sense with early versions of HTTP).

The active OFF times are iid random variables with Weidigtributions.

The number of embedded references is modelled as a sel @nidom variables, with a

Pareto distribution.

P ow

The references are viewed as requests for downloadingTilesmodel is that there is a set of files
labeled: = 1, ..., I, stored on the server. Filehas two attributes: size; and request probability
;. The distribution of attributes has to satisfy the follog/iconditions.

5. The distributionH (x) of file sizes is a combination of truncated Lognormal and ®are
6. 0, satisfy Zipf’s law with exponentr = 1
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7. The distribution () of requested file sizes is Paréto

The distributionsH and £ are both file size distributions, sampled according to ckffé view-
points. Thus (as we discuss in Chapter 7) there must be #orelatween these two distributions,
which we now derive. Lef(¢) be the random variable that gives the indekthetth file requested.
ThusF(xz) = P(x;4) = x). We can assume that the allocation of file sizes and popekar#t done
in a preliminary phase, and is independenf @f. Thus

J

Letz) = z(2) = ... be the file sizes sorted in increasing order, and (e} be the index of theth
file in that order.z is a permutation of the set of indices, such that = z.(,. By specializing
Eq.(3.29) to the actual values,,, we find, after a change of variabje= z(n)

F(m) Z@ LNaj<oimy = Z 02t Lz ) <o)

thus
F(zgm) =Y Oxm) (3.30)

which gives a constraint between ths andz;s.

The file request referencéét), t = 1,2, ... are constrained by their marginal distribution (defined
by 6;). The authors find that there is some correlation in the sene model the dependency as
follows:

8. For any file index;, defineT}(i) < T»(i) < ... the successive values ofc {1,2,...}
such that = I(t). Assume thafl},, (i) — Ty (i ) come from a common distribution, called
“temporal locality”. The authors find it log-normal (moreegisely, it is a discretized log-
normal distribution, since the values are integer).

BUILDING A PROCESS THAT SATISFIES ALL CONSTRAINTS

It remains to build a generator that produces a random ocstpnformant to all constraints. Con-
straints 1 to 4 are straightforward to implement, with a grapndom number generator, and using
the techniques described in Section 6.6. The inactive OFRBg® active OFF periods and number
of embedded references are implemented as mutually indepéeid sequences.

Constraints 5 to 7 require more care. First, thare drawn from#. Second, thé;s are drawn (as
explained in Section 3.4.3) but not yet bound to the file irdexnstead, the values are put in a set
©. In view of Eq.(3.30), define

"The original paper [9] takes an indgx= 1 for this Pareto distribution, which implies that the meaguest file
size is infinite, and thus the process of file size requeststistationary (this is a freezing simulation problem as in
Section 7.4). A value g larger than 1 would be preferable.
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so that we should hav@(m) = 0. for all m. If this would be true, it is easy to see that all
constraints are satisfied. However, this can be done in [§]approximately. Here is one way to
do it. Assume that(m) = m, namely, we have sorted the file indices by increasing file. dtor
m = 1 we setf; to the value ino Which is closest td, = F(z1). Then remove that value from
O, setd, to the value inO closest td)y = F(x2) — 6, etc.

Lastly, it remains to generate a time series of file requEstssuch that the marginal distribution
is given by thef;s and the temporal locality in condition 8 is satisfied. Tlaa be formulated as
a discrete optimization problem, as follows. First a traee §' is chosen arbitrarily; it reflects
the length of the load generation campaign. Then, for eael, fihe number of references; is
drawn, so as to satisfy Zipf's law (witB(N;) = 6;). Last, a sequencs§,, , Ss, ... is drawn from
the distribution in in condition 8.

The problem is now to create a sequence of file ind{¢€s), 1(2),...1(T")) such that appearsV;
times and the distances between successive repetitiorle oéfierences is a close as possible to
the sequencé’,, S,, .... Any heuristic for discrete optimization can be used (sulsieulated
annealing or tabu search). An ad-hoc heuristic is used in [9]

3.6 PROOFsS

THEOREM 3.1.1 The log likelihood of the data is

—

I
1(8,0) = —3 In(2m) ~ In (o %Z( 1) (3.31)

N2
For any fixeds, it is maximum wherﬁjfi1 (yl — fi(ﬁ)) is minimum, which shows item 1. Take the derivative with

N L\ 2
respect tar and find that for any fixed, it is maximum foro = % > (1/1 — fl-(ﬂ)) , which shows item 1.

The rest of the theorem is a direct application of Theorem1Bahd Theorem B.3.1.

THEOREM 3.1.2 The log likelihood of the data is

I

lj=—In(2)+IIn(}) =AY

i=1

Yi — fz(g)‘ (3.32)

. = . . . 1 _ 1
For any fixed3, it is maximum when; = £ 5",

i (Z

which is maximum wher minimizesy"!_,

i — fi(ﬁ‘ and the corresponding value is

D +IInl—1—-1In2

vi = 1:9)|

THEOREM 3.3.1 Inview of Theorem 3.1.2, the MLE ¢f is obtained by minimizing~’_, |y This

-(x3).|

7
is equivalent to minimizing_"'_, u; over (3, u) [
constraints in the theorem.

> Y — (Xg)l ,
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3.7 REVIEW

3.7.1 ReEVIEW QUESTIONS

QUESTION 3.7.1. How would you compute and« in Example 3.1 2
QUESTION 3.7.2. How would you compute the residuals in Example 3°3 ?

QuEsTION 3.7.3. How would you compute confidence intervals for the compofieof A in
Theorem 3.1.1 using the Bootstrap ? In Theorem 3.22 ?

QUESTION 3.7.4. Can you name distributions that are fat tailed but not heailed ? !

QUESTION 3.7.5. If the tail of the distribution ofX follows a power law, can you conclude th¥t
is heavy tailed 72

QUESTION 3.7.6. Which of the distributions used in Surge are heavy tailedt 2afited ? 12

3.7.2 UWUSEFUL MATLAB COMMANDS

e regress solves the general linear regression model as in Theorerh 3.2
e | i nprog solves the linear program in Theorem 3.3.1

8By minimizing ", (y; — aeo‘ti)Q. This is an unconstrained optimization problem in two Valeéa; use for exam-
ple a generic solver such fsri nsear ch in matlab.

9The residuals are estimates of the noise termketa anda be the values estimated by maximum likelihood, for
either model. The residuals arg= y; — ae®*: for the former modely; = Iny; — In (dedti) for the latter.

ODraw R bootstrap replicates af and obtaink estimatesgl, - ER of ﬁ using the theorems. At leveb%, take

R = 999 and use the order statistics of tlign component of the bootstrap estimaté.l.) <. < ﬁj(.R); obtain as

confidence interva{l@f‘r’), ﬁ§975)].

1The Pareto distributions with > 2, the log-normal distributions, the Weibull distributiongh ¢ < 1.

12No, only if the exponent of the tail is 2.

Blnactive OFF time, File size, File request size. The numbentbedded references is Pareto with- 2 thus is
fat tailed but not heavy tailed. The active OFF time and teraldocality are fat tailed but not heavy tailed.
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\ Distribution Standard NormaN,, ; Standard Laplace Standard Lognorma‘l
Parameters none none >0
Comment Page 24 Page 65 Page 73
w2 nz)2
POF N i et Bt Lo
support R R [0, +00)
1 —Q(x) 0.5¢~ 1l forz <0 Inx
CbF (by definition of0())  1-05c-fore >0 L~ @(5)) 1o
characteristic func- _w? 1
. e 2 5
tion IHw ,
mean 0 0 T
variance 1 2 (e"2 — 1) o’
median 0 0 1
skewness index 0 0 Veor —1 (e”2 + 2)
kurtosis index 0 3 2" 4 2e3° 4 3¢2° — 6
hazard rate ~ T =1 ?Tﬁ

\ Effect of change of scale and location

Original Distribution

Shifted and Re-scaled

Distribution of X

Distribution ofY = s X +m

same plus
Parameters m € R (location),
s > 0 (scale)
PDF fx (@) Sfx (27)
qharacterlstlc func- () M (s0)
tion
mean 0 n+m
variance o? 5202
median v v+m
skewness index same
kurtosis index same
hazard rate Ax () I (=)

Table 3.1:Catalog of Distributions used in this chapter (continued on Table 3.2). The characteristic function

is defined as E (/) and is given only when tractable. The notation a(z) ~ b(xz) means lim,

a(x)

e L

Only parameters that affect the shape of the distribution are considered in the table. Other distributions in
the same families can be derived by a change of scale and location, using the formulas given in the bottom

part of the table.
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Standard Stable with

Distribution Standard Weibull Standard Pareto .
indexp < 2
Parameters >0 0<p % zlp <Z-ls
The stable definition
is also defined for
Page 78; called ex- p = 2, in which
Comment ponential forc = 1 Page 76 case itis equal to the
normal distribution
Ny2. See Page 85
-1 —(z¢) p well defined but usu-
PDF cr e o) w1 L (>1) ally not tractable
support [0, +00) [1, +00) Elexcept whens =
. well defined but usu-
CDF (1 — 6_($ )) 1{m20} (1 — x—lp) 1{m21}

ally not tractable

exp [— |w]” (1 + A)]
with A =

_1 pm
characteristic % forc=1 jBsgn(w) tan 5
function e 2.f0r p#1
2B 50m (w) In |w)|
forp=1
meany I () 2 forp > 1 8;%25; 1 else un-
varianceo” U (<2) -’ Wl(p_@ forp>2  undefined
median (In 2))1/c 91/p 0 wheng = 0, else
untractable
. ct8 2(1+ ) —2
skewness index I( ﬁ‘)—f“‘*—“g S5 fore > yndefined
g* 3
. P(2)—dyipo® —6p20?—pt  6(p°+p’—6p—2) for
kurtosis index o4 p§7—43)(p—4) undefined
—3 p
hazard rate = cx¢ ! =L ~ 7

Table 3.2:Continuation of Table 3.1. I'() is the gamma function, defined as I'(z) = [~ t*~'dt; if z € N,

I(z) = (z —1)!
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| model densityf () value of parameters |
Inactive OFF time Pareto T s=1,p=15
No of embedded references Pareto ;’%ﬁll{xZS} s=1,p=243
Active OFF time Weibull € (2)"e (5) 5= 1.46,c=0.332
File Size Lognormal Eq.(3.24) w=9.357,0=1.318
comb. Pareto a=133K,p=1.1
q=Noi(p+olna)
File Request Size Pareto 2514 s = 1000, p = 1.0
(see footnote on Page 9
(Inz—p)?
Temporal Locality Lognormal ﬁl{bo} pw=1.5,0=0.80

Table 3.3:Distributions and parameters used in SURGE.
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CHAPTER 4

TESTS

We use tests to decide whether some a
sertion on a model is true or not, for ex-
ample: does this data set come from ¢
normal distribution ? We have seen in
Chapter 2 that visual tests may be uset
for such a purpose. Tests are meant t ‘ /5 | R
be a more objective way to reach the ‘ - \EL.
same goal.

Tests are often used in empirical sciences to draw conclagiom noisy experiments. Though

we use the same theories, our setting is a bit different; wecancerned with the nested model
setting, i.e. we want to decide whether a simpler model isigowugh, or whether we do need a
more sophisticated one. Here, the question is asymmeitiitdioubt, we give preference to the

simpler model — this is the principle of parsimony. The NeprR&arson framework is well suited

to such a setting, therefore we restrict ourselves to it.

97
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There is a large number of tests, and everyone can invemtavei (this is perhaps a symptom of
the absence of a simple, non equivocal optimality critériém practice though, likelihood ratio
tests are asymptotically optimal, in some sense, underlasgg sets of assumptions. They are
very general, easy to use and even to develop; therefosayitiith knowing them. We often make
use of Monte Carlo simulation to compute th@alue of a test; this is sometimes brute force, but
it avoids spending too much time solving for analytical foteee. We discuss ANOVA, as it is
very simple when it applies. Last, we also study robust téststests that make little assumption
about the distribution of the data.

Contents
4.1 The Neyman Pearson Framework . . . ... ... ... ... ........ 98
4.1.1 The Null Hypothesis and The Alternative . . . ... ... ...... 98
4.1.2 Critical Region, Sizeand Power . . . . .. ... ... ..... ... 99
4.1.3 p-valueofaTest. . .. ... . . . . ... .. 102
414 TestsAreJustTests . . . . . . . . . .. . . 103
4.2 Likelihood RatioTests . . . . . . . . . . . . 104
4.2.1 Definition of Likelihood Ratio Test . . . . . . ... ... ... ... 104
4.2.2 Student Test for Single Sample (or PairedData) . . . . .. ... .. 105
4.2.3 The Simple Goodness of FitTest. . . . . ... ... ... ...... 106
4.3 ANOVA . . . e e 108
4.3.1 Analysis of Variance (ANOVA) anfl-tests . . . . .. ... ... .. .. 108
4.3.2 TestingforaCommon Variance . .. .. .. .. .. ... ...... 112
4.4 AsymptoticResults . . . . .. ... 114
4.4.1 Likelihood Ratio Statistic . . . . . . ... ... ... ... . ... 114
4.4.2 Pearson Chi-squared Statistic and Goodness of Fit .. ..... . ... . 114
443 TestofIlndependence . . . .. .. .. .. ... .. .. .. .. ..., 117
45 OtherTests . . . . . . . e 18
45.1 Goodness of Fit Tests based on Ad-Hoc Pivots . . . . . . ... .. 118
452 RobustTests . . . .. . . . . . . e 121
4.6 Proofs . . . . . e 312
A7 ReVIEBW . . . . e 125
471 TestsAreJustTests . . . .. . . .. .. . .. 125
4.7.2 ReviewQuestions . . . . .. ... e 512

4.1 THE NEYMAN PEARSON FRAMEWORK

4.1.1 THE NuLL HYPOTHESIS AND THE ALTERNATIVE

We are given a data sample, i = 1,...,n. We assume that the sample is the output generated
by some unknown model. We consider two possible hypothdsas# $he modelH, and H;, and
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we would like to infer from the data which of the two hypothesetrue. In the Neyman-Pearson
framework, the two hypotheses play different rolég;, the null hypothesis, is the conservative
one. We do not want to reject it unless we are fairly sufeis thealternative hypothesis.

We are most often interested in thested model setting: the model is parameterized by same

in some spac®, andH, vy ¢ ©,” whereasH; Ly eco \ ©y”, where©, is a subset 0B.

In Example 4.1, the model could be: all data points for coerpiption O [resp. 1] are gen-
erated as iid random variables with some distributignresp. Fi]. Then H, is: “Fy = F7”
and H, is “Fy and F; differ by a shift in location”. This is the model used by thel#dixon
Rank Sum test (see Example 4.11 for more details). Wwre= {(Fo, Fy), Fy is a CDR and
© = {(Fy, 1), Fyisa CDF and’ () = Fo(x —m), m € R}.

Another, commonly used model, for the same example couldaliedata points for compiler
option O [resp. 1] are generated as iid random variables sothe normal distributionV,,,
[resp. N, ,2]. ThenHy is: “uy = p,” and Hy is “po # p1”. This is the model used by the
so-called “Analysis of variance” (see Example 4.7 for maetads). Herebo = {(uo, o, 0 > 0)}
and® = {(po, 1,0 > 0)}. Clearly this second model makes more assumptions, anthésteken
with more care.

EXAMPLE 4.1:NON PAIRED DATA. A simulation study compares the execution time, on a log
scale, with two compiler options. See Figure 4.1 for some data. We would like to test the hypoth-
esis that compiler option O is better than 1. For one parameter set, the two series of data come
from different experiments.

We can compute a confidence interval for each of the compiler options. The data looks normal,
so we apply the student statistic and find the confidence intervals shown on the figure.

For parameter set 1, the confidence intervals are disjoint, so it is clear that option 0 performs
better. For parameter sets 2 and 3, the intervals are overlapping, so we cannot conclude at this
point.

We see here that confidence intervals may be used in some cases for hypothesis testing, but not
always. We study in this chapter how tests can be used to disambiguate such cases.

4.1.2 RITICAL REGION, SIZE AND POWER

Thecritical region, also calledejection region C of atestis a set of values of the tuple,, ..., x,,)
such thatif(xy, ..., z,,) € C we rejectH,, and otherwise we accepl,. The critical region entirely
defines the test

The output of a test is thus a binary decision: “accHpt, or “reject H,". The output depends
on the data, which is random, and may be wrong with some (ltipesmall) probability. We
distinguish two types of errors

e A type 1 error occurs if we rejectl, whenH is true
e Conversely, daype 2 error occurs if acceptl, whenH, is true.

Un all generality, one also should consider randomizedsteshose output may be a random function of
(21, ...,x5). See [81] for such tests. We do not use them in our setting
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(a) Parameter set 1
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(b) Parameter set 2
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(c) Parameter set 3

aaaaa

Parameter Set Compiler Option 0] Compiler Option 1

1 [—0.1669; 0.2148] | [0.3360; 0.7400]
2 [—0.0945; 0.3475] | [0.2575; 0.6647]
3 [—0.1150; 0.2472] | [—0.0925;0.3477]

Figure 4.1:Data for Example 4.1. Top: Logarithm of execution time, on a log scale, with two compiler
options (o=option 0, x=option 1) for three different parameter sets. Bottom: 95% confidence intervals for the
means.

The art of test development consists in minimizing bothreypes. However, it is usually difficult

to minimize two objectives at a time. The maximum probapitif a type 1 error, taken over all

0 € Oy is called thesize of the test. Thg@ower function of the test is the probability of rejection

of Hy as a function of) € © \ ©,. Neyman-Pearson tests are designed such that the size has a
fixed, small value (typicallys%, or 1%). Good tests (i.e. those in these lecture notes and those
used in Matlab) are designed so as to minimize, exactly orcxjrpately, the power, subject to a
fixed size. A test is said to be uniformly more powerful (UMR)Xmong all tests of same size, it
maximizes the power for every value #fc © \ ©,. UMP tests exist for few models, therefore
less restrictive requirements were developed (the rederéor these issues is [62]).

It is important to be aware of the two types of errors, and efféitt that the size of a test is just one
facet. Assume we use a UMP test of Siz@5; it does not mean that the risk of error is ind&eb,

or even is small. It simply means that all other tests thaelzenisk of type 1 error bounded by05
must have a risk of type 2 error which is the same or largers¥ne may need to verify whether,
for the data at hand, the power is indeed large enough, thihigis seldom done in practice.

EXAMPLE 4.2:COMPARISON OFTWO OPTIONS, REDUCTION IN RUN TIME.  The reduction in run
time due to a new compiler option is given in Figure 2.7 on Page 32. Assume that we know that
the data comes from some iid X;~ N, ,2. This may be argued and will be discussed again, but it
is convenient to simplify the discussion here. We do not know y or o.

We want to test Hy: 4 = 0 against Hy: u > 0. Here § = (u,0), © = [0,00) x (0,00) and Oy =
{0} x (0,00). An intuitive definition of a test is to reject H if the sample mean is large enough; if
we rescale the sample mean by its estimated standard deviation, this gives the rejection region

C = {(ml, ..y Tp) such that (4.1)

for some value of ¢ to be defined later and with, asusualz = 1 3" | X;ands2 = L 7 | (X; — 7).
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Figure 4.2:Power as a function of 1 for Example 4.2.

The size of the test is the maximum probability of C' for § € 6. We have

P<ﬂ3>c
S

n

W= 0,0’) ~1— Npi(c)

where Ny ; is the CDF of the standard gaussian distribution. Note that this is independent of o
therefore

o = sup (1= Noa(c)) =1—Noa(c)
o>

If we want a test size equal to 0.05 we need to take ¢ = 1.645. For the data at hand the value of
the test statistic is nf = 5.05 > c therefore we reject Hy and decide that the mean is positive.

o)
— ]P’(x/ﬁxs_u>c—\/ﬁsﬁ ,u,a>
1 — Nos (c . ﬁ§> (4.2)

The power function is

Blu,0) P(ﬁfw

Sn

Q

Figure 4.2 plots the power as a function of ;1 when ¢ = 1.645 and for o replaced by its estimator
value s,, . For p close to the 0, the power is bad (i.e. the probability of deciding H; is very small.
This is unavoidable as lim,,_.q 5(u, o) = a.

For the data at hand, we estimate the power by setting » = & and ¢ = s, in Eq.(4.2). For a test
size equal to 0.05 (i.e. for ¢ = 1.645) we find 0.9997. The probability of a type 2 error (deciding
for Hy when H, is true) is thus approximately 0.0003, a very small value. If we pick as test size
a = 0.1%, we find that the type 2 error probability is 2.5%.

The previous example shows that the test size does not sajgtleng. On Figure 4.1, we see that
there is a “grey zone” (values ¢f below, say,15) where the power of the test is not large. If
the true parameter is in the grey zone, the probability oétgperror may be large, i.e. it is not
improbable that the test will acceply even whent, is true. It is important to keep this in mind:
a test may accepfl, because it truly holds, but also because it is unable totrégjeThis is the
fundamental asymmetry of the Neyman-Pearson framework.
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The power function can be used to decide on the sinéthe test, at least in theory, as illustrated
next.

EXAMPLE 4.3:OPTIMAL TEST SizE, CONTINUATION OF EXAMPLE 4.2. Say that we consider that
a reduction in run time is negligible if it is below ;*. We want that the probability of deciding Hy
when the true value equal to ©* or more is similar to the size «, i.e. we want to balance the two
types of errors. This gives the equations

1—N071(C*) =
1—N071<c*—\/ﬁ’u—> — 1-a

Sn

thus
N071 (C*) + N071 <C* — \/E'f:—> =1

n

By symmetry of the gaussian PDF around its mean, we have
if No,l(l‘) + N071(y) =1 then =z + Yy = 0
from where we derive

¢t = /nt

2s,,

The table below gives a few numerical examples, together with the corresponding test size a* =
1-— N(]’l (C*)

resolution p*  optimal threshold ¢* size o*

10 0.97 0.17
20 1.93 0.02
40 3.87 5.38e-005

We see that if we care about validly detecting reductions in run time as small as p* = 10ms, we
should have a test size of 17% or more. In contrast, if the resolution p* is 20ms, then a test size of
2% is appropriate.

4.1.3 p-VALUE OF A TEST.

For many tests, the rejection region has the fdffi{z) > m,}, whereZz is the observatior]’()
some mapping, anahyis a parameter that depends on the sizé the test. In Example 4.2 we can
takeT'(¥) = /n .

DEFINITION 4.1.1. Thep-value of an observatiod is

p(7) = sup P(T(X) > T(2)|6)

In this formula, X is a random vector that represents a hypothetical repicati the experiment,
whereast is the data that we have observed.
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—

The mappingn — sup,.e, P(T'(X) > m|f#) is monotonic nonincreasing, and usually decreasing.
Assuming the latter, we have the equivalence

P (7) < ae T(T) >mg
in other words, instead of comparing the test stati5ti€) against the threshold,,, we can com-
pare thep-value against the test size

The test rejectsHy when the p-value is smaller than the test size.

The interest of the-value is that it gives more information than just a binargwaer. It is in fact
the minimum test size required to rejdét. Very often, software packages retyrvalues rather
than hard decisiong{, or H;).

EXAMPLE: CONTINUATION OF EXAMPLE 4.2 The p-value is p* = 1 — Ny (\/f"f) We find p* =
2.2476e — 007 which is small, therefore we reject Hy.

4.1.4 TESTSARE JUSTTESTS

When using a test, it is important to make the distinctiomeen statistical significance and prac-
tical relevance. Consider for example a situation, as imfipta 4.2, where we want to test whether
a meary satisfiesy = g = 0 or u > uo. We estimate the theoretical meaty the sample mean

z. Itis never the case that= z exactly. A test is about deciding whether the distance betwe
andz can be explained by the randomness of the data alone (in whsdghwe should decide that

i = [ip), or by the fact that, trulyy > po. Statistical significance means that, in a case where we
find z > 1, we can conclude that there is a real differencei.e. 1io. Practical relevance means
that the difference. — 1 is important for the system under consideration. It may Wappen that

a difference is statistically significant (e.g. with a vesiygde data set) but practically irrelevant, and
vice versa (e.g. when the data set is small).

In some cases, tests can be avoided by the use of confiderceaist This applies to matching
pairs as in Example 4.2: a confidence interval for the meanreadily be obtained by Theo-
rem 2.2.2. Atlevel.05, the confidence interval {$5.9, 36.2], so we can conclude that> 0 (and
more, we have a lower bound @i).

More generally, consider a generic model parameterizelusained € © C R. For testing
0 = 0, against: 0 # 6,

we can take as rejection region

A~

«9—«90’>c

If § + ¢ is a confidence interval at levél— «, then the size of this test is precisely For such
cases, we do not need to use tests, since we can simply usdetadiintervals as discussed in
Chapter 2. However, it is not always as simple, or even plesdibreduce a test to the computation
of confidence intervals, as for example with unpaired dataxample 4.1 (though it is possible to
use confidenceetsrather than confidence intervals).
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4.2 LIKELIHOOD RATIO TESTS

In this section we introduce a generic framework, very fergly used for constructing tests. It
does not give UMP tests (as this is, in general, not possiblg)he tests are asymptotically UMP
(under the conditions of Theorem 4.4.1). We give the apptioato simple tests for paired data
and for goodness of fit. Note that deciding which test is l®sbmetimes controversial, and the
best tests, in the sense of UMP, is not always the likelihatid test [61]; note also that the issue
of which criterion to use to decide that a test is best is deh({i79]. In our context, likelihood
ratio tests are appealing as they are simple and generic.

4.2.1 DEFINITION OF LIKELIHOOD RATIO TEST

. def
ASSUMPTIONS AND NOTATION We assume the nested model setting, With= “0 € ©,”

whereasH, “weo \ ©,”. For a given statistic (random variablﬁf)and valuet of X, define :

e [:(0) = In f¢(Z]0) wheref¢(.|0) is the probability density of the model, when the parame-

terisé.
o lz(Hy) = supyee, lz(0)
o [3(H)) = supycg lz(0)

For example, assume some data comes from an iid sequencendli®vs~ N (u, o). We want
to testy = 0 versusu # 0. Here® = {(u, 0 > 0)} and©y = {(0,0 > 0)}.

If H, is true, then, approximately, the likelihood is maximum fore ©, and thuslz(H,) =
lz(Hy). In the opposite case, the maximum likelihood is probabached at somé ¢ ©, and
thusiz(H,) > lz(H,). This gives an idea for a generic family of tests:

DEFINITION 4.2.1. The likelihood ratio test is defined by the rejection region
C = {lz(H1) — lz(Ho) > k}
wherek is chosen based on the required size of the test.

The test statisti¢:(H,) — lz(Hy) is calledlikelihood ratio for the two hypotheseH, and H;.

Thus we reject! € ©, when the likelihood ratio statistic is large. The NeymamiBen lemma
[104, Section 6.3] tells us that, in the simple case witg&y@and©; contain only one value each,
the likelihood ratio test minimizes the probability of typerror. Most tests used in this lecture are
actually likelihood ratio tests. As we will see later, forda sample size, there are simple, generic
results for such tests.

There is a link with the theory of maximum likelihood estimoat Under the conditions in Defini-
tion B.2.1, define

° 9:0 : the maximum likelihood estimator é¢fwhen we restrict to be in©,
e O : the unrestricted maximum likelihood estimatorjof

Theniz(Hy) = 1:(6,) andlz(H,) = Iz(6). In the rest of this section and in the next two sections
we show applications to various settings.
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QUESTION 4.2.1. Why can we be sure that(d) — iz(6y) > 072 2

EXAMPLE: CONTINUATION OF EXAMPLE 4.2, COMPILER OPTIONS. We want to test Hy: ¢ = 0
against Hy: p > 0. The log-likelihood of an observation is

lz(p,0) = TIH (2m0?) — 02 Z
and the likelihood ratio statistic is

lz(Hy) —lz(Hp) =  sup lz(p,0)—suplz(0,0) =—nln—
©n>0,0>0 >0 a0

with
. 1 2
7
51 = EZ($2_A
n [

Nn - max(f, O)

The likelihood ratio test has a rejection region of the form lz(H;) — iz(Hp) > k, which is equivalent
to
01 < kéyg (4.3)

In other words, we reject Hy if the estimated variance under H; is small. Such a test is called
“Analysis of Variance”.

We can simplify the definition of the rejection region by noting first that 51 < 6, and thus we must
have k£ < 1. Second, if z > 0 then Eq.(4.3) is equivalent to \/n~ > ¢ for some c. Third, if z < 0
then Eq.(4.3) is never true. In summary, we have shown that this test is the same as the ad-hoc
test developed in Example 4.2.

4.2.2 SUDENT TEST FOR SINGLE SAMPLE (OR PAIRED DATA)

This test applies to a single sample of data, assumed to lbeah@rith unknown mean and vari-
ance. It can also be applied to two paired samples, after abngpthe differences. It is the two
sided variant of Example 4.2.1. The model 53, ..., X,, ~ iid N,,> wherey ando are not
known. The hypotheses are:

Hy: = po againstty: pu # pig

wherey, is a fixed value. We compute the likelihood ratio statistid &ind after some algebra:

lz(Hy) — lz(Ho) = gln (1 * %)

2As long as the MLEs exist: by definitiofy ( ) 1z(0) for any®é.
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Let T'(Z) = /n™=2 be the student statistic (Theorem 2.2.3), with= -1 >".(z; — 7)?. We can
write the likelihood ratio statistic as

n 2\2
(1) — 1z(Hy) = 5 1n (1 + %) (4.4)

which is an increasing function ¢f'(%)|. The rejection region thus has the form

C ={T@)] > n}

We compute; from the condition that the size of the testis Under [,, T(X) has a student
distributiont,,_; (Theorem 2.2.3). Thus

—— (1 . %) (4.5)

For example, fory = 0.05 andn = 100, n = 1.98.

Thep-value is
pr=2(1—t,-1(T(2))) (4.6)

EXAMPLE 4.4:PAIRED DATA. This is a variant of Example 4.2. Consider again the reduction in
run time due to a new compiler option, as given in Figure 2.7 on Page 32. We want to test whether
the reduction is significant. We assume the data is iid normal and use the student test:

Hy: p=0against Hy: p # 0

The test statistic is T'(Z) = 5.05, larger than 1.98, so we reject H,. Alternatively, we can compute
the p-value and obtain p* = 1.80e — 006, which is small, so we reject Hy.

As argued in Section 4.1.4, the Student test is equivalezdnifidence interval, so you do not need
to use it. However, it is very commonly used by others, so yitiinged to understand what it does
and when it is valid.

4.2.3 THE SIMPLE GOODNESS OFFIT TEST

Assume we are given data pointseq, ..., z,,, assumed to be generated from an iid sequence, and
we want to verify whether their common distribution is a giwdistribution /(). A traditional
method is to compare the empirical histogram to the thezaketine. Applying this idea gives the
following likelihood ratio test. We call it theimple goodness of fit test as the null hypothesis

is for a given, fixed distributiot#”'() (as opposed to a family of distributions, which would give a
compositegoodness of fit test).

To compute the empirical histogram, we partition the setadfies ofX into bins B;. Let N; =
> i1 118,31 (X%) (number of observation that fall in biB;) andg; = P{X; € B;}. If the data
comes from the distributiof’() the distribution ofV is multinomial 1, 5, i.e.

n! o n
P{Ni =nq, ..., Ny =ni} = ( ) ¢tqt 4.7)

ni!..ng!

The testis
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Hy: N; comes from the multinomial distributial/,, ;
against
H,: N; comes from a multinomial distributio®/,, ; for some arbitrary.

We now compute the likelihood ratio statistic. The paramité = p. Under H,, there is only
one possible value gy = ¢. From Eq.(4.7), the likelihood is

k
lz(p) = C + an In(p;) (4.8)
i=1
wheren; = Y",_, 115,3(z) andC = In(n!) — S  In(n,!). C'is a constant and can be ignored

in the rest. To findd, we have to maximize Eq.(4.8) subject to the constr@ﬁ;lpi = 1. The
function to maximize is concave 5, so we can find the maximum by the lagrangian technique.

The lagrangian is
k k
= Z niIn(p;) + A(1 — sz') (4.9)
i=1 i=1

The equation% = 0 given; = \p;. Consider first the case, # 0 for all .. We find \ by the
constraintzlepi = 1, which gives\ = n and thugy; = ~*. Finally, the likelihood ratio statistic

is
L(Hy) — Ls( Zm

In the case where; = 0 for somei, the formula is the same if we adopt the convention that, in
Eq.(4.10), the term; In ;‘q is replaced by whenevem,; = 0.

(4.10)

We now compute thg-value. It is equal to

(Z N; In 2 e Z n; In —> (4.11)

i=1 i=1

whereN has the multinomial distributiof,, .

For largen, we will see in Section 4.4 a simple approximation for thealue. Ifn is not large,
there is no known closed form, but we can use Monte Carlo sitimul as discussed in Section 6.4.

ExXAMPLE 4.5:MENDEL [104]. Mendel crossed peas and classified the results in 4 classes of
peas i = 1,2,3,4. If his genetic theory is true, the probability that a pea belongs to class i is
¢1 = 9/16,q2 = g3 = 3/16,q4 = 1/16. In one experiment, Mendel obtained n = 556 peas, with
Ny = 315, Ny = 108, N3 = 102 and N4y = 31. The test is

Hy : “q=p" against H; : “p'is arbitrary”
The test statistic is

k

Y niln - = 0.3002 (4.12)
. qi
i=1

We find the p-value by Monte-Carlo simulation (Example 6.7) and find p = 0.9191 + 0.0458. The
p-value is (very) large thus we accept Hy.
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QUESTION 4.2.2. Assume we compute thevalue of a test by Monte Carlo simulation with0
replicates and find an estimatedequal to0. Can we say that thge-value is small so we reject
Hy?3

4.3 ANOVA

In this section we cover a family of exact tests when we canrassthat the data is normal. It
applies primarily to cases with multiple, unpaired samples

4.3.1 ANALYSIS OF VARIANCE (ANOVA) AND F-TESTS

Analysis of variance (ANOVA) is used when we can assume that the data is a family of indepen
dent normal variables, with an arbitrary family of meang, with common variance. The goal is
to test some property of the mean. The name ANOVA is expldiyetiheorem 4.3.1.

ANOVA is found under many variants, and the basis is oftercofed by complex computations.
All variants of ANOVA are based on a single result, which weegnext; they differ only in the
details of the linear operatot$,, andIl,,, introduced below.

ASSUMPTIONS AND NOTATION FOR ANOVA

e The data is a collection ohdependent, normabndom variables(,, here the index is in
some finite sef? (with |R| = number of elements iR).

o X, ~ N, 2, i.e. all variables have theame variancegthis is pompously called “ho-
moscedasticity”). The common variance is fixed but unknown.

e The meang:,. satisfy some linear constraints, i.e. we assumeﬁr?éft(ur)re,% € M, where
M is a linear subspace @”. Letk = dim M. The parameter of the modelds= (ji, o)
and the parameter spaceds= M x (0, +o0)

e We want to test the nested modelc M,, where M, is a linear sub-space af/. Let
ko = dim M,. We havee)o = M, % (O, +OO)

o II,, [resp.1l,, ] is the orthogonal projector o [resp. M)

EXAMPLE: NON PAIRED DATA.(Continuation of Example 4.1) Consider the data for one parameter
set. The model is
Xi=p1+e; Yy =p2+e (4.13)

with ¢; ; ~ iid N ,2. We can model the collection of variables as X, ..., X;,,Y1,..., Y, thus R =
{1,...,m +n}. We have then

M ={(p1,..pi1, p2, --pi2), 1 € R, po € R} and ke = 2

Moy = {(ty oty iy .o.pp), p € R} and kg = 1

s (215 ey Ty Y1, oY) = (T4 00, T, G, -, §), Where = (3000 @) /mand g = (37, y;)/n.
gy (T15 s Ty Y15 s Yn) = (2, 0, 2, Z, 0, 2), Where 2= (3000 @ + 370 y5)/(m +n).

3A confidence interval for thg-value at levely is given by Theorem 2.2.4 and is equa[@o%} whereR is the
number of replicates. We obtain that 0.037 at confidencey = 0.95 thus we rejectd.
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This model is an instance of what is called “one way ANOVA”.

EXAMPLE 4.6:NETWORK MONITORING. A network monitoring experiment tries to detect changes
in user behaviour by measuring the number of servers inside the intranet accessed by users.
Three groups were measured, with 16 measurements in each group. Only the average and stan-
dard deviations of the numbers of accessed servers are available:

Group | Mean number of remote servers | standard deviation
1 15.0625 3.2346
2 14.9375 3.5491
3 17.3125 3.5349

(here the standard deviation is \/ﬁ >oiq(x; — Z)?). The model is
Xi,j = U; + €i,j 1< n; 1= 1, e k (414)

with ¢; ; ~ iid N 2. Itis also called one-way ANOVA model (one way because there is one “factor”,
index ¢). Here i represents the group, and j one measurement for one member of the group. The
collectionis X, = X; ;50 R = {(i,j),i=1,...,k=3and j =1,...,n;} and |R| = ), n;. We have

M = {(ps,5), such that p; j = p;, Vi,j}; the dimension of M is k = 3.

Moy = {(ps,5) such that p; j = p, Vi, j} and kg = 1.

IT,, (%) is the vector whose (i, j)th coordinate is independent of j and is equal to z;. def

(251 i) /i

Ty, (Z) is the vector whose coordinates are all identical and equal to the overall mean
def

z. (T @)/ IRl

THEOREM 4.3.1 (ANOVA). Consider an ANOVA model as defined above. pHvalue of the
likelihood ratio test ofHy:"“ i € My,0 > 0" against Hy: “ji € M \ My,0 > 0"is p* =
1 — Fy_ko,r—x(f) Where F,, ,,() is the Fisher distribution with degrees of freedamn, 7 is the

dataset and

552/ (k — k
/ SSl//((|R| —(/1:)) (4.19)
S92 = |l — foll? (4.16)
SS1 = ||Z— 4> (4.17)
fio = T (%) (4.18)
fr = Ty(%) (4.19)

(The norm is euclidian, i.€|7||* = 3 22.)

The theorem, the proof of which of which is a direct applicatof the general ANOVA theorem
C.4.3, can be understood as follows. The maximum likelihestimators undefi, and H, are
obtained by orthogonal projection:

S
R

- ~ 112
I I

:&0 = H]\/I()(f)7 OA'S = T — Mo



110 CHAPTER 4. TESTS

io= (@), = o E = il

The likelihood ratio statistic can be computed explicitiglas equal to- 2 1n 51 = By, (1 4 552),
where S50 < || — f||2 = |R|62 = SS1 + S52. Under Hy, the dlstrlbutlon off, given
by Eq.(4.15), is FisheF)._y, |r—«, therefore we can compute thevalue exactly. The equality
_>
X

SSl

SS A
Ol Ju

SsS5 MO

t>‘7

M 0

Figure 4.3:lllustration of quantities in Theorem 4.3.1

SS0 = SS1 + S52 can be interpreted as a decomposition of sum of squares|lasgo Con-
sider®, as the base model, with dimensions for the mean; we ask ourselves whether it is worth
considering the more complex mode| which hask > k, dimensions for the mean. From its
definition, we can interpret those sums of squares as follows

e 552 is the sum of squares explained by the maglgbr explained variation.
e SS1isthe residual sum of squares
e SS0is the total sum of squares

The likelihood ratio test accepts whenSS2/SS1 is large, i.e., when the percentage of sum of
squaress.S2/551 (also called percentage of variation) explained by the méds high.

The dimensions are interpreted as degrees of freeddd:(explained variation) is in the orthog-
onal of M, in M, with dimensionk — k, = and the number of degrees of freedom 52 is

k — ko; SS1 (residual variation) is the square of the norm of a vectot iharthogonal toM/
and the number of degrees of freedom $&f1 is |R| — k. This explains the name“ANOVA”: the
likelihood ratio statistic depends only on estimators afarace. Note that this is very specific of
homoscedasticity.

EXAMPLE 4.7:APPLICATION TOEXAMPLE 4.1, COMPILER OPTIONS. We assume homoscedasticity.
We will check this hypothesis later by applying the test in Section 4.3.2. The theorem gives the
following computations:

=(X,..,X,Y,..Y)and 6 = (> ,(X; — X)? +3,(Y; =Y)?)
= (2. 2.2, Z)With Z = (mX +nY)/(m+n) and 69 = - (3,(X; — 2)2 +32,(Y;
)

[ ]
N\ 7;> 7;>
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Parameter Setl SS df MS F Prob>F
Columns 13.2120| 1 | 13.2120] 13.4705| 0.0003116
Errors 194.2003| 198 | 0.9808
total 207.4123| 199
Parameter Set2 SS df MS F Prob>F
Columns 5.5975 1 | 55975 | 4.8813| 0.0283
Errors 227.0525| 198 | 1.1467
total 232.6500| 199
Parameter Set3 SS df MS F Prob>F
Columns 0.1892 1 | 0.1892| 0.1835| 0.6689
Errors 204.2256| 198 | 1.0314
total 204.4148| 199

Table 4.1:ANOVA Tests for Example 4.1 (Non Paired Data)

e SS1=>Y (X, —X)*+ Zj(Yj ~Y)?) = Sxx + Syy

e SS2=m(Z-X)?+n(Z-Y)2=(X-Y)?/(1/m+1/n)

e the f valueis %
The ANOVA tables for parameter sets 1 to 3 are given in Table 4.1. The F-test rejects the hypoth-
esis of same mean for parameter sets 1 and 2, and accepts it for parameter set 3. The software
used to produce this example uses the following terminology:

e SS2: “Columns” (explained variation, variation between columns, or between groups)
e SS1: “Error” (residual variation, unexplained variation)
e SSO: “Total” (total variation)

QUESTION 4.3.1. Compare to the confidence intervals given in the introdunctio

QUESTION 4.3.2. What are SS0, SS1 and SS2 for parameter set 1 ?

EXAMPLE: NETWORK MONITORING.The numerical solution of Example 4.6 is shown in the table
below. Thus we accept H,y, namely, the three measured groups are similar, though the evidence
is not strong.

Source SS df MS F Prob>F
Columns | 57.1667 | 2 | 28.5833 | 2.4118 | 0.1012
Errors 533.3140 | 45 | 11.8514
Total 590.4807 | 47

QUESTION 4.3.3. Write down the expressions of MLE%SS1, SS2 and theF-value.®

4For parameter set 1, the conclusion is the same as with cocédeterval. For parameter sets 2 and 3, confidence
intervals did not allow one to conclude. ANOVA disambigstteese two cases.

5The column “SS” gives, from top to bottom: SS2, SS1 and SSO.
6
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STUDENT TEST AS SPECIAL CASE OF ANOVA. In the special case whekte— ky, = 1 (as
in Example 4.1) the'-statistic is the square of a student statistic, and a studsnhcould be used
instead. This is used by some statistics packages.

TESTING FOR SPECIFIC VALUES By an additive change of variable, we can extend the ANOVA
framework to the case wherd, C M are affine (instead of linear) varietiesf’. This includes
testing for a specific value. For example, assume we have tidelm

Xij = pi+ € (4.20)

with ¢; ; ~ iid N ,2. We want to test
Hy: “p; = po for all i” againstH;: “ 11; unconstrained”

We change model by letting; ; = X ; — uo and we are back to the ANOVA framework.

4.3.2 TESTING FOR A COMMON VARIANCE

We often need to verify that the common variance assumpiitafsh Here too, a likelihood ratio
test gives the answer. In the general case pthalue of the test cannot be computed in closed
form, so we use either Monte Carlo simulation or an asymptgiproximation. When the number
of groups is 2, there is a closed form using the Fisher digiob.

We are given a data set withgroupsz; ;,7 = 1, ..., I, j = 1, ..., n;; the total number of samples
isn = Z§:1 n;. We assume that it is a realization of the model, ~ iid N, ,2. We assume that
the normal assumption holds and want to test

Hy: 0; = o > 0 for all i againstH;: o; > 0

e i is the vector whoséi, j)th coordinate is independent paind is equal toX;. def Z?;l X /n.
o SS1=37, (Xij— X.)?

6% = 1 SS1

fio is the vector whose coordinates are all identical and equtakt overall mearX e (22 Xij)/ IR
S50 =551+ 552

68 = |—}1%|SSO

F=8S2(|R| —k)/[SS1(k —1)]



4.3. ANOVA 113

THEOREM 4.3.2 (Testing for Common VarianceThe likelihood ratio statistid of the test of
common variance under the hypothesis above is given by

I
20 = nln(sz)—Zniln(sf) (4.21)
i=1
1< 1
N e )2
with /i — Ligy S s Z(zm fi)°,
7=1 7=1
1 I n;

The test reject$l/, when/ is large. Thep-value is

i=1 1=1 1=1

I I I
p="P (nlogZZi — an log Z; > 20+ nlogn — an logni> (4.22)

whereZ; are independent random variables;, ~ Xii—1 and”Z = Zle “ Z;. Thep-value can be
computed by Monte Carlo simulation. Wheis large:

pa1—x7_i(20) (4.23)

In the special casé = 2, we can replace the statistidby

"2
def O e gt
f = A—;Wlthaf:

(zij — i)’

I
=l

J

and the distribution off underH, is FisherF,,,_, ,,_;. The test at size rejectsH, whenf < n
or f>&with 1 n,—1(n) = /2, Fyy —10,-1(§) = 1 — /2. Thep-value is

p= Fnl—l,nz—l(min(fv 1/f)) - Fnl—lmz—l(max(fv 1/f)) +1 (424)

EXAMPLE: NETWORK MONITORING AGAIN. We want to test whether the data in groups 1 and 2
in Example 4.6 have the same variance. We have n = 0.3494, ¢ = 2.862; the F statistic is 0.8306
SO we accept Hy, i.e. that the variance is the same. Alternatively, we can use Eq.(4.24) and find
p = 0.7239 , which is large so we accept Hy.

Of course, we are more interested in comparing the 3 groups together. We apply Eq.(4.21) and
find as likelihood ratio statistic / = 0.0862. The asymptotic approximation gives p ~ 0.9174, but
since the number of samples n is not large we do not trust it. We evaluate Eq.(4.22) by Monte
Carlo simulation; with R = 10* replicates we find a confidence interval for the estimated p-value of

[0.9247;0.9347]. We conclude that the p-value is very large so we accept that the variance is the
same.
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4.4 ASYMPTOTIC RESULTS

In many cases it is hard to find the exact distribution of a $éatistic. An interesting feature of
likelihood ratio tests is that we have a simple asymptotstite We used this result already in the
test for equal variance in Section 4.3.2.

4.4.1 LIKELIHOOD RATIO STATISTIC
The following theorem derives immediately from Theorem.B.3

THEOREM 4.4.1. [32] Consider a likelihood ratio test (Section 4.2) with = ©; x O,, where
O, ©, are open subsets @&, R?” and denot& = (6, d,). Consider the likelihood ratio test of
Hy : 0, = 0 againstH; : 05 # 0. Assume that the conditions in Definition B.2.1 hold. Then,
approximately, for large sample sizes, undéy, 2lrs ~ ng, wherelrs is the likelihood ratio
statistic.

It follows that thep-value of the likelihood ratio test can be approximated gk sample sizes

by
prel— ng (2lrs) (4.25)

whereq, is the number of degrees of freedom thtadds toH,.

EXAMPLE: APPLICATION TO EXAMPLE 4.1 (CoMPILER OPTIONS). Using Theorem 4.3.1 and Theo-

rem 4.4.1 we find that 59
def 2
TS n ( + SSI) X1

The corresponding p-values are:

Parameter Set 1 pchi2 = 0.0002854
Parameter Set 1 pchi2 = 0.02731
Paranmeter Set 1 pchi2 = 0.6669

They are all very close to the exact values (given by ANOVA in Table 4.1).

4.4.2 BRARSON CHI-SQUARED STATISTIC AND GOODNESS OFFIT

We can apply the large sample asymptotic to goodness of & &ssdefined in Section 4.2.3.
This gives a simpler way to compute thesalue, and allows to extend the test to twnposite
goodness of fit test, defined as follows.

ComPOSITE GOODNESS OFFIT  Similar to Section 4.2.3, assume we are givethata points
x1, ..., T, generated from an iid sequence, and we want to verify whéltleer common distribu-
tion comes from a given family of distributior’s(|¢) where the parametéris in some seB.
We say that the test is composite because the null hypothasiseveral possible valuestof\We
compare the empirical histograms: we partition the set bfesof X into bins B;, i = 1...1. Let
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N; =3 r_; 18, (Xk) (number of observation that fall in biB;) andg; = Po{X; € B;}. If the
data comes from a distributiafi(|¢) the distribution ofV; is multinomialM,, 44). The likelihood
ratio statistic test is

Hy: N; comes from a multinomial distributiol/,, 54, with 6 € ©,
against
H,: N; comes from a multinomial distributio®/,, ; for some arbitrary.

We now compute the likelihood ratio statistic. The maximikelihood estimator of the parameter
underH, is the same as in Section 4.2.3. l4&be the maximum likelihood estimator 6éfunder
H,. The likelihood ratio statistic is thus

Irs = Z n;ln —— -~ ) (4.26)

Thep-value is

0€Bg i—1

sup P (Z N; ln ” > ; n; In T ) (4.27)

whereN has the multinomial distribution/ a6+ It can be computed by Monte Carlo simulation
as in the case of a simple test, but this may be difficult bexabtithe supremum.

An alternative for large: is to use the asymptotic result in Theorem 4.4.1. It says fbatarge
n, underH,, the distribution of2irs is approximatelyxi, with ¢ = the number of degrees of
freedom that{, adds toH,. Here H, hask, degrees of freedom (whekg is the dimension 08,)
andH, has/ — 1 degrees of freedom (whefeas the number of bins). Thus thevalue of the test
is approximately

1= x7_py_1(2lrs) (4.28)

EXAMPLE: IMPACT OF ESTIMATION OF(u, ). We want to test whether the data set on the right of
Figure 4.4 has a normal distribution. We use a histogram with 10 bins. We need first to estimate

0= (j1,06).
1. Assume we do this by fitting a line to the qqgplot. We obtain 4 = —0.2652,6 = 0.8709. The
values of ng;(0) and n; are:

7.9297 7.0000
11. 4034 9. 0000
18. 0564 17. 0000
21.4172 21. 0000
19. 0305 14. 0000
12. 6672 17. 0000
6. 3156 6. 0000

2. 3583 4.0000
0. 6594 3. 0000
0.1624 2.0000

The likelihood ratio statistic as in Eq.(4.26) is irs = 7.6352. The p-value is obtained using a x?2
distribution (g2 = 10 — 2 — 1): p1 = 0.0327, thus we would reject normality at size 0.05.
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2. It might not be good to simply fit (¢, o) on the gqplot. A better way is to use estimation theory,
which suggests to find (u, o) that maximizes the log likelihood of the model. This is equivalent
to minimizing the likelihood ratio statistic /7, (¥) — [, » (%) (note that the value of [y, (%) is easy to
compute). We do this with a numerical optimization procedure and find now g = —0.0725,6 =

1.0269. The corresponding values of ng;(0) and n; are now:

8. 3309 7.0000
9. 5028 9. 0000
14. 4317 17. 0000
17. 7801 21. 0000
17. 7709 14. 0000

14. 4093 17. 0000
9.4783 6. 0000
5. 0577 4.0000
2.1892 3. 0000
1. 0491 2. 0000

Note how the true value of [i, 6 provides a better fit to the tail of the histogram. The likelihood ratio
statistic is now Irs = 2.5973, which also shows a much better fit. The p-value, obtained using a x2
distribution is now p1 = 0.6362, thus we accept that the data is normal.

3. Assume we would ignore that (u, o) is estimated from the data, but would do as if the test were
a simple goodness of fit test, with H, : “The distribution is N_q g725.1.0269" instead of Hy : “The
distribution is normal”. We would compute the p-value using a 2 distribution (g2 = 10 — 1) and
would obtain: p2 = 0.8170, a value larger than the true p-value. This is quite general: if we estimate
some parameter and pretend it is a priori known, then we overestimate the p-value.

PEARSON CHI-SQUARED STATISTIC .  In the case where is large,2x the likelihood ratio
statistic can be replaced by tRearson chi-squared statistic, which has the same asymptotic
distribution. It is defined by

1 1\)\2
pes=3" (i —nq;(6))” (4.29)

i=1 nqz(é)

Indeed, whem is large we expect, undéf, thatn; — nqi(é) is relatively small, i.ec; = anléé) -1
is small. An approximation ofirs is found from the second order development around 0:

In(1+¢) = e — 3¢* + o(¢?) and thus

Irs = Z 7zz:1+6Z q:(0 1n(1+el)

7

- nz(ez ;€Z+0( )1+ a)ald)

i

= Yl (1 ot + )

i

= nY e <1+%€Z+0(62))
= anléeanqu 2€Z+nz
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Note that}". ¢;(A)e; = 0 thus
1
Irs = 5pes (4.30)

The Pearson Chi-squared statistic was historically dpesidefore the theory of likelihood ratio
tests, which explains why it is commonly used.

In summary, for large:, the composite goodness of fit test is solved by computirgeeiirs or
pes. Thep-value isl — x2_, ,(2lrs) or1—x7_, _(pcs). If either is small, we rejecH), i.e. we
reject that the distribution ak; comes from the family of distribution&(|9).

SIMPLE GOODNESS OFFIT TEST. This is a special case of the composite test. In this case
¢2 = I — 1 and thus the-value of the test (given in Eq.(4.11) can be approximatedsigen by
1—x3_,(2irs) or x2_, (pes). Also, the likelihood ratio statisti3_"_, n, In -+ can be replaced by
the Pearson-Chi-Squared statistic, equal to Z

I 2

3 (i — ngi)” (4.31)

n .
i=1 @i

EXAMPLE: MENDEL'S PEAS CONTINUATION OF EXAMPLE 4.5. The likelihood ratio statistic is {rs =
0.3092 and we found by Monte Carlo a p-value p* = 0.9191 4+ 0.0458. By the asymptotic result, we
can approximate the p-value by y2(2irs) = 0.8922.

The Pearson Chi-squared statistic is pcs = 0.6043, very close to 2irs = 0.618. The corresponding
p-value is 0.8954.

4.4.3 TEST OF INDEPENDENCE

The same ideas as in Section 4.4.2 can be appliedt¢steof independence. We are given a
sequencéxy, yx ), Which we interpret as a sample of the sequei¢g Vi), £ = 1,...,n. The se-
quence isiid (Xy, Y;) isindependent of Xy, Y} ) and has the same distribution). We are interested
in knowing whetherX}, is independent of.

To this end, we compute an empirical histogram &f Y'), as follows. We partition the set of
values ofX [resp. Y] into I [resp. J] bins B; [resp. Cj]. Let N;; = > 7' 1153(Xi)1ic,3 (Ya)
(number of observation that fall in bifB;, C;)) andp,; = P{X; € B,;andY; € C;}. The
distribution of N is multinomial. The test of independence is

Hy: *pi; = g;rj for someg andr such thad _; ¢; = >, r; = 1"
against
Hi:"p; ; is arbitrary”

n

The maximum likelihood estimator unddy is ) ; = "= =< wheren, ; = Y, 11,3 (2%) 10,3 (yr)

and
n;. = Ej N 4
4.32
{ nj=) N (4-32)
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The maximum likelihood estimator undéf, is p; ; = ==L. The likelihood ratio statistic is thus

lrs =Y ny;ln (4.33)
0,

n;.n.;

To compute the-value, we use, for large, axg2 distribution. The numbers of degrees of freedom
underH, isI.J — 1,underH, itis (I — 1)+ (J —1),thusge = ([J —1)— (I —1)—(J —1) =
(I —1)(J —1). Thep-value is thus

P = (1 - X%I—l)(J—l)) (2rs) (4.34)

As in Section 4.4.22Irs can be replaced, for large by the Pearson Chi-squared statistic:

(n- o m,n.j)Q
pes =Y |~ (4.35)

,J n

EXAMPLE 4.8:BRASSICA OLERACEA GEMMIFERA. A survey was conducted at the campus cafe-
teria, where customers were asked whether they like Brussels sprouts. The answers are:

i\Jj Male Female Total
Likes 454 44.69% 251 48.08% | 705 45.84%
Dislikes 295 29.04% 123 23.56% || 418 27.18%
No Answer / Neutral | 267 26.28% 148 28.35% | 415 26.98%
\ Total 1016 100% 522 100% | 1538 100 % |

We would like to test whether affinity to Brussels sprouts is independent of customer’s gender.
Here we have I = 3 and J = 2, so we use a x? distribution with ¢; = 2 degrees of freedom. The
likelihood ratio statistic and the p-value are

lrs = 2.6489, p = 0.0707 (4.36)

SO we accept Hy, i.e. affinity to Brussels sprouts is independent of gender. Note that the Pearson
Chi-squared statistic is
pes = 5.2178 (4.37)

which is very close to 2irs.

4.5 OTHER TESTS

4 5.1 GOODNESS OFFIT TESTS BASED ONAD-HoOC PIvOoTS

In addition to the Pearsoy? test, the following two tests are often used. They apply torginuous
distribution, thus do not require quantizing the obseoragi AssumeX;, i = 1,..,n are iid
samples. We want to tesfy: the distribution ofX; is F' against norH,.

Define the empirical distributiof’ by

~

o 1o
F(a) € =3 s (4.38)
=1
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Kolmogorov-Smirnov  The pivot is

T= Sliplp(x) — F(x)]

That the distribution of this random variable is indepertdgn¥’ is not entirely obvious, but can
be derived easily in the case wherds continuous and strictly increasing, as follows. The idea
to change the scale on theaxis byu = F'(x). Formally, define

so thatl; ~ U(0,1). Also

A 1 1 .
Fla) =~ > Hxisn) = " Y Lusrey = G(F())

whered is the empirical distribution of the samplé, : = 1,...,n. By the change of variable
u = F(x), it comes
T = sup |G(u) — ul
u€el0,1]
which shows that the distribution @fis independent of'. Its distribution is tabulated in statistical
software packages. For a largeits tail can be approximated by~ /—(ln «)/2 whereP (7" >
T) = a.

Anderson-Darling Here the pivot is

Pla) - Fla))
Ao f g?(x)(l - F(x?) e

The test is similar to K-S but is less sensitive to outliers.

QUESTION 4.5.1. Show that4 is indeed a pivot’

EXAMPLE 4.9:FILE TRANSFERDATA. We would like to test whether the data in Figure 4.4 and its
log are normal. We cannot directly apply Kolmogorov Smirnov since we do not know exactly in
advance the parameters of the normal distribution to be tested against. An approximate method
is to estimate the slope and intercept of the straight line in the qgplot. We obtain

Oiginal Data
sl ope
i ntercept

0. 8155
1.0421

Transfornmed Data
sl ope 0.8709
i ntercept -0. 2652

For example, this means that for the original data we take for Hy: “the distribution is N(u =
1.0421, 02 = 0.8155%)". We can now use the Kolmogorov-Smirnov test and obtain

Use the fact thaF'(z) = G(F(z)) and do the change of variable= F'(z) in the integral.
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Figure 4.4:Normal qgplots of file transfer data and its logarithm.

Oiginal Data
h = 1 p = 0. 0493

Transf or ned Dat a
h = 0 p = 0. 2415

Thus the test rejects the normality assumption for the original data and accepts it for the trans-
formed data.

This way of doing is approximate in that we used estimated parameters for Hy. This introduces
some bias, similar to using the normal statistic instead of student when we have a normal sample.
The bias should be small when the data sample is large, which is the case here.

A fix to this problem is to use a variant of KS, for example the Lilliefors test, or to use different
normality tests such as Jarque Bera (see Example 4.10) or Shapiro-Wilk. The Lilliefors test is a
heuristic that corrects the p-value of the KS to account for the uncertainty due to estimation. In
this specific example, with the Lilliefors test we obtain the same results.

JARQUE-BERA. ThelJarque-Bera statistic is used to test whether an iid sample comes from a
normal distribution. It uses the skewness and kurtosicexlj; and~, defined in Section 3.4.2.

The test statistic is equal (&f + ”7422) the distribution of which is asymptotically? for large

sample sizen. In the formula;y; and, are the sample indices of skewness and kurtosis, obtained
by replacing expectations by sample averages in Eq.(3.13).

EXAMPLE 4.10:APPLICATION TO EXAMPLE 4.9. We would like to test whether the data in Exam-
ple 4.9 and its transform are normal.

Oiginal Data h
Transf or ned Dat a h

0. 0010
0.1913

The conclusions are the same as in Example 4.9, but for the original data the normality assumption
is clearly rejected, whereas it was borderline in Example 4.9.
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452 ROBUSTTESTS

We give two examples of test that make no assumption on thegbdison of the sample (but
assume it is iid). They areon parametric in the sense that they do not assume a parameterized
family of densities.

MEDIAN TEST The model isX; ~ iid with some distribution/'() with a density. We want to
test

Hy: “the median ofF’ is 0” againstH;: “unspecified”

A simple test is based on confidence interval, as mention&eation 4.1.4. Lef (%) be a confi-
dence interval for the median (Theorem 2.2.1). We rej&cif

0 ¢ I(7) (4.39)

This test is robust in the sense that it makes no assumptien thtan independence.

WILCOXON SIGNED RANK TEST. Itis used for testing equality of distribution in paired ex-
periments. It tests

Hy: X4, ...X, isiid with a common symmetric, continuous distributiore thedian of
which is 0

against
Hi: Xy, ...X, isiid with a common symmetric, continuous distribution

TheWilcoxon Signed Rank Statistic is
W =" rank|X;|)sign ;)
j=1

where rank|.X;|) is the rank in increasing order (the smallest value has rarand sigri.X;) is
—1 for negative data;+1 for positive, and) for null data. If the median is positive, then many
values with high rank will be positive arid” will tend to be positive and large. We reject the null
hypothesis whefil| is large.

It can be shown that the distribution Bf underH, is always the same. It is tabulated and con-
tained in software packages. For non small data samples) gasily be approximated by a normal
distribution. The mean and variance under can easily be atedp

EHO(W) = ZEHO(rank(|Xj|)EHo(Sigr(Xj))

Jj=1

since undetd, rank(| X;|) is independent of sigiX;). ThusEy, (W) = 0. The variance is

Ep,(W?) =) En,(rank(|X;])*sign(X;)°) = Z E s, (rank(|X;)?)

=1
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since sigiiX;)? = 1. Now ) rank(| X;[)* = >~ % is non random thus

n

varg, (W) = ZEHO(ranK|Xj|)2) _ EHO(Z rank(|X;|)?) = Zj2 _ n(n+1)2n+1)

6

j=1 j=1
. . . n(n+1)(2n+1) . o o«

For largen, the test at sizev rejectsH if W] > ny/ === with Ny(n) = 1 — 5 (e.g.

n = 1.96 at size0.05). Thep-value is:

W

P = 2 1 — NO,l
n(n+1)(2n+1)
6

(4.40)

EXAMPLE: PAIRED DATA.This is a variant of Example 4.2. Consider again the reduction in run time
due to a new compiler option, as given in Figure 2.7 on Page 32. We want to test whether the
reduction is significant. We assume the data is iid, but not necessarily normal. The median test
gives a confidence interval

1(Z) = [2.9127; 33.7597]
which does not contain 0 so we reject Hy.
Alternatively, let us use the Wilcoxon Signed Rank test. We obtain the p-value

p = 2.3103¢ — 005

and thus this test also rejects Hy.

WILCOXON RANK SuM TEST AND KRUSKAL-WALLIS. TheWilcoxon Rank Sum Test is
used for testing equality of distribution in paired expegints. It tests

Hy: the two samples come from the same continuous distribution
against

H;: the distributions of the two samples are continuous arférdify a location shift

Let X}, i = 1..n; and X?, i = 1...n, be the two iid sequences that the data is assumed to be a
sample of. Th&Vilcoxon Rank Sum Statistic R is the sum of the ranks of the first sample in the
concatenated sample.

As for the Wilcoxon signed rank test, its distribution undiee null hypothesis depends only on
the sample sizes and can be tabulated or, for a large sampleapproximated by a normal distri-
bution. The mean and variance undéy are

1
Mgy = (1 *2”2 +1) (4.41)

niNa(ng +nqe + 1
Unymy = — 2( 112 2+ 1) (4.42)
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We rejectH, when the rank sum statistic deviates largely from its exqtemt undert,. For large
ny andns, thep-value is
p=2 (1 — Nos (M)) (4.43)
v/ Uning

EXAMPLE 4.11:NON PaIRED DATA.  The Wilcoxon rank sum test applied to Example 4.1 gives
the following p-values:

Paraneter Set 1 p = 0.0002854
Paraneter Set 2 p = 0.02731
Paranmeter Set 3 p = 0.6669

The results are the same as with ANOVA. H, (same distribution) is accepted for the 3rd data set
only, at size= 0.05.

TheKruskal-Wallis test is a generalization of Wilcoxon Rank Sum to more thanrpared data
series. It testsH,): the samples come from the same distribution agaifig}:(the distributions
may differ by a location shift.

TURNING POINT TEST

This is a test of iid-ness. It tests

Hy Xq,..., X, is iid
against
H: Xy,...,X, isnotiid

We say that the vectoX;, ..., X,, is monotonic at index (i € {2,...,n — 1}) if
Xia <X <Xj0rX, 1 > X > X

and we say that there istarning point at: if the vectorXy, ..., X,, is not monotonic at. Under
H,, the probability of a turning point atis 2/3 (to see why, list all possible cases for the relative
orderings ofX; 1, X;, X;.1).

More precisely, lef” be the number of turning points i, ..., X,,. It can be shown [18, 105] that,
for largen, T'is approximatelw%ga%ag. Thus thep-value is, approximatively for large:

7

16n—29
90

P = 2 1-— N071 (444)

4.6 PRrROOFS
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PROOF OF THEOREM 4.3.2

We make a likelihood ratio test and compute the likelihodibrstatistic. We need first to compute the maximum
likelihood underH,. The log-likelihood of the model is

I T4 —
lz(ji, ) = —% [m(%) +° (2ni In(os) +» (xja%“)zﬂ (4.45)
i=1 =1 i

To find the maximum undelf;, observe that the terms in the summation do not have crogndepcies, thus we can
maximize each of thé terms separately. The maximum of thk term is foru; = ji; ande? = s2, and thus

I
L(Hy) = _% lm(%) +3 i @ln(si) + 1)

i=1

I
— —% [ln(27r) +n+2 Z n, ln(si)] (4.46)

=1
Under H, the likelihood is as in Eq.(4.45) but with, replaced by the common valde To find the maximum,we use
the ANOVA theorem C.4.3. The maximum is foy = ji; ando? = s? and thus

I
1z(Hy) = —% [m(%) + an—z +2n ln(s)‘| = —% [In(27) + n + 2n1n(s)] (4.47)

i=1

The test statistic is the likelihood ratio statistie= [z(H) — lz(Hy): and thus
I
20 = nln(s%) — Z niIn(s?) (4.48)
=1

The test has the form: reje, whenirs > K for some constank’. Thep-value can be obtained using Monte-Carlo
simulation. The problem is now to compu®€I” > 2¢) whereT is a random variable distributed like

I
nln(s?) — Z n;In(s?) (4.49)
i=1

and assuming, holds. Observe that all we need is to generate the randorablesis?. They are independent,
and Z; = n;s; is distributed Iikeo—QXEM_1 (Corollary C.4.1). Note that’ is independent of the specific value of
the unknown but fixed parametey thus we can let = 1 in the Monte Carlo simulation, which proves Eq.(4.22).
Alternatively, one can use the large sample asymptotic mofém 4.4.1, which gives Eq.(4.23).

WhenI = 2 we can rewrite the likelihood ratio statistic as

l= % [nIn(ni F 4+ ng) —ny In(F)] + C (4.50)

=10

S

whereC is a constant term (assuming andn. are fixed) and® = -%. The derivative of with respect taF is

S

N

% - nlng(F— 1)
OF — 2F(niF + ny)

thus? decreases witli’ for F' < 1 and increases faf’ > 1. Thus the rejection region, definedgs> K}, is also of
the form{F < K, or F' > K>}. Now define

(4.51)

~2
01

f—Ug

Note thatf = FC’ whereC” is a constant, so the seF' < K; or F' > K>} is equal to the seffn or f > £} with
n = C'K; and¢ = C' K. UnderH,, the distribution of" is Fisher with parametefs; — 1, no —1) (Theorem C.4.3),
so we have a Fisher test. The boumdand¢ are classically computed by the conditioRs, —1 n,—1(n) = a/2,
Fnl—lﬂlz—l(g) =1- a/2'

Last, note that by the properties of the Fisher distribytiba particular choice af and¢ above is such that= 1/7,
so the rejection region is also defined by > ¢ or f < 1/£}, which is the same afmax(f,1/f) > ¢}, a form
suitable to define @-value (Section 4.1.3). Let = max(f,1/f) andX ~ F,, ,, then

= Pmax(X,1/X) > g) = P(X <1/g)+ P(X > g) = Fn, ~1.n,-1(1/9) + 1 = Fo, ~1.0,-1(9)

which, together withl /g = min(f, 1/f), shows Eq.(4.24).

(4.52)
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4.7 REVIEW

4.7.1 TESTSARE JUST TESTS

1. The first test to do on any data is a visual exploration. listnaases, this is sufficient.

2. Testing for @ mean o) median is the same as computing a confidence interval for a&am
or the median.

3. Tests work only if the underlying assumptions are verifiegbarticular, practically all tests,
even robust ones, assume the data comes from an iid sample).

4. Some tests work under a larger spectrum of assumptionsx@&mple: even if the data is not
normal). They are called robust tests. They should be pefevhenever possible.

5. Test whether the same variance assumption holds, ogeruse robust tests or asymptotic
results.

6. If you perform a large number of different tests on the saia@, then the probability of
rejectingH, is larger than for any single test. So, contrary to non-stiatl tests, increasing
the number of tests does not always improve the decision.

4.7.2 ReEVIEW QUESTIONS

QUESTION 4.7.1. What is the critical region of a test 3

QUESTION4.7.2. What is a type 1 error ? A type 2 error ? The size of a test ?
QUESTION 4.7.3. What is thep-value of a test 2°

QUESTION 4.7.4. What are the hypotheses for ANOVA!?

QUESTION 4.7.5. How do you compute g-value by Monte Carlo simulation #

QUESTION 4.7.6. A Monte Carlo simulation returng = 0 as estimate of the-value. Can we
reject Hy? 13

QUESTION 4.7.7. What is a likelihood ratio statistic test in a nest model ? Wten we say in
general about itg-value ?**

8Call i the data used for the test. The critical regi@ris a set of possible values @fsuch that wheir € C we
rejectHy.

9A type 1 error occurs when the test says “do not acégpitwhereas the truth igf,. A type 2 error occurs when
the test says “accegi,” whereas the truth ig7;. The size of a testisup, ., (.a¢ H, is truelPe(C) (= the worst
case probability of a type 1 error).

101t applies to tests where the critical region is of the fdfifi¥) > m whereT (%) is the test statistic and is
the data. The-value is the probability tha'f(X') > T(Z) whereX is a hypothetical data set, generated under the
hypothesigi,. We rejectH, at sizea if p > «.

The data is iid, gaussian, with perhaps different means kihtsame variance.

2GenerateR iid samplesI™” from the distribution oﬂ“(X') underH, and computé as the fraction of times that
T" > T(Z). We needR large enough (typically order of 10000) and compute a confidenterval forp using
Theorem 2.2.4.

13wWe need to know the numbét of Monte Carlo replicates. A confidence interval fois [0;3.869/R] at level
95%; if R is order of 100 or more, we can rejedt, at size0.05.

14The test statistic i$rs, the log of the likelihood ratios undéi; and H,, and the test rejectd, if Irs is large.
The nested model means that the model is parametric, witle s@ts9, C © such thatH, means) € O, and H;
meand € © \ ©y. If the data sample is large, thevalue is obtained by saying that, undés, 2lrs ~ x,,, Whereg,
is the number of degrees of freedom tliit adds toH,.
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CHAPTER 5

FORECASTING

Good
days are
coming

Forecasting is a risky exercise, and involves many
aspects that are well beyond the scope of this
book. However, it is the engineer’s responsibility
to forecast what can be forecast For example,

if the demand on a communication line is multi-
plied by 2 every 6 months, it is wise to provision
enough capacity to accommodate this exponen-
tial growth. We present a simple framework to
understandvhat forecasting is. We emphasize

Hl=

the need to quantify the accuracy of a forecast | =
with a prediction interval.

For thehow, there are many methods (perhaps because an exact foseeasentially impossible).

We focus on simple, generic methods that were found to wotkiwe large variety of cases. A

first method is linear regression; it is very simple to usetlfvei computer) and of quite general
application. It gives forecasts that are good as long asdtedbes not vary too wildly.

Better predictions may be obtained by a combination of dbffeing, de-seasonalizing filters and
linear time series models (ARMA and ARIMA processes - thigls® called the Box-Jenkins
method). We discuss how to avoid model overfitting. We shaw élccounting for growth and
seasonal effects is very simple and may be very effectiveaéestudy five sparse ARMA and
ARIMA models, known under other names such as EWMA and Holité/s; they are
numerically very simple and have no overfitting problem. fikeessary background on digital
filters can be found in Appendix D.

Contents
5.1 WhatisForecasting? . . . . . . . . . . . . e 128
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5.2 LinearRegression . . . . . . . . . . . . e 129
5.3 The Overfitting Problem . . . . . . .. .. .. .. ... .. .. .. ..... 131
53.1 UseofTestData . .. ... ... . ... ... ... 133
5.3.2 Information Criterion . . . . . . . . . . ..o 133
5.4 DifferencingtheData . . . .. .. .. .. . .. .. .. .. ., 136
5.4.1 Differencing and De-seasonalizing Filters . . . . . ...... .. ... . 136
5.4.2 Computing Point Prediction . . . ... ... ... .......... 137
5.4.3 Computing PredictionIntervals . . .. ... ... ... ... .... 139
5.5 Fitting Differenced Datato an ARMAModel . . ... ... .......... 140
5.5.1 Stationary but non IID Differenced Data . . . . .. ... .... ... 140
55.2 ARMAand ARIMAProcesses . . . . . . . . . . v i vt i i 114
5.5.3 Fittingan ARMAModel . . . . . .. .. ... .. .. .. a4
55,4 Forecasting . . . . . . . . .. 714
5.6 Sparse ARMAand ARIMAModels . . . ... ... ... ... .. ...... 30
5.6.1 Constrained ARMAModels . . . ... ... ... .. ... ... . 511
5.6.2 Holt-WintersModels . . . . . .. .. .. .. ... .. ..., 152
5.7 Proofs . . . . e 615
5.8 ReviewQuestions . . . . . . . ... 158

5.1 WHATIS FORECASTING ?

A classical forecasting example is capacity planning, wleecommunication or data center man-
ager needs to decide when to buy additional capacity. Otkemnples concern optimal use of
resources: if a data center is able to predict that somemgstosend less traffic at nights, this may
be used to save power or to resell some capacity to custometker time zones.

As in any performance related activity, it is important tidar a clean methodology, in particular,
define appropriate metrics relevant to the problem areaelefeasurement methods, and gather
time series of data. The techniques seen in this chapterfistar this point, i.e. we assume that
we have gathered some past measurement data, and would ék&ablish a forecast.

Informally, one can say that a forecast consists in extmgail information about the future that
is already present in the past. Mathematically, this candyeedas follows. To avoid complex
mathematical constructions, we assume time is discretearé/mterested in some quantity(z),
wheret = 1,2, ... We assume that theresemeaandomness il (¢), so itis modeled as a stochastic
process. Assume that we have obseryed.., Y; and would like to say something abaut, , for
somel > 0.

Forecasting can be viewed as computing the conditional distributioi;qf, givenYi, ..., Y;.
In particular, thepoint prediction or predicted value is

}A/t(g) = E(K-‘:—ZD/I = Y1y -1y )/t = yt)
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and aprediction interval at levell — « is an interval A, B] such that
P(AS}/;‘f'gSBD/l:yla?K:yt) =1—-a«

The forecasting problem thus becomes (1) to find and fit a goadeirand (2) to compute condi-
tional distributions.

5.2 LINEAR REGRESSION

A simple and frequently used method is linear regressiomiviés simple forecasting formulas,
which are often sufficient. Linear regression models arenddfin Chapter 3. In the context of
forecasting, a linear regression model takes the form

p
Yo=Y Bifit) +e (5.1)
j=1
where f;(¢) are known, non random functions ands iid NV, ,2. Recall that the model is linear

with respect tod, whereas the functions need not be linear with respect#o

EXAMPLE 5.1:INTERNET TRAFFIC. Figure 5.1 shows a prediction of the total amount of traffic on
a coast to coast link of an American internet service provider. The traffic is periodic with period
16 (one time unit is 90 mn), therefore we fit a simple sine function, i.e. we use a linear regression
model with p = 3, fo(t) = 1, fa(t) = cos(gt) and f3(t) = sin(gt). Using techniques in Section 3.2
we fit the parameters to the past data and obtain:

3
Y, = Zﬁjfj(t) + €
j=1
T LT
= 238.2475 — 87.1876 cos(gt) —4.2961 sm(gt) + e
with €, ~ iid Ny ,» and o = 38.2667. A point prediction is:

3
Yi(t) = B f5(t + £) = 238.2475 — 87.1876 cos(%(t +0) - 4.296lsin(%(t 1)) (5.2)
j=1

and a 95%-prediction interval can be approximated by ﬁ(ﬁ) + 1.960.

The computations in Example 5.1 are based on the followiegrgm and the formula after it; they
result from the general theory of linear regression in Céiap{32, Section 8.3]:
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Figure 5.1:Internet traffic on a coast-to-coast link of an American internet service provider. One data point
every 90 mn; y-axis is amount of traffic in Mb/s, averaged over 90 mn. Left: data for ¢ = 1 to 224 and a sine
function fitted to the data; right: zoom on the time interval from 205 to 250, showing the point prediction for
the interval 225 to 250, the prediction interval and the true value (circles), not known when the prediction
was done.

THEOREM 5.2.1. Consider a linear regression model as in Eq.(5.1) wittlegrees of freedom for
3. Assume that we have observed the data tine pointsty, ..., t,, and that we fit the model to
thesen observations using Theorem 3.2.1. Assume that the modedjidar, i.e. the matrixX
defined byX; ; = f;(t;),i =1,...,n, j = 1, ..., p has full rank. Lel;éj be the estimator of; and
s? the estimator of the variance, as in Theorem 3.2.1.

1. The point prediction at time, + £is Y;, (¢) = >>°_, B; f;(tn + ()
2. An exact prediction interval at levél— « is

Y, (0)+&/1+gs

(5.3)

with
p

p
j=1 k=1
whereG = (X"X) ! and¢ is the(1 — %) quantile of the student distribution with — p
degrees of freedom, or, for large of the standard normal distribution.
3. An approximate prediction interval that ignores estiatuncertainty is

Vi, (0) £ s (5.4)

wheren is thel — a quantile of the standard normal distribution.

We now explain the difference between the last two itemserthieorem. Item 2 gives an exact re-
sult for a prediction interval. It captures two effects: {i¢ estimation error, i.e. the uncertainty
about the model parameters due to the estimation proceune( in /1 + ¢g) and (2) themodel
forecast uncertainty, due to the model being a random process. In practice, wa ekpect the
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estimation error to be much smaller than the model foregastainty, i.eg is much smaller than
1. This occurs in the rule when the numbeof points used for the estimation is large, so we can
also replace student by standard normal. This explain®Hqj.(

Figure 5.2 shows the prediction intervals computed by E8)(&nd Eq.(5.4) (they are indistin-
guishable). By Theorem 3.2.1, one can also see that thatf@enoe interval for the point predic-
tion is given by+¢, /g s (versust{/1 + g s for the prediction interval). The figure shows that
the confidence interval for the point prediction is small bot negligible. However, its effect on
the prediction intervalk negligible. See also Figure 5.4 for what may happen whenribliggm is

ill posed.

In the simple case where the data is assumed to be iid, we eaficgd®@ Theorem 2.4.2 that
decreases Iik%, so in this case the approximation in Eq.(5.4) is alwaysivalr largen.
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Figure 5.2: Left: Same example as Figure 5.1, showing the prediction interval computed by Theo-
rem 5.2.1(dot-dashed lines) and the confidence interval for the point prediction (plain lines around center
values). The predictions intervals computed by Eq.(5.3) and Eq.(5.4) are indistinguishable. Right: same
except only the last 24 points of the past data are used to fitting the model (instead of 224). The confidence
interval for the point prediction is slightly larger than in the left panel; the exact prediction interval computed
from Theorem 5.2.1 is only slightly larger than the approximate one computed from Eq.(5.4).

VERIFICATION  We cannot verify a prediction until the future comes. Howgwee can verify
how well the model fits by screening the residuals, as exgthin Theorem 3.2.1. The standard-
ized residuals should look grossly normal, not showingdargnds nor correlations. Figure 5.3
displays the standardized residuals for the model in Exagdl. While the residuals fit well with
the normal assumption, they do appear to have some coorelatid some periodic behaviour.
Models that are able to better capture these effects arasdied in Section 5.5.

5.3 THE OVERFITTING PROBLEM

Perhaps contrary to intuition, a parametric model shouldhawe too many parameters. To see
why, consider the model in Figure 5.1. Instead of a simple $imction, we now fit a more
general model, where we add a polynomial component and ageo&ral periodic function (with
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Standardized Residuals
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Figure 5.3:Residuals for the model fitted in Figure 5.1.

harmonics), with the hope of improving the fit, thus the pcédn. The new model has the form

d h

) it .omt
Y, = Z a;t’ + Z <bj cos % + ¢;sin ‘%) (5.5)
j=1

1=0

Figure 5.4 shows the resulting fit for a polynomial of degfee 10 and withh — 1 = 2 harmonics.
Thefitis better§ = 25.4375 instead 0B8.2667), however, the prediction power is ridiculous. This
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Figure 5.4:More parameters is not always better. Same as Figure 5.1, but with a more general model.
Right panel: prediction intervals computed with the simple formula (5.4) (dot-dashed lines) do not coincide
with the exact prediction intervals (plain lines). The line with small circles is the exact values.

is theoverfitting problem. At the extreme, a model with absolute best fit hassidual error — but
it is no longer an explanatory model.
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There are two classical solutions to avoid overfitting: tkegtr and information criterion.

5.3.1 UsSe OF TEST DATA

The idea is to reserve a small fraction of the data set to beshtodel prediction. Consider for
example Figure 5.5. We fitted the model in Eq.(5.5) with 1 = 2 harmonics and a polynomial
of degreed = 0 to 10. The prediction error is defined here as the mean squanrebetween the
true values of the data at t=225 to 250 and the point predistgiven by Theorem 5.2.1. The
estimation error is the estimaterof o. The smallest prediction error is far = 4. The fitting
error decreases witth, whereas the prediction error is minimal fér= 4. This method is quite

h=3
2000 T I
+ Pred. Err |T
— Est. Err
1500 -
1000 _
500 B
+
+
07— + =+ + L L + T - L
0 1 2 3 4 5 6 7 9 10
d
800 T T
4 + BIC
7901 n + — AIC H

780 b

770

760

750

740
0

Figure 5.5:Model in Eq.(5.5) with h — 1 = 2 harmonics and a polynomial of degree d = 0 to 10. Top Panel:
Use of test data: estimation and prediction errors. Bottom panel: information criteria. The test data finds
that the best model is for d = 4, but the information criteria find that the best model is for d = 10, which is
an aberrant model. Information criteria should be used only for models that match the type of data.

general but has the drawback to “burn” some of the data, agghelata cannot be used for fitting
the model.

5.3.2 INFORMATION CRITERION

An alternative is to use anformation criterion, which strikes a balance between model accuracy
and number of parameterékaike’s Information Criterion (AIC) is defined for any parametric
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model by
AIC = —21(0) + 2k (5.6)

wheref is the dimension of the parameteand((0) is the estimated log-likelihood. It can be in-
terpreted in an information theoretic sense as follows [B#stion 7.3]. Consider an independent
replication X; of the sequencé&;; then (2 AIC) is an estimate of the number of bits needed by
an optimal code to describe the sequeAgewhen the optimal code estimates the distribution of
X, from the sampl€’;. AIC thus measures the efficiency of our model to describaldta. The
preferred model is the one with tkenallestinformation criterion.

For the linear regression model withdata points ang degrees of freedom fc{?, the parameter
isf = (,0), thusk = p + 1. AIC can easily be computed and one obtains

AIC =2(p+nlns)+C (5.7)

whereC' = 2 +n (1 + In(27)) andg is the MLE ofo, i.e.

&2:<1—£>32
n

The AIC was found in practice to have a tendancy to overestitiee model ordek. An alterna-
tive criterion is theBayesian Information Criterion(BIC)[19, 97], which is defined for a linear
regression model by

~

BIC = —2I(0) + kInn

wheren is the number of observations. Thus one finds
BIC=plnn+2nlns + C’ (5.8)

with C” = n(1+1n(27)) + Inn andp is the number of degrees of freedom for the parameter of the
linear regression model.

EXAMPLE: INTERNET TRAFFIC, CONTINUED. We want to find the best fit for the model in Eq.(5.5).
It seems little appropriate to fit the growth in Figure 5.1 by a polynomial of high degree, therefore
we limit d to be 0,1 or 2. We used three methods: test data, AIC and BIC and searched for all
values of d € {0,1,2} and h € {0, ...,10}. The results are :

Test Data: d=2, h=2, prediction error = 44.6006
Best AIC : d=2, h=3, prediction error = 46.1003
Best BIC : d=0, h=2, prediction error = 48.7169

The test data method finds the smallest prediction error, by definition. All methods find a small
number of harmonics, but there are some minor differences. Figure 5.6 shows the values for d=1.

Figure 5.5 shows a different result. Here, we try to use a polynomial of degree up to 10, which
is not appropriate for the data. The AIC and BIC find aberrant models, whereas test data finds a
reasonable best choice.

Information criterion are more efficient in the sense thayttio not burn any of the data; however,
they may be completely wrong if the model is inappropriate.
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Figure 5.6:Choice of best Model for Eq.(5.5) with degree d = 1 and various values of h. Top panel: Use of
test data; estimation and prediction errors. Bottom panel: information criteria. The prediction error is about
the same for h > 2, which implies that the most adequate model if for » = 2. The information criteria also
find here that the best model is for h = 2.
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5.4 DIFFERENCING THE DATA

A slightly more sophisticated alternative to the regressiethod is to combine two approaches:
first capture trends and periodic behaviour by applicatfatfterencing or de-seasonalizing filters,
then fit the filtered data to a time series stationary modelahaws correlation, as we explain in
this and the next section.

5.4.1 DFFERENCING AND DE-SEASONALIZING FILTERS

Consider a time series = (Y7, ..., Y,). Contrary to linear regression modelling, we require here
that the indices are contiguous integeérs, 1, ..., n. Thedifferencing filter at lagl is the mapping,
denoted withA; that transforms a times seri&sof finite length into a time serie¥ = A;Y of
same lengthsuch that

X;=(AY), =Y, =Y, 1 t=1,...n (5.9)
where by conventiony; = 0 for ;7 < 0. Note that this convention is not the best possible, but it
simplifies the theory a lot. In practice, the implication &t the first term of the filtered series
is not meaningful and should not be used for fitting a moda&y(thre removed from the plots on
Figure 5.7). Formally, we considéY; to be a mapping fromyJ’~ , R" onto itself, i.e. it acts on
time series of any finite length.

The differencing filterA\, is a discrete time equivalent of a derivative. If the datadnpslynomial
trend of degred > 1, thenA,Y has a trend of degree— 1. Thusd iterated applications ah; to
the data remove any polynomial trend of degree ug to

Similarly, if the dataY” is periodic with period, then we can use thae-seasonalizing filter R,
(proposed by S.A. Roberts in [89]). It maps a times seYiesf finite length into a time series
X = R,Y of same lengthsuch that

s—1
X, =Y Y, t=1..n (5.10)
§=0

again with the convention that; = 0 if ;j < 0. One application of?; removes a periodic
component, in the sense thatifis periodic of periods, thenR,Y" is equal to a constant.

The differencing filter at lag, A,, is defined similarly by

(ASX>t = Y;ﬁ - Y;ﬁ—s (511)
It can be easily seen that

Ay = RA (5.12)

i.e. combining de-seasonalizing and differencing atll&gthe same as differencing at lag
Filterscommute e.g. Ry R,Y = R,R,Y for all s,s" andY € R" (see Appendix D). It follows
that the differencing filter and de-seasonalizing filter rhayused to remove polynomial growth,
non zero mean and periodicities, and that one can apply themyi order. In practice, one tries to

apply R, once for any identified period, andA; as many times as required for the data to appear
stationary.

EXAMPLE 5.2:INTERNET TRAFFIC. In Figure 5.7 we apply the differencing filter A; to the time
series in Example 5.1 and obtain a strong seasonal component with period s = 16. We then apply
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the de-seasonalizing filter Ri¢; this is the same as applying Ay to the original data. The result
does not appear to be stationary; an additional application of A; is thus performed.

Also note that ifY, = u + Z, where Z, is stationary, them\,Y has a zero mean Thus, if
after enough differencing we have obtained a stationarynbotzero mean sequence, one more
differencing operation produces a zero mean sequence.

5.4.2 COMPUTING POINT PREDICTION

With many time series, differencing and de-seasonaliziragiypces a data set that has neither
growth nor periodicity, thus is a good candidate for beingeditto a simple stochastic model.

In this section we illustrate a straightforward applicatif this idea. The method used in this

section will also be used in Section 5.5 with more elaboratéets for the differenced data.

Assume we have a model for the differenced dgtdhat we can use to obtain predictions f6y.
How can we use this information to derive a prediction for dhniginal dataY; ? There is a very
simple solution, based on the properties of filters giverpipeadix.

We write compactlyX = LY, i.e L is the combination of filters (possibly used several timehga
used for differencing and de-seasonalizing. For exampl&igure 5.7, = AgA;. A, IS an
invertible filter for alls > 1 thus L also is an invertible filter (see Appendix D for more details)
We can use the AR() representation of ~! and write, using Eq.(D.16) in appendix:

Yi=Xi—q1Yi1— ... —9Yi g (5.13)

where(gy = 1,91, ..., g,) iS the impulse response of the filtér See the next example and Ap-
pendix D for more details on how to obtain the impulse respariig.. The following result derives
immediately from this and Theorem D.4.1:

PROPOSITIONS.4.1. Assume thatX = LY whereL is a differencing or de-seasonalizing filter
with impulse responsg, = 1, g1, ..., g,- Assume that we are able to produce a point prediction
X}(ﬁ) for X;,, given that we have observed to X;. For example, if the differenced data can be
assumed to be iid with mean thenX,(¢) = .

A point prediction forY; ., can be obtained iteratively by:

Yi(l) = X)) —gVi(l —1) — ... — ge 1 Yi(1) — geye — - ..
—qYt—q+e for1 <l <gq (5.14)
Vi) = X(0) —gYi(0—1)— ... — gYi({ — q) for £ > g (5.15)

Note that differencing enough times removes any non zeronmm&am the data, so we often
assume that = 0.

EXAMPLE: INTERNET TRAFFIC, CONTINUED. For Figure 5.7, we have

L=AiRis=2MAs=(1-B)(1-B"Y%=1-B-B"%+B"

'more precisely£(A,Y;) = 0 fort > s + 1. i.e. the firsts elements of the differenced time series may not be 0
mean.
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Figure 5.7 Differencing filters A; and A applied to Example 5.1 (first terms removed). The forecasts are
made assuming the differenced data is iid gaussian with 0 mean. o = actual value of the future (not used
for fitting the model). The point prediction is better than on Figure 5.1, but the prediction intervals are large.
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thus the impulse response g of L is given by
g0 =917 =1, g1 = g16 = —1, gm = 0 otherwise
If we can assume that the differenced data is iid with 0 mean, the prediction formulae for Y are

) = Yi+Yi15—Yi s

) = Yi(l—1)+ Y16 — Yipe—17 for 2 <2 <16
) = Yi(16) + V(1) - Y,
)

= V(0 —1)+Yy(£ —16) — Y;(£ — 17) for £ > 18

5.4.3 COMPUTING PREDICTION INTERVALS

If we want to obtain not only point predictions but also to atiky the prediction uncertainty, we
need to compute prediction intervals. We consider a spdniafrequent case. More general cases
can be handled by Monte Carlo methods as explained in Seetoh. The following result derives
from Theorem D.4.1 in appendix.

PROPOSITION 5.4.2. Assume that the differenced data is iid gaussian. g. = (LY), ~
iid N (p, 0?).
The conditional distribution o¥;,, given thatY; = y,,...,Y; = y, IS gaussian with meaﬁ’t(ﬁ)
obtained from Eq.(5.14) and variance

MSE (¢) = o? (hg + - h?_l) (5.16)

wherehg, hi, ho, . .. is the impulse response 6f L. A prediction interval at leve).95 is thus

Y;(0) £ 1.964/ MSE (¢) (5.17)

Alternatively, one can compuié(¢) using

~

Yi(0) = p(ho+ -+ hoe—1) + hexy + - - hyypa2y (5.18)

The impulse response d@f! can be obtained numerically (for example using ftihét er com-
mand), as explained in Appendix D. If is not too complicate, it can be obtained in a simple
closed form. For example, far= 1, the reverse filte\[ ! is defined by

(AT'X), =Xi+Xo+ ..+ X, t=1..n
i.e. its impulse response s, = 1 for all m > 0. It is a discrete time equivalent of integration.

The impulse response &f = (A, A,)~! used in Figure 5.7 is

how = 1+ L%J (5.19)

where the notationz | means the largest integerz.
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Note thatu ando need to be estimated from the differenced #lata

EXAMPLE: INTERNET TRAFFIC, CONTINUED. Figure 5.7 shows the prediction obtained assuming
the differenced data is iid gaussian with 0 mean.

It is obtained by applying Eq.(5.18) with x = 0, Eq.(5.17) and Eq.(5.19).
The point prediction is good, but the confidence interval appear to be larger than necessary. Note

that the model we used here is extremely simple; it has only one parameter (namely o) to fit, which
is estimated as the sample standard deviation of the differenced data.

Compare to Figure 5.1: the point prediction seems to be more exact. Also, it starts just from the
previous value. The point prediction with differencing filters is more adaptive than with a regression
model.

The prediction intervals are large and grow with the prediction horizon. This is a symptom that
the iid gaussian model for the differenced data may not be appropriate. In fact, there are two
deviations from this model: the distribution does not appear to be gaussian, and the differenced
appears to be correlated (large values are not isolated). Addressing these issues requires a more
complex model to be fitted to the differenced time series: this is the topic of Section 5.5

5.5 HTTING DIFFERENCED DATA TO AN ARMA M ODEL

The method in this section is inspired by the original metbbBox and Jenkins in [15] and can
be called theBox-Jenkins method, although some of the details differ a bit. It applesases
where the differenced dafe appears to be stationary but not iid. In essence, the mettovitps
a method tavhiten the differenced data, i.e. it computes a filtésuch thatF" X can be assumed
to be iid. We first discuss how to recognize whether data caasbemed to be iid.

5.5.1 SATIONARY BUT NON |ID D IFFERENCED DATA

After pre-processing with differencing and de-seasoiaifilters we have obtained a data set
that appears to bstationary. Recall from Chapter 6 that a stationary model is such thet it
statistically impossible to recognize at which time a gatar sample was taken. The time series
in panel (c) of Figure 5.7 appear to have this property, waeetbe original data set in panel (a)
does not. In the context of time series, lack of stationasigue to growth or periodicity: if a data
set increases (or decreases), then by observing a samplenweee an idea of whether it is old
or young; if there is a daily pattern, we can guess whethemgpkssis at night or at daytime.

SAMPLE ACF

A means to test whether a data series that appears to benatatis iid or not is thesample
autocovariance function; by analogy to the autocovariance of a process, defined, for > 0

2Here too, the prediction interval does not account for thienaion uncertainty
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by
n—t

Ve = L > (X — X) (X, - X) (5.20)

n
s=1

whereX is the sample mean. Tilsample ACF is defined by, = 4;/4o. The sample PACF is also
defined as an estimator of the true partial autocorrelationtfon (PACF) defined in Section 5.5.2.

If X1, ..., X, isiid with finite variance, then the sample ACF and PACF ayeradotically centered
normal with variance /n. ACF and PACF plots usually display the bount$.96//n. If the
sequence is iid with finite variance, then roughyy; of the points should fall within the bounds.
This provides a method to assess whetRelis iid or not. If yes, then no further modelling is
required, and we are back to the case in Section 5.4.2. SaeeBdL0 for an example.

The ACF can be tested formally by means of theng-Box test. It testsH,: “the data is iid”
versusH,: “the data is stationary”. The test statisticis= n(n + 2) 3" i wheret is a

s=1 n—s’

parameter of the test (number of coefficients), typicglly. The distribution ofl underH, is x?,
which can be used to compute thealue.

5.5.2 ARMA AND ARIMA P ROCESSES

Once a data set appears to be stationary, but not iid (as &l pgrof Figure 5.7) we can model it
with an Auto-Regressive Moving Average (ARMA) process.

DEFINITION 5.5.1. A 0-mean ARMAY, ¢q) processX;, is a process that satisfies for=1,2,--- a
difference equation such as:

Xt -+ AlXt—l + 4 ApXt—p =€ + Clet—l + -+ Cth_q €t ||d ~ NO,JQ (521)

Unless otherwise specified, we assukhg ; = --- = Xy, = 0.

An ARMAY, q) process with mean is a processX; such thatX; — p is a0 mean ARMA process
and, unless otherwise specified, ,;; = - - - = X, = p.

The parameters of the process dre - - -, A, (auto-regressive coefficients), Cy, - - -, C, (mov-

ing average coefficients) ands? (white noise variance). The iid sequence is called the noise
sequence, dnnovation.

An ARMA(p, 0) process is also called akuto-regressive process, AR{); an ARMA(0, ¢) pro-
cess is also calledoving Average process, MA{).

Since a difference equation as in Eq.(5.21) defines a filtén wational transfer function (Ap-
pendix D), one can also define an ARMA process by
X =p+Fe (5.22)

wheree is an iid gaussian sequence and

14 CB+...+C,B

= 5.23
1+ AB+...+ABr (5.23)

B is the backshift operator, see Appendix D.
In order for an ARMA process to be practically useful, we ngeslfollowing:
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HyPOTHESIS5.1. The filter in Eq.(5.23) and its inverse are stable.

In practice, this means that the zeroes ef A,z +.. .+ A, Pand ofl + Cyz 7' +.. .+ Cpz7
are within the unit disk.

Eq.(5.22) can be used to simulate ARMA processes, as in &g

10

1% 20 20 60 80 100 %o 20 20 60 80 100

(8) ARMA(2,2)X; = —0.4X;_1+0.45X,_o+ (b) AR(2) X; = —0.4X;_1 + 0.45X;_5 + &
€t — 0.46t—1 + 0'95515—2

[e] 20 40 60 80 100

(C) MA(Z) Xi =€ —0.4€e,-1 +0.95¢; o

Figure 5.8:Simulated ARMA processes with 0 mean and noise variance o> = 1. The first one, for example,
is obtained by the matlab commands Z=r andn(1, n) and X=filter([1 -0.4 +0.95],[1 0.4
-0.45], 2).

ARMA P ROCESS As A GAUSSIAN PROCESS Since an ARMA process is defined by linear
transformation of a gaussian proces# is a gaussian process. Thus it is entirely defined by its
meanE(X;) = p and its covariance. Its covariance can be computed in a nuaibeays, the
simplest is perhaps obtained by noticing that

Xt = IU ‘l— hQEt + e + ht_lel (524)

whereh is the impulse response of the filter in Eq.(5.23). Note twéh our conventionp, = 1.
It follows that fort > 1 ands > 0:

t—1

cov(Xy, Xprs) = 0> hjhj, (5.25)
=0
For larget
cov(Xy, Xpss) ®vs = 0° Z hjhjs (5.26)
=0

The convergence of the latter series follows from the assiomphat the filter is stable. Thus,
for larget, the covariance does not dependtonMore formally, one can show that an ARMA
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process with Hypothesis 5.1 is asymptotically stationd§, [97], as required since we want to
model stationary data

Note in particular that
var(X,) & 0? Y h? = (14 h?) > o (5.27)
j=0 §=0

thus the variance of the ARMA process is larger than thatefibisé.

For an MA(¢) process, we havk; = C; for j = 1,...,qandh; = 0 for j > ¢ thus the ACF ig)

at lags> g¢.

The Auto-Correlation Function (ACF) is defined by p;, = v;/70. The ACF quantifies departure
from an iid model; indeed, for an iid sequence (ilg.= hy = ... = 0), p, = 0fort > 1. The
ACF can be computed from Eq.(5.26) but in practice there areerafficient methods that exploit
Eq.(5.23), see [105], and which are implemented in stanplactages. One also sometimes uses
thePartial Auto-Correlation Function (PACF), which is defined in Section C.5.3 as the residual
correlation ofX,, , and X,, given thatX,. ,, ..., X, ,_; are knowrf

Figure 5.9 shows the ACF and PACF of a few ARMA processes. Hifleyecay exponentially.
For an AR p) process, the PACF is exactlyat lags ¢ > p.

ARIMA P ROCESS By definition, the random sequente= (Y3, Y3, ...) is an ARIMA(p, d, q)
(Auto-Regressive Integrated Moving Average) procesdfiécBncingY” d times gives an ARMAY, q)
process (i.e.X = AfY is an ARMA process, wherd\, is the differencing filter at lag). For
d > 1 an ARIMA process is not stationary.

In the statistics literature, it is customary to describ&&IMA( p, d, ¢) process; by writing
(1-B)1+AB+...+ADB)Y =(1+CB+...+C,B)e (5.28)

which is the same as saying th&fY" is a zero mean ARMAY{ q) process.

By extension, we also call ARIMA process a procg&ssuch thatLY is an ARMA process where
L is a combination of differencing and de-seasonalizingrfilte

5.5.3 HTTING AN ARMA M ODEL

Assume we have a time series which, after differencing anrde@sonalizing (and possible re-
scaling) produces a time seri&s that appears to be stationary and close to gaussian (i.endbes
have too wild dynamics), but not iid. We may now think of fifian ARMA model toX;.

The ACF and PACF plots may give some bound about the ordarslq of the model, as there
tend to be exponential decay at lags larger thandg.

3Furthermore, it can easily be shown that if the initial cdiodis X,, ..., X_, are not set td) as we do for
simplicity, but are drawn from the gaussian process withnmeand covariances, then X, is (exactly) stationary.
We ignore this subtlety in this chapter and consider onlyrgsiptically stationary processes.

4Equality occurs only wheh, = hy = ... = 0, i.e. for the trivial case wher&, = ¢,

5Some authors call autocorrelation the quantitynstead ofp;.

5The PACF is well defined if the covariance matrix(df;, ..., X;, ) is invertible. For an ARMA process, this is
always true, by Corollary C.3.1.

"This follows from the definition of PACF and the fact th¥t, , is entirely determined Xt s—p, ooy Xigs—p-
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Figure 5.9:ACF (left) and PACF (right) of some ARMA processes.
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Figure 5.10:First panel: Sample ACF of the internet traffic of Figure 5.1. The data does not appear to
come from a stationary process so the sample ACF cannot be interpreted as estimation of a true ACF
(which does not exist). Second panel: sample ACF of data differenced at lags 1 and 16. The sampled data
appears to be stationary and the sample ACF decays fast. The differenced data appears to be suitable for
modelling by an ARMA process.

Note that the sample ACF and PACF make sense only if the dgeaap to be generated from a
stationary process. If the data comes from a non stationary processnidy be grossly mislead-
ing (Figure 5.10).

MAXIMUM LIKELIHOOD ESTIMATION OF AN ARMA orR ARIMA M ODEL

Once we have decided for orderandg, we need to estimate the parameters, A,, ..., A,, C1, ..., C,.
As usual, this is done by maximum likelihood. This is simplifiby the following result.

THEOREM 5.5.1. Consider an ARMA or ARIMA model with parameters as in Defini.5.1,
where the parameters are constrained to be in some&séissume we are given some observed
datazq,...,zn.

1. The log likelihood of the data is & In (2762) where

o 1 : 2
F==> (a:t _ Xt_1(1)> (5.29)

andXt_l(l) is the one step ahead forecast at time 1.
2. Maximum likelihood estimation is equivalent to minimgzihe mean square one step ahead
forecast errorg, subject to the model parameters beingSin

The one step forecast§,_; (1) are computed using Proposition 5.5.2 below. Care shouldkent
to remove the initial values if differencing is performed.

Contrary to linear regression, the optimization involvedehis non linear, even if the constraints
on the parameter set are linear. The optimizer usually reggiome initial guess to run efficiently.
For MA(q) or AR(p) there exist estimation procedures (calledment heuristics) that are not
maximum likelihood but are numerically fast [105]. These based on the observation that for
MA (q) or AR(p) processes, if we know the autocovariance function exabiy) we can compute
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the coefficients numericafly Then we use the sample autocovariance as estimate of theoaut
variance function, whence we deduce an estimate of the maeasnof the process. This is less
accurate than maximum likelihood, but is typically used asnétial guess. For example, if we
want to compute the maximum likelihood estimate of a geneRIA (p, ¢) model, we may es-
timate the parameteys o, C1, . .., C, of an MA(¢) model, using a moment fitting heuristic. We
then give as initial guess these values plys= ... = A4, = 0.

It is necessary to verify that the obtained ARMA model cqueesds to a stable filter with stable

inverse. Good software packages automatically do so, liimas, it may be impossible to obtain

both a stable filter and a stable inverse. It is generally #dhthat this may be fixed by changing
the differencing filter: too little differencing may makantpossible to obtain a stable filter (as the
differenced data is not stationary); conversely, too muéfleréncing may make it impossible to

obtain a stable inverse [19].

DETERMINATION OF BEST MODEL ORDER

Deciding for the correct order may be done with the help ofdmrmation criterion (Section 5.3.2),
such as the AIC. For example, assume we would like to fit tHerdihiced dataX,; to a general
ARMA (p, ¢) model, without any constraint on the parameters; we have coefficients, plus the
meanyu and the variance?; thus, up to the constantN In(27), which can be ignored, we have

AIC = —NIné? +2(p+q+2) (5.30)

Note that the AIC counts as degrees of freedom only contispauameters, so it does not count
the number of times we applied differencing or de-seasninglio the original data. Among all the
possible values g#, ¢ and possibly among several application of differencingesdasonalizing
filters, we choose the one than minimizes AIC.

VERIFICATION OF RESIDUALS

The sequence of residuals= (eq, e, ...) is an estimation of the non observed innovation se-
guence:. Itis obtained by

(ebe??"'uet) = F_l(xl — My T2 ey Ty _M) (531)

where(zq, xo, . . .) is the differenced data andis the ARMA filter in Eq.(5.23). If the model fit is
good, the residuals should be roughly independent, theré¢fie ACF and PACF of the residuals
should be close to 0 at all lags.

Note that the residuals can also be obtained from the fatigyprroposition (the proof of which
easily follows from Corollary D.4.2, applied t&; ande, instead ofY; and X;)

PROPOSITIONS.5.1 (nnovation Formula).
€ = X; — Xt—l(l) (5-32)

wheref(t_l(l) is the one step ahead prediction at time 1.

8For AR(p) processes, the AR coefficients are obtained by solving thée*Walker” equations, using the
“Levinson-Durbin” algorithm [105]
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Thus, to estimate the residuals, one can compute the onals¢és predictions for the available
dataz; (1), using the forecasting formulae given next; the residusgtzen

€ = Ty — i’t—l(l) (5.33)

5.5.4 FORECASTING

Once a model is fitted to the differenced data, forecastingeleasily from Theorem D.4.1, given

in appendix, and its corollaries. Essentially, Theorem.Dséays that predictions foxY andY are
obtained by mapping predictions foby means of the reverse filters. Sinas iid, predictions for

e are trivial: e.g. the point predictiofa(h) is equal to the mean. One needs to be careful, though,
since the first terms of the differenced time sefl@sare not known, and one should use recursive
formulas that avoid propagation of errors. This gives tHi®fang formulas:

PROPOSITIONS.5.2. Assume the differenced data= LY is fitted to an ARMA(, ¢) model with
meany as in Definition 5.5.1.

1. The(-step ahead predictions at time X,(¢), of the differenced data can be obtained for
t > 1 from the recursion

Xi(0)—p + AXK(L=1) =)+ ...+ AKXl —p) — p) = Cré(£ — 1) + ...+ Cuér(£ — q)
A [ Xyeif0<0and1 <t 40
Xill) = {,uift+€§0
0if ¢>1ort+¢<0
&) = 8 Xppy— Xppoa(Dif € <Oand t+¢>2
Xy —pift+¢=1and ¢ <0

In the recursion, we allow < 0 even though we are eventually interested onlg in 1.
2. Alternatively,X,(¢) can be computed as follows. Let = 1,¢;,cs,...) be the impulse
response of"'~!; then:

~

Xi(O)=p = —er (X, (0=1)=p) = . .oy (Ko (1) =pt)—ce(wi—pp) = - -—Cpypso(1g—p1) £ > 1
(5.34)
where(z,,, ..., z,;) is the differenced data observed up to timand where is the length

of the impulse response of the differencing and de-seazamgfilter L.

3. Thel-step ahead predictions at timgY; (¢), of the non differenced data follow, using Propo-
sition 5.4.1.

4. Let(dy,dy,d,...) be the impulse response of the filfer! F and

MSE (¢) = o® (dg + - - - + dj_,) (5.35)

A 95% prediction interval fol; , is

Y;(0) 4 1.964/MSE (¢) (5.36)
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Figure 5.11:Prediction for internet traffic of Figure 5.1, using an ARMA model for the differenced data
(o=actual value of the future, no known at time of prediction). Compare to Figure 5.7: the point predictions
are almost identical, but the prediction intervals are more accurate (smaller).
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Note that we use two steps for computing the point predistidinst for X, then forY;. One can
wonder why, since one could use a single step, based on thihéd = L' Fe. The reason is
numerical stability: since the initial values &f, (or equivalently, the past valués for s < 0) are
not known, there is some numerical error in items 1 and 2. Sine assume that—! is stable,
cm — 0 for largem so the values of; for smallt do not influence the final value of Eq.(5.34).
Indeed the non-differenced data for small values oft is not known exactly, as we made the
simplifying assumption thag, = 0 for s < 0. This is also why the first, data points ofr are
removed in Eq.(5.34).

The problem does not exist for the computation of predictervals, this is why one can directly
use a single step in item 4. This is because the variance ébtbeast MSE(/) is independent of
the past data (Theorem C.5.1 in Appendix).

If one insists on using a model such tifats stable, but nof"~!, the theorem is still formally true,
but may be numerically wrong. It is then preferable to usddh@ulae in Section 3.3 of [19] (but
in practice one should avoid using such models).

POINT PREDICTIONS FOR AN AR(p) O MEAN PROCESS

The formulae have simple closed forms when there is no éifieing or de-seasonalizing and the
ARMA process is ARg) with 0 mean. In such a cas¥; = X; and Eq.(5.34) becomes (with the
usual conventiony, = 0 for s < 0):

/—1 p

Vi(l) = =) AY(l—5) =D A jpefor 1 <<p
j=1 i=t

A p A

Yi(l) = =) AV (t—j)for £ >p
j=1

whereA,, A, ..., A, are the auto-regressive coefficients as in Eq.(5.21). Becatthis simplic-
ity, AR processes are often used, e.g. when real time predgare required.

EXAMPLE 5.3:INTERNET TRAFFIC, CONTINUED. The differenced data in Figure 5.10 appears to be
stationary and has decaying ACF. We model it as a 0 mean ARMA(p, q) process with p, ¢ < 20 and
fit the models to the data. The resulting models have very small coefficients A,, and C,, except
for m close to O or above to 16. Therefore we re-fit the model by forcing the parameters such that

A = (I,Al,...,AP,O,...,O,Alﬁ,...,A16+p)
Cc = (17017---7010707---7070167---70164-(1)

for some p and ¢. The model with smallest AIC in this class is forp =1 and ¢ = 3.

Figure 5.11 shows the point predictions and the prediction intervals for the original data. They were
obtained by first computing point predictions for the differenced data (using Matlab’s pr edi ct
routine) and applying Proposition 5.4.1. The prediction intervals are made using Proposition 5.5.2.
Compare to Figure 5.7: the point predictions are only marginally different, but the confidence
intervals are much better.

We also plot the residuals and see that they do appear uncorrelated, but there are some large
values that do not appear to be compatible with the gaussian assumption. Therefore the prediction
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intervals might be pessimistic. We computed point predictions and prediction intervals by re-
sampling from residuals. Figure 5.12 shows that the confidence intervals are indeed smaller.

USE OF BOOTSTRAP REPLICATES

When the residuals appear to be uncorrelated but non gaytsegorediction intervals may be over
or under-estimated. It is possible to avoid the problemgiaiivionte Carlo method (Section 6.4),
as explained now.

The idea is to draw many independent predictions for thelveds, from which we can derive pre-
dictions for the original data (by using reverse filters)efiéhare several possibilities for generating
independent predictions for the residuals: one can fit ailligion, or use Bootstrap replicates (i.e.
re-sample from the residuals with replacement). We givdgorighm using this latter solution.

Algorithm 3 Monte-Carlo computation of prediction intervals at level 1 — « for time series Y; using re-
samplig from residuals. We are given: a data set Y;, a differencing and de-seasonalizing filter L and an
ARMA filter I such that the residual e = F~'LY appears to be iid; the current time ¢, the prediction lag ¢
and the confidence level a. 7 is the algorithm’s accuracy parameter.
1: R=[2ry/a] —1 > For exampley = 25, R = 999
2: compute the differenced data, , . .., z;) = L(y1, ..., y)
3: compute the residualg,, ..., e;) = F~'(z,,...,z,) whereq is an initial value chosen to
remove initial inaccuracies due to differencing or de-sea8izing (for example = length of
impulse response df)

4. forr=1:Rdo

5: draw/ numbers with replacement from the sequefage. . . , ¢;) and call them ,, ..., €}, ,

6: lete” = (eq, ..., €15 €1pp)

7: computeX; ..., X}, ,using(zq, ...z, X[\, ..., X],,) = F(e")

8: computeY;’ ..., Y/, using Proposition 5.4.1 (witX}, , andY}, , in lieu of X,(s) and
Yi(s))

9: end for

10: (Y, ..., Y(r)) = sort(Y,L,, ... Y,%))
11: Prediction interval i$Y(,,) ; Y(rt1-ro)]

The algorithm is basic in that in gives no information abdsitaccuracy. A larger, produces a
better accuracy; a more sophisticated algorithm wouldgssgtich that the accuracy is small.

Also note that, as any bootstrap method, it will likely faihe distribution of the residuals is heavy
tailed.

An alternative to the bootstrap is to fit a parametric disititn to the residuals; the algorithm is
the same as Algorithm 3 except that line 5 is changed by thergéan of a sample residual from
its distribution.

5.6 SARSEARMA AND ARIMA M ODELS

In order to avoid overfitting, it is desirable to use ARMA mixithat have as few parameters as
possible. Such models are callsgarse The use of an information criterion gives a means to
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Figure 5.12:Prediction at time 224, same model as Figure 5.11, but prediction obtained with the bootstrap
method (re-sampling from residuals).

obtain sparse models, but it involves a complex non lineinopation problem. An alternative is
to impose constraints on the model, based on some sensibistics.

5.6.1 CONSTRAINED ARMA M ODELS

A simple method consists in forcing some of the auto-regressd moving average coefficients
to 0, as in Example 5.3. Another method, more adapted to mosléh periodicity, is called
Seasonal ARIMA. Assumes that the data has a peripd seasonal ARMA model is an ARMA
model where we force the filter defined in Eq.(5.23) to have the form

(1+¥L,aB) (1432, CBY)

F—
(L+ >0, a:BY) (1 + Zil AiBSi)

(5.37)

Y, is a seasonal ARIMA model{ RPY is a seasonal ARMA model, for some nonnegative integers
d, D. This model is also calleahultiplicative ARIMA model, as the filter polynomials are products
of polynomials.

The only difference with the rest of this section when usisgasonal ARIMA model is the fitting
procedure, which optimizes the model parameters subjéieetoonstraints (using Theorem 5.5.1).
The forecasting formulae are the same as for any ARIMA or ARMdédel.
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5.6.2 HOLT-WINTERS M ODELS

These are simple models, with few parameters, which emesggairically, but can be explained
as ARMA or ARIMA models with few parameters. Their interesislin the simplicity of both
fitting and forecasting. Holt Winters models were origigatitroduced by Holt and Winters in
[41, 107], and later refined by Roberts in [89]; we follow thregentation in this latter reference.
We discuss five models: EWMA, double EWMA and three variahtfie Holt Winters seasonal
model.

EXPONENTIALLY WEIGHTED MOVING AVERAGE

This was originally defined as an ad-hoc forecasting formTUltee idea is to keep a running estimate
estimatemn, of the mean of the data, and update it using ékponentially weighted moving
average mechanism with parameter defined fort > 2 by:

e = (1 — a)iy_1 + aY, (5.38)
with initial condition; = Y;. The point forecast is then simply
Yi(0) = 1y (5.39)
The following results makes the link to ARMA models (proofSection 5.7).

PROPOSITIONS.6.1 ([89]). EWMA with parametet is equivalent to modelling the non-differenced
time series with the ARIMA, 1, 1) model defined by

(1-B)Y = (1—(1—-a)B)e (5.40)
with ¢, ~ iid Ny 2

The parametei can be found by fitting the ARIMA model as usual, using Theo®e®l, namely,
by minimizing the one step ahead forecast error. There i®netcaint oru, though it is classical
to take it between 0 and 1.

The noise variance? can be estimated using Eq.(5.29), which, together with &sibipn 5.5.2,
can be used to find prediction intervals.

EWMA works well only when the data has no trend or periodigge Figure 5.13.

QUESTION5.6.1. Whatis EWMA forn =0?a=17?"°

DOUBLE EXPONENTIAL SMOOTHING WITH REGRESSION

This is another simple model that can be used for data withdtt®it no season. Like simple
EWMA, it is based on ad-hoc forecasting formulae that hagpaorrespond to ARIMA models.
The idea is to keep a running estimate of both the mean leéyednd the trend’;. Further, a
discounting factor is applied to model practical cases where the growth is netli.

%a = 0: a constant, equal to the initial value:= 1: no smoothingy; = Y;.
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Figure 5.13:First graph: simple EWMA applied to swiss population data Y; with a = 0.9. EWMA is
lagging behind the trend. Second graph: simple EWMA applied to the differenced series AY;. Third graph:
prediction reconstructed from the previous graph.

The forecasting equation is

l
Vi(l) = riu+7i Y o (5.41)
=1

and the update equations are, for 3:

mt = (1 — a) (’ﬁ’Lt_l -+ ¢7A't_1) + CLY; (542)
7e = (1 —=0)pr_1 + b1y —1_1) (5.43)

with initial conditionm, = Y5 andry, = Y5 — Y7. We assumé < ¢ < 1; there is no constraint on
a andb, though it is classical to take them between 0 and 1.

For ¢ = 1 we have the classical Holt Winters model, also callexdible Exponential Weighted
Moving Average; for 0 < ¢ < 1 the model is said “with regression”.

PROPOSITIONS.6.2 ([89]). Double EWMA with regression is equivalent to modeling the dié
ferenced data as the zero mean ARIMA, 2) process defined by:

(1—B)(1—¢B)Y = (1 —6,B — 0,B%)e (5.44)
with

0 = 1+6¢—a— ¢ab (5.45)
0, = —6(1—a) (5.46)
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with e, ~ iid N ,2.
Double EWMA is equivalent to the zero mean ARI(MA, 2) model:

(1—B)?Y =(1—60,B — 0,B%)¢ (5.47)

with
0 = 2—a—ab (5.48)
0, = —(1—a) (5.49)

The maximum likelihood estimate af b and ¢ is obtained as usual by minimizing the one step
ahead forecast error. Figure 5.14 shows an example of d&viMA.

7000 7200 7400
1 1 I

6800
1

6400 6600

T T T T T
1980 1985 1990 1995 2000 2005

c(tt, t[1] + seq(n, n +k - 1, 1))

Figure 5.14:Double EWMA with a« = 0.8,b = 0.8. It gives a good predictor; it underestimates the trend in
convex parts, overestimates it in concave parts.

SEASONAL MODELS

For times series with a periodic behaviour there are extassof the Holt Winters model, which
keep the same simplicity, and can be explained as ARIMA nwdéle present three variants,
which differ in the choice of some coefficients.

Assume that we know that the non differenced data has a peridtie idea is to keep the level
and trend estimates, andr, and introduce corrections for seasonaditi), fori = 0,...,s — 1.
The forecast equation is [89]:

l
() =1y + Y @'y + w's (£ mod s) (5.50)
=1
where¢ andw are discounting factors. The update equations are, fos + 2:
me = a(Yy—ws—1(1)) + (1 —a)(me—1 + ¢r1—1) (5.51)
7A“t - b (mt - mt_l) + (]. - b)QSf’t_l (552)
5(1) = w8 _1((i +1)mod s) + D;e; fori=0..s —1 (5.53)
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whereD; are coefficients to be specified next and= Y; — Yt_l(l).

The initial values ofn, 7, s are obtained by using the forecast equation with 1 and/ = 1...s.
More precisely, sety, = Y, fort =1,....s+ 1,7 =1, 5(j) =s;forj=0,...,s—1, solve for
Ty80, 51y -+ +5Ss—1 in

J
Ying = Yl—l-TZgbijijsjmodsforj:1...3

=1
s
0 = E Sj
i=1

and dory; = ¢°7, 55+1(j) = w®s;. After some algebra this gives tirétial conditions:

Mer1 = Yeq1 (5.54)
7 _ 25:1(3/341 - }/1>w8_] (5 55)
B D VR '
5001(0) = Yo —=Vi—Fuy > ¢ (5.56)
i=1

J
$e1(j) = (Ym — Y1 — Fon Zgbi_s) w forj=1,...,5—1 (5.57)
i=1

Roberts argues we should impds&_, D; = 0. Roberts’ Seasonal Model is obtained by using
an exponential family, i.e.

DQ = 1- CS_1 (558)
D; = " Hl—¢) fori=1,...,5s—1 (5.59)

for some parametet.

PROPOSITIONS.6.3 ([89]). The Roberts seasonal model with parametgtsc, ¢, w is equivalent
to the zero mean ARIMA model

s—1 s+1
(1-¢B)(1— B) (1 + Zw’B") Y = (1 — Z@,B’) € (5.60)
i=1 i=1
with e, ~ iid N ,2 and

0 = 14+ ¢—we—a(l+¢b)

0; = w {7 [(14 ¢)we— ¢ — w’c®] — (w— ¢p)a — woab}
fort=2,...,5s—1

0, = w2 {1+ ¢)we— ¢] — (w — ¢)a — woab}

98+1 — _¢,ws—1 (Cs—l o CL)
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The Holt-Winters Additive Seasonal Model is also commonly used. It corresponds¢to=
1,w = 1 (no discounting) and
Dy = ¢(1—a) (5.61)
D, = 0 fori=1,...,s—1 (5.62)

It seems more reasonable to imptis:é;(} D; = 0, and Roberts proposes a variant, @arected
Holt-Winters Additive Seasonal Model, for which¢ = 1,w =1 and

Dy = c¢(1—a) (5.63)

1_
D, = —0(716‘) fori=1,....s (5.64)

S —

PROPOSITIONS.6.4 ([89]). The Holt-Winters Additive Seasonal models with parametgrs: are
equivalent to the zero mean ARIMA models

s+1
(1-B)(1-B°)Y = (1 - Zeﬂ) € (5.65)
i=1

with ¢, ~ iid Ny 2 and

0 = (1—a)(l+ch)—ab

0; = —ab fori=2,...,s—1
s, = 1—ab—(1—a)c(1+h)
O = —(1—a)(l-c)

with h = ﬁ (Corrected Holt-Winters Additive Seasonal model) and 0 (Holt-Winters Additive
Seasonal model).

For all of these models, parameter estimation can be donerbgniming the mean square one step
ahead forecast error. Prediction intervals can be obtdimedthe ARIMA model representations.

There are many variants of the Holt Winters seasonal modelfa example [48] for the multi-
plicative model and other variants.

EXAMPLE 5.4:INTERNET TRAFFIC WITH ROBERTSMODEL. We applied the seasonal models in
this section to the data set of Figure 5.1; the results are in Figure 5.15. We fitted the models by
maximum likelihood, i.e. minimizing the one step ahead forecast error. We obtained prediction
intervals by using the ARIMA representation and Proposition 5.5.2.

The best Roberts seasonal model is fora = 1, b = 0.99, ¢ = 0.90, ¢ = 0.050 and w = 1. The best
Holt Winters additive seasonal model is for ¢ = 0.090, b = 0.037 and ¢ = 0.64. Both corrected and
non corrected Holt Winters additive seasonal models give practically the same results.

5.7 PROOFS
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Figure 5.15:Prediction for internet traffic of Figure 5.1, using Additive Seasonal models. (o=actual value
of the future, no known at time of prediction). The predictions are less accurate than in Figure 5.11 but the

models are much simpler.
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THEOREM 5.5.1 LetX, — = Fe, whereF is the ARMA filter ande; ~ iidN; ,2. We identify ' with an
N x N invertible matrix as in Eq.(D.6)Y; is a gaussian vector with meanand covariance matriR = ¢2FF”.
Thus the log-likelihood of the datay, ..., 2 is

N 1 -
-5 In(27) = Nlno — 357 ((xT — I FTF (z — ul))

wherez is the column vector of the data aids the column vector withV rows equal tal. For a givenz and F' the

log-likelihood is maximum for

o 1 2

6" =+ ((xT — I F TP Yz — ,uf))

and is equal to- & In (2762). Now 1 )
0 =5 |F e - )

and, by definition of the model™~!(z — u1) is the vector of residuals (i.e. the valueefthat correspond to the
observed datay, ..., zxy). Now use the innovation formula, Eq.(5.32), to concludephoof.

PROPOSITION 5.6.1 Assume that EWMA corresponds to an ARIMA model. ket= Y; — Y;_(1) be the
innovation sequence. Re-write Eq.(5.38) as
My = My—1 + ag

Using filters, this writes ag:» = Bri + ae. Combine withY” = Bri + ¢ and obtainl — B)Y = (1 — (1 — a)B)e,
which is the required ARIMA model. Conversely, use the fasting equations in Proposition 5.5.2) to show that we
obtain the desired forecasting equations.

The proofs of Propositions 5.6.2, 5.6.3 and 5.6.4 are simila

5.8 REVIEW QUESTIONS

QUESTION 5.8.1. Does the order in which differencing at lagsnd 16 is performed matter %°
QUESTION 5.8.2. When is EWMA adequate'?

QUESTION 5.8.3. When is double EWMA adequaté?®?

QUESTION 5.8.4. When is a seasonal Holt Winters model adequat& ?

QUESTION 5.8.5. For ARMA and ARIMA models, what is the relation between thea 3 one
point ahead forecasts; (1) and innovatiory, ?

QUESTION 5.8.6. How do we account for uncertainty due to model fitting whenginear re-
gression models ? ARMA model$>?

QUESTION 5.8.7. What should one be careful about when interpreting an ACE DI

ONo, because filters commute.

\When the data is stationary and we want a very simple model.

2When the data has trends but no seasonality and we want aingiesnodel.

BWhen the data has trends and seasonality and we want a veriesimdel.

18y, — V;_1(1) + e, see Eq.(5.32).

5with linear regression models there are explicit formuamsuming the residuals are gaussian. In most cases, the
uncertainty due to fitting is negligible compared to foreicesundertainty. For ARMA models, the formulas in this
chapter simply ignore it.

8That the data appears stationary.
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QUESTION 5.8.8. What is the overfitting problem ¥

QUESTION 5.8.9. When do we need an ARIMA model rather than simply applyirigrdifcing
filters 218

QUESTION 5.8.10. How does one fit a Holt Winters model to the dat& ?
QUESTION 5.8.11. What are sparse ARMA and ARIMA models ? Why do we use tR&m ?
QUESTION 5.8.12. When do we need the bootstrag'?

QUESTION 5.8.13. When do we use an information criteriorf?

A model that fits the past data too well might be unable to ptete future.

BWhen the residuals after differencing appear to be veryetated.

19 jke all ARMA or ARIMA models, by minimizing the average ontep ahead forecast error, see Theorem 5.5.1.

20These are models with very few parameters, hence the cotignabprocedures are much simpler.

2lWhen the residuals appear iid but non gaussian and we watitpos intervals.

22When we want to decide about the model order (number of paeas)elt should be used only if the model seems
to make sense for the data, otherwise the results may beaaberr
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CHAPTER 6

DISCRETEEVENT SIMULATION

Simulations are often regarded as the simplest, though tinestconsuming performance evalua-
tion method. However, even simple simulation program masegwoblems, if one is not aware of
what stationarity means, and of the potential problemsahaé when a simulation does not have
a stationary regime. We start by discussing this simplejrapbrtant issue; the related topic of
freezing simulations is in another chapter (Section 7.4).

161
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Then we describe two commonly used techniques for impleimgatsimulation, namely, discrete
events and stochastic recurrences, and discuss how cardidearvals can be applied to such set-
tings. Then we discuss Monte Carlo simulation, viewed hera method for computing integrals
or probabilities, and potential pitfalls about random nemdpenerators. Then we present practical
techniques for sampling from a distribution (CDF inversimgection sampling).

Importance sampling is an efficient technique for compugstimates of rare events, such as
a failure rate or a bit error rate. The main difficulty is theoie of an importance sampling
distribution. Here too, we propose a very general approdabhwis widely applicable and does
not require heavy developments.

Contents
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6.1 WHATIS A SIMULATION 7?

A simulation is an experiment in the computer (biologistg ‘$a silico”) where the real environ-
ment is replaced by the execution of a program.
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EXAMPLE 6.1:MOBILE SENSORS  You want to build an algorithm A for a system of n wireless
sensors, carried by mobile users, which send information to a central database. A simulation of
the algorithm consists in implementing the essential features of the program in computer, with
one instance of A per simulated sensor. The main difference between a simulation and a real
implementation is that the real, physical world (here: the radio channel, the measurements done
by sensors) is replaced by events in the execution of a program.

6.1.1 SMULATED TIME AND REAL TIME

In a simulation the flow of time is controlled by the computé.first task of your simulation
program is to simulate parallelism: several parallel axtioan take place in the real system; in
your program, you serialize them. Serializing is done byntaning asimulated timgwhich

is the time at which an event in the real system is supposesk®flace. Every action is then
decomposed into instantaneous events (for example, thartweg of a transmission), and we
assume that it is impossible that two instantaneous evakegitiace exactly at the same time.

Assume for example that every sensor in Example 6.1 should aenessage whenever there is
a sudden change in its reading, and at most every 10 minutesayl happen in your simulation
program that two or more sensors decide to send a messagiasieausly, say within a window
of 10 us; your program may take much more than;&of real timeto execute these events. In
contrast, if no event happens in the system during 5 minytes,simulation program may jump to
the next event and take just of few ms to execute 5 mn of sirdikithe. The real time depends on
the performance of your computer (processor speed, amdumemory) and of your simulation
program.

6.1.2 SMULATION TYPES

There are many different types of simulations. We use tHeviihg classification.

DETERMINISTIC / STOCHASTIC. A deterministic simulation has no random components. Itis
used when we want to verify a system where the environmenmttisely known, maybe to verify
the feasibility of a schedule, or to test the feasibility nfimplementation. In most cases however,
this is not sufficient. The environment of the system is bettedelled with a random component,
which makes the output of the simulation also random.

TERMINATING / NON-TERMINATING . A terminating simulation ends when specific condi-
tions occurs. For example, if we would like to evaluate thecetion time of one sequence of
operations in a well defined environment, we can run the seguim the simulator and count the
simulated time. A terminating simulation is typically useten

e We are interested in the lifetime of some system
e or when the inputs are time dependent
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EXAMPLE 6.2:JOE's COMPUTER SHOP. We are interested in evaluating the time it takes to serve
n customers who request a file together at time 0. We run a simulation program that terminates at
time 77 when all users have their request satisfied. This is a terminating simulation; its output is
the time 173.

ASYMPTOTICALLY STATIONARY / NON-STATIONARY. This applies to a non-terminating,
stochastic simulation only. Stationarity is a property loé stochastic model being simulated.
For an in-depth discussion of stationarity, see Chapter 7.

Very often, the state of the simulation depends onitiiteal conditions and it is difficult to find
good initial conditions; for example, if you simulate ananhation server and start with empty
buffers, you are probably too optimistic, since a real sesystem that has been running for some
time has many data structures that are not empty. Stattgriara solution to this problem: if
your simulator has a unique stationary regime, its distiglouof state becomes independent of the
initial condition.

A stationary simulation is such that you gain no informatadout its age by analyzing it. For
example, if you run a stationary simulation and take a snatpsithe state of the system at times
10 and 10’000 seconds, there is no way to tell which of the mapshots is at time 10 or 10’000
seconds.

In practice, a non terminating simulation is rarely exastigtionary, but can basymptotically
stationary. This means that after some simulated time, the simula@oimes stationary.

More precisely, a simulation program with time independeptts can always be thought of as
the simulation of a Markov chain. A Markov chain is a genetmchastic process such that, in
order to simulate the future after timethe only information we need is the state of the system
at timet. This is usually what happens in a simulation program. Tle®mh of Markov chains
(see Chapter 7) says that the simulation will either core/épgsome stationary behaviour, or will
diverge. If we want to measure the performance of the systatanstudy, it is most likely that we
are interested in its stationary behaviour.

EXAMPLE 6.3:INFORMATION SERVER. An information server is modelled as a queue. The sim-
ulation program starts with an empty queue. Assume the arrival rate of requests is smaller than
the server can handle. Due to the fluctuations in the arrival process, we expect some requests to
be held in the queue, from time to time. After some simulated time, the queue starts to oscillate
between busy periods and idle periods. At the beginning of the simulation, the behaviour is not
typical of the stationary regime, but after a short time it becomes so (Figure 6.1 (a)).

If in contrast the model is unstable, the simulation output may show a non converging behaviour
(Figure 6.1 (b)).

In practice, here are the main reasons for non asymptotioséaity.

1. Unstablemodels: In a queuing system where the input rate is largerttieaservice capacity,
the buffer occupancy grows unbounded. The longer the stioals run, the larger the mean
gueue length is.

2. Freezingsimulation: this is a more subtle form of non stationaritjzere the system does
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Figure 6.1:Simulation of the information server in Example 6.3, with exponential service and interarrival

times. The graphs show the number of requests in the queue as a function of time, for two values of the
utilization factor.

not converge to a steady state but, instead, freezes (bscslower and slower). This is
typically due to the occurrence of rare events with largeaatpThe longer the simulation,
the more likely it is that a rare, but important event occansd the larger the impact of
this event may be. If the simulation has regeneration pdpugts at which a clean state
is reached, for example when the system becomes empty) thibesimulation freezes if
the time interval between regeneration points has an iafimian. We study this topic in
Section 7.4, where we see an example with the random waypoint
3. Models withseasonal or growthcomponents, or more generally, time dependent inputs; for

example: internet traffic grows month after month and is matense at some times of the
day.

In most cases, when you perform a non-terminating simuiggiou should make sure that your
simulation is in stationary regime. Otherwise, the output of your simulation depends on the
initial condition and the length of the simulation, and itosen impossible to decide what are
realistic initial conditions. It is not always easy, thougb know in advance whether a given
simulation model is asymptotically stationary. Chapteivég some examples.

QUESTION 6.1.1. Among the following sequenc&s, say which ones are stationary:

1. X,,,n>1isliid.

2. X,,n > 1is drawn as follows.X; is sampled from a given distributiaki(). To obtainX,,,
n > 2 we first flip a coin (and obtain with probability1 — p, 1 with probabilityp). If the
coin returns) we letX, = X,,_;; else we letX,, = a new sample from the distributidn().

3. X,=>",%,n>1whereZ, n>1lisani.id. sequence

11. yes 2. yes: (X;,X,) has the same joint distribution as, for examgl&o, X;;). In general
(X0, Xn+1, -, Xntk) has the same distribution for all This is an example of non-i.i.d., but stationary sequefice.
No, in general. For example, if the common distributiof) has a finite variance?, the variance of\,, is no?, and
grows withn, which is contradictory with stationarity.
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6.2 SMULATION TECHNIQUES

There are many ways to implement a simulation program. Weritestwo techniques that are
commonly used in our context.

6.2.1 DSCRETE EVENT SIMULATION

squeue
length
2
1
0 t, t, t,

(b)
event being executed

arrival service arrival departure service departure
bootstrap =g t=0 t=t, = t=t, t=t,

|

arrival || service|| |arrival |[departurg jservice|departurg arrival
t=0 t=0 t=t, t=t, t=t, t=t, t=t,
arrival [departurg arrival |j arrival || arrival
t=t, t=t, t=t, t=t, t=t,

event scheduler after execution of event

(©

Figure 6.2:(a) Events and their dependencies for Example 6.4. An arrow indicates that an event may
schedule another one. (b) A possible realization of the simulation and (c) the corresponding sequence of
event execution. The arrows indicate that the execution of the event resulted in one or several new events
being inserted into the scheduler.

Many computer and communication systems are often sintlietimgdiscrete event simulation
for example with the ns2 or ns3 simulator [1]. It works asdwls. The core of the method is
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to use a global timeur r ent Ti me and anevent scheduler. Events are objects that represent
different transitions; all event have an associated firintget The event scheduler is a list of
events, sorted by increasing firing times. The simulati@gpam picks the first event in the event
scheduler, advancesur r ent Ti nme to the firing time of this event, and executes the event. The
execution of an event may schedule new events with firingdimwaur r ent Ti me, and may change

or delete events that were previously listed in the evenédugler. The global simulation time
cur r ent Ti me cannot be modified by an event. Thus, the simulation time jumps from event
firing time to the next — hence the name of discrete event sitioum. In addition to simulating the
logic of the system being modelled, events have to updatedteters used for statistics.

EXAMPLE 6.4:DISCRETE EVENT SIMULATION OF A SIMPLE SERVER. A server receives requests
and serves them one by one in order of arrival. The times between request arrivals and the service
times are independent of each other. The distribution of the time between arrivals has CDF F()
and the service time has CDF G(). The model is in fact a GI/Gl/1 queue, which stands for general
independent inter-arrival and service times. An outline of the program is given below. The program
computes the mean response time and the mean queue length.

CLASSES AND OBJECTS We describe this example using an object oriented terminology, close to that
of the Java programming language. All you need to know about object oriented programming to understand
this example is as follows. An object is a variable and a class is a type. For example arri val 23 is the
name of the variable that contains all information about the 23rd arrival, it is of the class Arri val . Classes
can be nested, for example the class Arri val is a sub-class of Event . A method is a function whose
definition depends on the class of the object. For example, the method execut e is defined for all objects
of the class Event , and is inherited by all subclasses such as Arri val . When the method execut e is
applied to the object arri val 23, the actions that implement the simulation of an arrival are executed (for
example, the counter of the number of requests in the system is incremented).

Global Variables and Classes

e current Ti neis the global simulated time; it can be modified only by the main program.

e event Schedul er is the list of events, in order of increasing time.

e An event is an object of the class Event . It has an attribute fi ri ngTi me which is the time
at which it is to be executed. An event can be executed (i.e. the Event class has a method
called execut e), as described later.

There are three Event subclasses: an event of the class Arri val represents the actions
that occur when a request arrives; Ser vi ce is when a request enters service; Depart ure
is when a request leaves the system. The event classes are described in detail later.

e The object buf f er is the FIFO queue of Requests. The queue length (in number of re-
quests) is buf fer. | engt h. The number of requests served so far is contained in the
global variable nbRequest s. The class Request is used to describe the requests arriving
at the server. At a given point in time, there is one object of the class Request for every re-
guest present in the system being modelled. An object of the class Request has an arrival
time attribute.

e Statistics Counters: queuelLengt hCtr is f(f q(s)ds where ¢(s) is the value of buf f er . | engt h
at time s and ¢ is the current time. At the end of the simulation, the mean queue length is
queuelLengt hCt r /T where T' is the simulation finish time.

The counter r esponseTi meCtr holds }"_, R,, where R,, is the response time for the
mth request and n is the value of nbRequest s at the current time. At the end of the
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simulation, the mean response time is r esponseTi mreCtr /N where N is the value of
nbRequest s.

Event Classes. For each of the three event classes, we describe now the actions taken when an
event of this class is “executed”.

e Arrival : Execute Event's Actions. Create a new object of class Request , with arrival time

equal to cur r ent Ti me. Queue it at the tail of buf f er .

Schedule Follow-Up Events. If buf f er was empty before the insertion, create a new event

of class Ser vi ce, withthe samefi ri ngTi ne as this event, and insertitinto event Schedul er.
Draw a random number A from the distribution F'(). Create a new event of class Arri val ,
withfi ri ngTi me equalto thiseventfiri ngTi me+A, and insertitinto event Schedul er.

e Servi ce: Schedule Follow-Up Events. Draw a random number A from the distribution
G(). Create a new event of class Departure, with firingTi me equal to this event’s
firingTi me+A, andinsertitinto event Schedul er.

e Depart ur e: Update Event Based Counters. Let ¢ be the request at the head of buf f er .
Increment r esponseTi meCt r by d — a, where d is this event's fi ri ngTi me and a is the
arrival time of the request c. Increment nbRequest s by 1.

Execute Event’s Actions. Remove the request ¢ from buf f er and delete it.

Schedule Follow-Up Events. If buf f er is not empty after the removal, create a new event
of class Servi ce, with fi ri ngTi ne equal to this event’'s fi ri ngTi ne, and insert it into
event Schedul er.

Main Program

e Bootstrapping. Create a new event of class Arri val with firingTi me equal to 0 and
insert it into event Schedul er.
e Execute Events. While the simulation stopping condition is not fulfilled, do the following.

— Increment Time Based Counters. Let e be the first event in event Schedul er.
Increment queuelLengt hCtr by q(tnew — toid) Where ¢ =buffer.|ength,
tnew=€. fi ri ngTi me and t,q =current Ti me.

— Execute e.

— SetcurrentTinetoe.firingTine

— Delete e

e Termination. Compute the final statistics:
meanQueuelengt h=queuelLengt hCt r /curr ent Ti nme
nmeanResponseTi me=r esponseTi neCt r /nbRequest s

Figure 6.2 illustrates the program.

QUESTION 6.2.1. Can consecutive events have the same firing tirhe ?
QUESTION 6.2.2. What are the generic actions that are executed when an everecuted 22

QUESTION 6.2.3. Is the model in Example 6.4 stationary®?

2Yes. In Example 6.4, Bepar t ur e event when the queue is not empty is followed yex vi ce event with
the same firing time.

31. Update Event Based Counters 2. Execute Event’s ActioBgBedule Follow-Up Events.

41t depends on the parameters. ketresp.b] be the mean of*() [resp.G()]. The utilization factor of the queue
isp= g If p < 1the system is stable and thus asymptotically stationasy, mbt (see Chapter 8).
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QUESTION 6.2.4. Is the mean queue length an event-based or a time-basestist&iThe mean
response time ?

6.2.2 S OCHASTIC RECURRENCE

This is another simulation method; it is usually much mofieieit than discrete event simulation,
but requires more work on the model.sfochastic recurrence is a recurrence of the form:

XO = Jj‘o
{ X1 = f(Xn, Zn) (6.1)

where X, is the state of the system at théh transition (X, is in some arbitrary state spagé),

xo IS a fixed, given state iX’, Z,, is some stochastic process that can be simulated (for egampl
a sequence of i.i.d. random variables, or a Markov chain,fais a deterministic mapping. The
simulated timel’, at which thenth transition occurs is assumed to be included in the staiabla

X

EXAMPLE 6.5:RANDOM WAYPOINT.

The random waypoint is a model for a mobile point, and can be used to simulate the mobility
pattern in Example 6.1. It is defined as follows. The state variable is X,, = (M,,,T,) where M,, is
the position of the mobile at the nth transition (the nth “waypoint”) and T,, is the time at which this
destination is reached. The point M,, is chosen at random, uniformly in a given convex area A.
The speed at which the mobile travels to the next waypoint is also chosen at random uniformly in
[Umim Umax]-

The random waypoint model can be cast as a stochastic recurrence by letting Z,, = (M,,4+1, Vat1),
where M,,.1,V,, 11 are independent i.i.d. sequences, such that M, is uniformly distributed in A
and V41 in [umin, Ymax). We have then the stochastic recurrence

HMn+1 - Mn”

Xn+1 = (Mn—l—laTn—l—l) = (Mn-i—laTn + %

)

See Figure 6.3 for an illustration.

Once a system is cast as a stochastic recurrence, it can ply simulated as a direct implemen-
tation of Eq.(6.1), for example in Matlab.

QUESTION 6.2.5. Is the random waypoint model asymptotically stationafy ?

STOCHASTIC RECURRENCE VERSUS DISCRETE EVENT SIMULATION It is always possi-
ble to express a stochastic simulation as a stochasticesmd, as illustrated by the next example.
Both representations may have very different memory and @fuirements; which representa-
tion is best depends on the problem at hand.

EXAMPLE 6.6:SIMPLE SERVER AS A STOCHASTIC RECURRENCE (Continuation of Example 6.4).
Consider implementing the simple server in Example 6.4 as a stochastic recurrence. To simplify,

SMean queue length: time based. Mean response time: evesd.bas
SForuv,, > 0 it is asymptotically stationary. Faf,;,, = 0 it is not: the model “freezes” (the number of waypoints
per time unit tends t0). See Chapter 7 for a justification).
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Figure 6.3:Simulation of the random waypoint model.

assume we are interested only in the mean queue length and not the mean response time. This
can be implemented as a stochastic recurrence as follows. Let X,, = (¢,, by, Gn, an, d,,) represent
the state of the simulator just after an arrival or a departure, ¢,, = the simulated time at which this
transition occurs, b, =buffer.| ength, ¢, = queueLengt hCt r (both just after the transition),
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a, = the time interval from this transition to the next arrival and d,,= the time interval from this
transition to the next departure.

Let Z,, be a couple of two random numbers, drawn independently of anything else, with distribution
uniformin (0, 1).

The initial state is
to=20, bp =0, go =0, CLO:F_I(U), dop = o0

where v is a sample of the uniform distribution on (0, 1). The reason for the formula aqg = F~*(u)
is explained in Section 6.6: a( is a sample of the distribution with CDF F().

The recurrence is defined by f((¢,b,q,a,d), (z1,292)) = (¢,b',¢',d’,d") with

if a < d // this transition is an arrival

A=a
t'=t+a
V=b+1
qd = q+bA
d =F(z)

if b==0thend = G (z)elsed =d— A
else // this transition is a departure

A=d
t'=t+d
V=b-1
q¢ =q+bA
d=a—-A

if ¥ > 0then d = G (21) else d = 00

6.3 COMPUTING THE ACCURACY OF STOCHASTIC SIMULA -
TIONS

A simulation program is expected to output some quantiti@sterest. For example, for a simula-
tion of the algorithmA it may be the average number of lost messages. The outputodlzestic
simulation is random: two different simulation runs proeutifferent outputs. Therefore, it is not
sufficient to give one simulation result; in addition, we dée give the accuracy of our results.

6.3.1 INDEPENDENT REPLICATIONS

A simple and very efficient method to obtain confidence irdksvs to useeplication. Perform
n independent replications of the simulation, each prodyeim outputr, ..., x,,. Be careful to
have truly random seedsfor the random number generators, for example by accessimguter
time (Section 6.5).
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6.3.2 COMPUTING CONFIDENCE INTERVALS

You have to choose whether you want a confidence intervahmntedian or for the mean. The
former is straightforward to compute, thus should be pretém general.

Methods for computing confidence intervals for median andmege summarized in Section 2.2.

EXAMPLE: APPLICATION TO EXAMPLE 6.2. Figure 6.4 shows the time to transfer all files as a
function of the number of customers. The simulation outputs do not appear to be normal, therefore
we test whether n is large, by looking at the qgplot of the the bootstrap replicates. We find that
it looks normal, so we can use the student statistic. By curiosity, we also compute the bootstrap
percentile estimate and find that both confidence intervals are very close, the bootstrap percentile
estimate being slightly smaller.

There are other methods of obtaining confidence intervalsthey involve specific assumptions
on the model and require some care; see for example [49].

6.3.3 NON-TERMINATING SIMULATIONS

Non-terminating simulations should be asymptoticallyistary (Section 6.1.2). When you sim-
ulate such a model, you should be careful tardmsient removal. This involves determining:

e when to start measuring the output (this is the time at whieltansider that the simulation
has converged to its stationary regime
e when to stop the simulation

Unfortunately, there is no simple, bullet proof method ttedmine these two times. In theory,
convergence to the stationary regime is governed by theealthe second eigenvalue modulus
of the transition matrix of the markov chain that represgots simulation. In all but very special
cases, it is impossible to estimate this value. A practicathmd for removing transients is to look
at the data produced by the simulation, and visually detegraitime after which the simulation
output does not seem to exhibit a clear trend behaviour. ¥ample, in Figure 6.1 (a), the mea-
surements could safely start at time= 1. This is the same stationarity test as with time series
(Chapter 5).

Determining when to stop a simulation is more tricky. Thewdettion should be large enough for
transients to be removable. After that, you need to estinvagther running the simulation for a
long time reduces the variance of the quantities that youres@&suring. In practice, this is hard to
predict a priori. A rule of thumb is to run the simulation loagough so that the output variable
looks gaussian across several replications, but not longer

6.4 MONTE CARLO SIMULATION

Monte Carlo simulation is a method for computing probabilities, expectations,imigeneral,
integrals when direct evaluations is impossible or too demgdt simply consists in estimating the
expectation as the mean of a number of independent replsati
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Figure 6.4: Time to serve n files in Joe’s computer shop (Example 6.2): (a) results of 30 independent
replications, versus number of customers (b) 95%confidence intervals for the mean obtained with the normal
approximation (left), with the bootstrap percentile estimate (middle); 95% confidence interval for the median
(right). (c) ggplot of simulation outputs, showing deviation from normality (d) qg-plots of the bootstrap
replicates, showing normality.

Formally, assume we are given a model for generating a dgteeseeX. The sequence may be

—

i.i.d. or not. Assume we want to compute= E <g0(X)>. Note that this covers the case where
we want to compute a probability: ¢f(z) = 1zc 4y for some set4, thens = P(X € A).

Monte-Carlo simulation consists in generatiRg.i.d. replicatesX”, » = 1,..., R. The Monte-
Carlo estimate off is

A
B=5D wX") (62)
r=1

A confidence interval fop can then be computed using the methods in Chapter 2 (Theag&gn 2
and Theorem 2.2.4). By adjustirgy the number of replications, we can control the accuracy of
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the method, i.e. the width of the confidence interval.

In particular, the theorem for confidence intervals of sasqaobabilities (Theorem 2.2.4) should
be used when the goal is to find an upper bound on a rare prapainitl the Monte Carlo estimate
returns0, as illustrated in the example below.

EXAMPLE 6.7:p-VALUE OF A TEST. Let X4,..., X,, be a sequence of i.i.d. random variables that
take values in the discrete set {1,2, ..., I}. Let ¢; = P(Xy = 7). Let N; = )" 1¢x, —;} (number of
observation that are equal to 7). Assume we want to compute

k
szP’(ZNiln& >a> (6.3)

nag;
im1 di

where a > 0 is given. This computation arises in the theory of goodness of fit tests, when we
want to test whether X; does indeed come from the model defined above (a is then equal to
Zle n; In ;‘q where n; is our data set). For large values of the sample size n we can approximate
3 by a 2 distribution (see Section 4.4), but for small values there is no analytic result.

We use Monte-Carlo simulation to compute p. We generate R i.i.d. replicates X7,..., X, of the
sequence (r = 1, ..., R). This can be done by using the inversion method described in this chapter.
For each replicate r, let

NY = 1xg—y (6.4)
k=1
The Monte Carlo estimate of p is
5= 1 1 6.5
P=75 Z {0k NyIn Yisa) (6.5)

r=1 v

Assuming that pR > 6, we compute a confidence interval by using the normal approximation in
Eq.(2.29). The sample variance is estimated by

p(1 —p)
R

(6.6)

o=

and a confidence interval at level 0.95 is p + 1.965. Assume we want a relative accuracy at least
equal to some fixed value ¢ (for example ¢ = 0.05). This is achieved if

1.966

— <€ (6.7)
p
which is equivalent to
R B2 (1) 69
€ \p

We can test for every value of R whether Eq.(6.8) is verified and stop the simulation when this
happens. Table 6.1 shows some results with n = 100 and « = 2.4; we see that p is equal to
0.19 with an accuracy of 5%; the number of Monte Carlo replicates is proportional to the relative
accuracy to the power —2.

If pR < 6 then we cannot apply the normal approximation. This occurs when the p-value to be
estimated is very small. In such cases, typically, we are not interested in an exact estimate of the
p-value, but we want to know whether it is smaller than some threshold « (for example o = 0.05).
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| R | p | margin]
30 | 0.2667| 0.1582
60 | 0.2500| 0.1096
120 | 0.2333| 0.0757
240 | 0.1917| 0.0498
480 | 0.1979| 0.0356
960 | 0.2010| 0.0254
1920| 0.1865| 0.0174
3840 0.1893| 0.0124
7680 0.1931| 0.0088

Table 6.1:Computation of p in Example 6.7 by Monte Carlo simulation. The parameters of the model are
I =4, ¢ =9/16,92 = g3 = 3/16, g4 = 1/16, n = 100 and a« = 2.4. The table shows the estimate p of p
with its 95% confidence margin versus the number of Monte-Carlo replicates R. With 7680 replicates the
relative accuracy (margin/p) is below 5%.

Eq.(2.26) and EqQ.(2.27) can be used in this case. For example, assume the same data as in
Table 6.1 except for a = 18.2. We do R = 10* monte carlo replicates and find pR = 0. We can

conclude, with confidence 95%, thatp < 1 — (0.025)% =3.7E — 4.

QUESTION 6.4.1. In the first case of Example 6.7 (Table 6.1), what is the ca@iafuof the test ?
In the second case *?

6.5 RANDOM NUMBER GENERATORS

The simulation of any random process uses a basic functioch(asr and in Matlab) that is
assumed to return independent uniform random variableBitrAry distributions can be derived
from there, as explained in Section 6.6.

In fact, r and is apseudo-random number generator. It produces a sequence of numbers that
appear to be random, but is in fact perfectly determinisiic] depends only on one initialization
value of its internal stated, called tlseed. There are several methods to implement pseudo
random number generators; they are all based on chaotiesegs, i.e. iterative processes where
a small difference in the seed produces very different dstpu

Simple random number generators are basdahear congruences of the typer,, = ax,_; mod

m. Here the internal state aftercalls tor and is the last output,,; the seed is,. Like for any
iterative algorithm, the sequence is periodic, but for appate choices of andm, the period
may be very large.

EXAMPLE 6.8:LINEAR CONGRUENCE A widespread generator (for example the default in ns2)
has a = 16’807 and m = 23! — 1. The sequence is z,, = -20dm where s is the seed. m is a
prime number, and the smallest exponent & such that «” = 1 mod m is m — 1. It follows that for
any value of the seed s, the period of z,, is exactly m — 1. Figure 6.5 shows that the sequence z,,
indeed looks random.

’In the first case we accept the null hypothesis, i.e. we belieat the probability of casgis ¢;. In the second
case, the-value is smaller thaf.95 so we reject the null hypothesis.
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The period of a random number generator should be much gniiadie the number of times it is
called in a simulation. The generator in Example 6.8 hasiagef ca.2 x 10°, which may be too
small for very large simulations. There are other genesatath much longer periods, for example
the “Mersenne Twister” [67] with a period @f?*3” — 1. They use other chaotic sequences and
combinations of them.

Perfect pseudo-random number generators do not existtamyrandom generators can be per-
fect. Such generators exist: for example, a quantum mechgenerator is based on the fact that
the state of a photon is believed to be truly random. For argétext on random number, see [59];
for software implementing good generators, see [60] anadWfer's home page. For a general
discussion of generators in the framework of simulatior,[d€]. Figure 6.6 illustrates a potential
problem when the random number generator does not have &tmgh period.

USING A RANDOM NUMBER GENERATOR IN PARALLEL STREAMS For some (obsolete)
generators as in Example 6.8, choosing small seed valuearailgd streams may introduce a
strong correlation (whereas we would like the streams tmtlependent).

EXAMPLE 6.9:PARALLEL STREAMS WITH INCORRECTSEEDS. Assume we need to generate two
parallel streams of random numbers. This is very frequent in discrete event simulations; we may
want to have one stream for the arrival process, and a second one for the service process. Assume
we use the linear congruential generator of Example 6.8, and generate two streams x,, and z/, with
seeds s = 1 and s’ = 2. Figure 6.7 shows the results: we see that the two streams are strongly
correlated. In contrast, taking s’ = the last value x y of the first stream does not have this problem.

More modern generators as mentioned above do not have this problem either.

SEEDING THE RANDOM NUMBER GENERATOR A safe way to make sure that replications are
reasonably independent is to use the internal state of therger at the end of the 1st replication as
seed for the second replication and so one. This way, if therg¢or has a long enough sequence,
the different replications have non overlapping sequences

In practice, though, we often want independent replicatimnbe run in parallel, so this mode of
operation is not possible. A common practice is to take as a¢eily random number, for example
derived from the computer clock or user input with the mouse.

6.6 HOw TO SAMPLE FROM A DISTRIBUTION

In this section we discuss methods to produce a sakifler a random variable that has a known
distribution. We assume that we have a random number gengitzt provides us with indepen-
dent samples of the uniform distribution ¢i 1). We focus on two methods of general applica-
bility: CDF inversion and rejection sampling.
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Figure 6.5:1000 successive numbers for the generator in Example 6.8. (a) QQplot against the uniform
distribution in (0, 1), showing a perfect match. (b) autocorrelation function, showing no significant correlation
at any lag (c) lag plots at various lags, showing independence.
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Figure 6.7:x,, versus z/, for two streams generated with the linear congruential in Example 6.8. (a) seed
values are 1 and 2 (b) seed values are (1, last value of first stream).
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6.6.1 CDF INVERSION

The method o€DF inversion, also callegercentile inversion method, applies to real or integer
valued random variable, when the CDF is easy to invert.

THEOREMG6.6.1. Let ' be the CDF of a random variabl& with values inR. Define thgpseudo-
inverse, F—! of I by

F~(p) = sup{z : F(x) < p}

Let U be a sample of a random variable with uniform distribution(én1); £F~(U) is a sample
of X.

Application to real random variable. In the case wher& has a positive density over some
interval I, thenF' is continuous and strictly increasing énand the pseudo-inverse is the inverse
of F', as in the next example. It is obtained by solving#dn the equatiorf'(z) = p, x € Id.

EXAMPLE 6.10:EXPONENTIAL RANDOM VARIABLE. The CDF of the exponential distribution with
parameter \ is F(z) = 1 — e~*®. The pseudo-inverse (which in this case is the plain inverse) is
obtained by solving the equation

1— e—)\x =p
where z is the unknown. The solution is x = —ln(lA"’). Thus a sample X of the exponential
distribution is obtained by letting X = —M, or, since U and 1 — U have the same distribution:
1
X = H(AU) (6.9)

where U is the output of the random number generator.

Application to integer random variable. AssumeN is a random variable with values M. Let
pr = P(N = k), then forn € N:

F(n) = Zpk

and forz € R;

{ if z < 0 then F(x) =0
else F(z) =P(N <z)=P(N < |z]) = F(|z])

We now computd’~*(p), for 0 < p < 1. Letn be the smallest integer such tpat. F(n). The set
{z : F(x) < p} is equal to(—oco, n) (Figure 6.8); the supremum of this setisthusF~!(p) = n.
In other words, the pseudo inverse is given by

F'p)=neFn—-1)<p<F(n) (6.10)
Thus we have shown:

COROLLARY 6.6.1. Let N be a random variable with values i§ and letp, = P(N = k), for
k € N. A sample ofV is obtained by settingV to the unique index such thatzz;é pr < U <
> r—o Pr, WhereU is the output of the random number generator.
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F) [ —
p [T
F(n-1) [ 7777 —
1 n=Fip)
F(X) < p X

Figure 6.8:Pseudo-Inverse of CDF F() of an integer-valued random variable

EXAMPLE 6.11:GEOMETRIC RANDOM VARIABLE. Here X takes integer values 0,1,2,.... The
geometric distribution with parameter ¢ satisfies P(X = k) = (1 — 0)*, thus for n € N:

F(n) = Zn:ﬂ(l —OF=1—(1—6)"H!
k=0

by application of Eq.(6.10):

Flp)=nen< 138:9) <n+1
hence
_ | In(1 —p)
aCH =

and, since U and 1 — U have the same distribution, a sample X of the geometric distribution is

QUESTION 6.6.1. Consider the function defined B N(p) = i f rand()<p 0 el se 1. What
does it compute ?

QUESTION 6.6.2. Compare Eq.(6.9) and Eq.(6.115.

8t generates a sample of the Bernoulli random variable #kats the valué with p and the valua with probability
1—p.

9They are similar, in fact we haw¥ = | X | if we let A = In(1 —6). This follows from the fact that if{ ~ exp(\),
then| X | is geometric with parametér= 1 — e~
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6.6.2 REJECTION SAMPLING

The method ofejection sampling is widely applicable. It can be used to generate samples of
random variables when the inversion method does not woikyelispplies to random vectors of
any dimension.

The method is based on the following result, which is of iretegent interest. It allows to sample
from a distribution given in conditional form.

THEOREM 6.6.2 (Rejection Sampling for a Conditional Distributiohpt X be a random variable
in some spacé& such that the distribution ok is the conditional distribution of{ given that
Y € A, where(X,Y) is a random variable ir§ x S” and A is a measurable subset 6f

A sample ofX is obtained by the following algorithm:

do

draw a sample of X, Y')
until Y € A
return(X)

The expected number of iterations of the algorithrﬁdéej).

EXAMPLE 6.12:DENSITY RESTRICTED TOARBITRARY SUBSET. Consider a random variable in
some space (R,R"™,Z...) that has a density fy(y). Let A be a set such that P(Y € A) > 0. We are
interested in the distribution of a random variable X whose density is that of Y, restricted to A:

Ix(y) = Kfy(y)liyea (6.12)

where K—1 = P(Y € A) > 0 is a normalizing constant. This distribution is the conditional distribu-
tion of Y, giventhat Y € A.

QUESTION 6.6.3. Show this1©

Thus a sampling method for the distribution with density in Eq.(6.12) is to draw samples of the
distribution with density fy until a sample is found that belongs to .A. The expected number of
iterations is 1/P(Y € A).

For example, consider the sampling of a random point X uniformly distributed on some bounded
area A C R% We can consider this density as the restriction of the uniform density on some
rectangle R = [Zmin, Tmax] X [Ymin, Ymax| that contains the area .A. Thus a sampling method is to
draw points uniformly in R, until we find one in A. The expected numbers of iterations is the ratio
of the area of R to that of A4; thus one should be careful to pick a rectangle that is close to A.
Figure 6.9 shows a sample of the uniform distribution over a non-convex area.

QUESTION 6.6.4. How can one generate a sample of the uniform distributiom &€ 1

Now we come to a very general result, for all distributioret thave a density.

1%For any (measurable) subgeof the spaceP(X € B) = K [ fy (y)1{yeaydy = KP(Y € Aand Y € B) =
P(Y € BlY € A).

The coordinates are independent and uniform: generatenisiepiendent samplég V' ~Unif(0, 1); the sample
is ((1 - U)xmin + UImaxa (1 - V)ymin + Vymax-
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Figure 6.9:1000 independent samples of the uniform distribution over A = the interior of the cross. Sam-

ples are obtained by generating uniform samples in the bounding rectangle and rejecting those samples
that do not fall in A.

THEOREM 6.6.3 (Rejection Sampling for Distribution with DensityJonsider two random vari-
ables XY with values in the same space, that both have densities nfesthat:

e we know a method to draw a sampleXof

e the density ot” is known up to a normalization constahit fy (y) = K f{*(y), wheref{ is
a known function

e there exist some > 0 such that

fp()
Fx(@) =€

A sample otV is obtained by the following algorithm:

do

draw independent samples &fandU, whereU ~Unif(0, ¢)

: $(X)
until U < fi(X)

return(X)

The expected number of iterations of the algorithniis

A frequent use of Theorem 6.6.3 is as follows.

ARBITRARY DISTRIBUTION WITH DENSITY Assume that we want a sample Bf which
takes values in the bounded interV@lb] and has a densityy, = K f{*(y). Assume thatf}(y)

(non normalized density) can easily be computed, but nohtmmalization constank” which is
unknown. Also assume that we know an upper bolthdn f;*.

We takeX uniformly distributed ovefa, b] and obtain the sampling method:

do
draw X ~Unif(a, b) andU ~Unif(0, M)
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until U < f3(X)
return (X)

Note that we daot need to know the multiplicative constalit For example, consider the distri-
bution with density

fY (y) = KSin2 <y) 1{—a§y§a} (613)

y2

K is hard to compute, but a boudd on f}} is easy to find {/ = 1) (Figure 6.10).

EXAMPLE 6.13:A STOCHASTIC GEOMETRY EXAMPLE. We want to sample the random vector
(X1, X») that takes values in the rectangle [0,1] x [0,1] and whose distribution has a density
proportional to | X; — X,|. We take fx = the uniform density over [0,1] x [0,1] and f{(x1,22) =

|#1 — z2|. An upper bound on the ratio }cigizz% is 1. The sampling algorithm is thus:

do

draw X1, Xy and U ~Unif(0, 1)
until U < |X1 —X2|
return(Xy, Xs)

Figure 6.10 shows an example. Note that there is no need to know the normalizing constant to
apply the sampling algorithm.

90

I Sy TR P Y E S | AP
0 0.1 0.2 03 04 05 06 0.7 08 09 1

(b)

Figure 6.10:(a) Empirical histogram (bin size = 10) of 2000 samples of the distribution with density fx (z)

sin? (z)

proportional to ~—5=1;_,<y<4} With a = 10. (b) 2000 independent samples of the distribution on the
rectangle with density fx, x,(z1,z2) proportional to |z, — x2].

6.6.3 AD-HOoCc METHODS

The methods of inversion and rejection sampling may be ingman some special cases. We
mention in detail the case of the normal distribution, whghmportant to optimize because of its
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frequent use.

SAMPLING A NORMAL RANDOM VARIABLE . The method of inversion cannot be directly
used, as the CDF is hard to compute. An alternative is bast#tteanethod o€hange of variables
as given in the next proposition, the proof of which is by direalculus.

PROPOSITIONG.6.1. Let (X, Y') be independent, standard normal random variables. Let

R— X7 V?
O = arg(X +jY)

R and© are independentR? has a Rayleigh distribution (i.e is positive with densiéjzﬁ) ando©
is uniformly distributed o0, 27].

The CDF of the Rayleigh distribution can easily be invertgg) = P(R <) =1 — ¢ ""/? and
F~Y(p) = v/—2In(1 — p). A sampling method for a couple of two independent standarchal
variables is thusBox-Muller method):

drawU ~Unif(0, 1) and®© ~Unif(0, 2)
R=+/—2In(U)

X = Rcos(0),Y = Rsin(0)

return (X,Y)

CORRELATED NORMAL RANDOM VECTORS. We wantto sampl€Xy, ..., X,,) as a normal
random vector with zero mean and covariance méatr{gee Section C.2). If the covariance matrix
is diagonal (i.e£2; ; = 0 for ¢ # j) then theX;s are independent and we can sample them one by
one (or better, two by two). We are interested here in the wé&see there is some correlation.

The method we show here is again based on a change of varitidee exists always a change
of basis inR™ such that, in the new basis, the random vector has a diagowatiance matrix. In
fact, there are many such bases (one of them is orthonormalambe obtained by diagonalisation
of 2, but is much more expensive than the method we discuss nertjnexpensive and stable
algorithm to obtain one such basis is called Choleski'sdiazation method. It finds a triangular
matrix L such that) = LL”. LetY be a standard normal vector (i.e. an i.i.d. sequence of
standard normal random variables). lét= LY. The covariance matrix oX is

E(XXT) =E(LY(LY)")) =ELYYL") = LE(YY"LT = LLT = Q

Thus a sample oK can be obtained by sampling first and computing.Y'. Figure 6.6.3 shows
an example.

There are many ways to optimize the generation of samplesd Gderences are [108] and [90]

6.7 IMPORTANCE SAMPLING

6.7.1 MOTIVATION

Sometimes we want to estimate by simulation the probahilita rare event, for example, a
failure probability or a bit error rate. In such cases, gtfiorward Monte Carlo simulation is not
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(a) X1, X, independent (b) X7, X5 dependent

Figure 6.11:1000 independent samples of the normal vector X, X, with 0 mean and covariance ; ; =
0?2 =1,020=02=1and Q2 = Qo1 =0 (left), Q12 = Q21 = 1/2 (right). The right sample is obtained by
the transformation X = LY with Yi.i.d. ~ No; and L = (1,0;1/2,/3/2).

efficient, as it requires a large number of runs to obtain ialtd estimate; for example, assume
the failure probability to be estimatedi8—. With R independent replications of a Monte Carlo
simulation, the expected number or runs which produce dihgdas N/1075, so we need 0’
runs to be able to observe 100 failures. In fact, we need @flérn0” runs in order to obtain a
95% confidence interval with a margin on the failure probabitifithe order ofl0%.

Assume we want to estimate a failure probabitifyoy doingR replications. A naive Monte Carlo
estimate i = % where N is the number of runs which produce a failure.1A- o confidence
interval for p has a length of of) times the standard deviation pf where Ny 1(n) = 1 — 5.
The relative accuracy of the estimatorrjs, wherec is the coefficient of variation of. Now

_ Vp(l—p)/R _ VI=p _ 1 . . .
c= " =T R T where the approximation is for very small Assume we want a

relative accuracy on our estimationypéqual tos. We should take\/%_p = 5, l.e.

7]2

E

For example, forx = 0.05 we haven = 1.96 and thus fors = 0.10 we should take? ~ %

R (6.14)

6.7.2 THE IMPORTANCE SAMPLING FRAMEWORK

Importance sampling is a method that can be used to reduce the number of requinsdmna
Monte Carlo simulation, when the events of interest (e.g f#ilures) are rare. The idea is to
modify the distribution of the random variable to be simethtin a way such that the impact of
the modification can be exactly compensated, and such trahd modified random variable, the
events of interest are not rare.

Formally, assume we simulate a random variabla R?, with PDF fx (). Our goal is to estimate
p = E(¢(X)), whereg is the metric of interest. Frequently(z) is the indicator function, equal
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to 1 if the valuex corresponds to a failure of the system, @mtherwise. We replace the original

10" I I I I I I I I I 10'5 I I I I I I I I I
-1 08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 6.12:First Panel: log of the PDF of X; in Example 6.14. Second panel: log of the PDF of the
twisted distribution (i.e. distribution of X;) when 6 = 4.2.

PDF fx () by another onef (), called the PDF of themportance sampling distribution, on the
same spacR?. We assume that

if fx(x) > 0then f¢(x) >0

i.e. the support of the importance sampling distributiontams that of the original one. Farin
the support off x (), define theveighting function

~ fx(@)

i) = F

(6.15)

We assume thab () can easily be evaluated. L&t be a random variable whose distribution is
the importance sampling distribution. We also assume tligeasy to draw a sample af.

It comes immediately that

E (o(X)w(X)) = E(6(X)) = p (6.16)
which is the fundamental equation of importance samplingestimate op is thus given by
L
Pest = ﬁ Z ¢(Xr)w(Xr) (617)

whereX, areR independent replicates &f.

Why would this be easier than the original problem ? Assuméave found a sampling distribu-
tion for which the events of interest are not rare. It follalvatw(z) is very small, buip(X) is
not. So the event$(X) = 1 are not rare, and can be reproduced many times in a shortaionul
The final resultp is small because we weight the outpm(é() by small numbers.

EXAMPLE 6.14:BIT ERRORRATE AND EXPONENTIAL TWISTING. The Bit Error Rate on a commu-
nication channel with impulsive interferers can be expressed as [68]:

p=P(Xo+X1+...+Xq>a) (6.18)
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Figure 6.13First panel: Required number of simulation runs to estimate the bit error rate in Example 6.14
with 10% of relative accuracy, using an importance sampling distribution with parameter 6 (on z-axis). All
simulations estimate give the same value estimated value of p = 0.645E — 05, but the required number of
simulation runs R is proportional to the variance. Second panel: all simulations estimate p by the formula

p=E (gb(f()w(f()); the panel shows E (d)(X)), i.e. the probability that there is a bit error when X is
drawn from the importance sampling distribution with parameter #. For 6 = 0 we have the true value

p = 0.645F — 05. The smallest number of runs, i.e. the smallest variance, is obtained when E (¢(X)) ~ 0.5.

where X ~ N, is thermal noise and Xj;, j = 1,...,d represents impulsive interferers. The
distribution of X; is discrete, with supportin {£z;;,k = 1,...,n} U {0} and:

P(Xj:ﬂ:l’j7k) = q
P(X;=0) = 1-—2ng

where n = 40, ¢ = 5% and the array {£z;;, k = 1,...,n} are given numerically by channel estima-
tion (Table 6.2 shows a few examples, for d = 9). The variables X;,j = 0, ...,d are independent.
For large values of d, we could approximate p by a gaussian approximation, but it can easily be
verified that for d of the order of 10 or less this does not hold [68].

A direct Monte Carlo estimation (without importance sampling) gives the following results (R is
the number of Monte Carlo runs required to reach 10% accuracy with confidence 95%, as of
Eq.(6.14)):
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(x] =L =2 =8 =4 =5 =6 j=7 =8 =9 |
104706 0.0547 0.0806 0.0944 04884 0.3324 04822 0.379D4D)
2 |0.8429 0.0683 0.2684 0.2608 0.0630 0.1022 0.1224 0.010@8R[0

Table 6.2:Sample Numerical values of z; ;. for Example 6.14; the complete list of values is available on
the web site of the book.

o a BER estimate R
0.1 3 (6.45+0.6)x10°% 6.2x 10"

Now we apply importance sampling in order to reduce the required number of simulation runs R.
We consider importance sampling distributions derived by exponential twisting, i.e. we define the
distribution of X, j =0, ...,d by:

{ X, has the same support as X;
P(X; = z) = n;(0)e” P(X; = z)

where 7;(6) is a normalizing constant. This gives

P(X; = —zjk) = n;(0)ge IF
IP’( =zjp) = n;(0)ge??"
( =0) = n;(0)(1 —2nq)
@)™ = q) (e‘el‘f’k + eef‘%k) +1—2ng
k=1

Similarly, the distribution of the gaussian noise X is obtained by multiplying the PDF of the stan-
dard normal distribution by e/* and normalizing:

)
fx,(@) = mo e 27 e
0 2o
02,2 1 (179“2)2
= ne e 202
2ro

202 g . . . . . .
Thus ny = e~"% and Xy is normally distributed with same variance as X, but with mean 26

instead of 0. Note that for 6 > 0, Xj is more likely to take large values than X;. The weighting
function is .
w(mo,...,xd) —GZJ 0% 7 (6.19)
szo Ny

We perform R Monte Carlo simulations with X in lieu of X;; the estimate of p is

R

1 T o
Pest = E z_; w <X0> RE Xd) 1{X6+...+X§>a} (6.20)

Note that # = 0 corresponds to direct Monte Carlo (without importance sampling). All simulations
give the same estimated value p ~ 0.645E — 05, but the required number of simulation runs
required to reach the same accuracy varies by more than 3 orders of magnitude.
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6.7.3 SFELECTING AN IMPORTANCE SAMPLING DISTRIBUTION

The previous example shows that importance sampling camatieally reduce the number of
Monte Carlo runs for estimating rare events, but also thistiitnportant to carefully choose the
importance sampling distribution, as a wrong choice my giwemprovement (or might even be
worse).

A first observation can be derived from the analysis of Figude: the best choice is when the
probability of the event of interest, under the importare@gling distribution, is close 0.5 (i.e.

E <¢(X’)> ~ 0.5). Note that, perhaps contrary to intuition, choosmégb()?)) ~ 1is a very
bad choice. In other words, we need to make the events oesttaot so rare, but not so certain
either. This can be explained as follows. If we tak¢ (X)) ~ 1, the simulator has a hard
time producing samples where the event of interest aoésccur, which is as bad as the initial
problem.

A second observation is that we can evaluate the efficien@namportance sampling estimator
of p by its variance

o =var ((X)w(X)) = E (6(XPw(X)?) - p?
Assume that we want B— « confidence interval of relative accuragy By a similar reasoning as

in Eq.(6.14), the required number of Monte Carlo estimages i

2

LN
R:UBQPQ

(6.21)

Thus, it is proportional ta@. In the formula,; is defined byN, 1(n) = 1 — §; for example, with
a = 0.05, 3 = 0.1, we needR ~ 4000 /p°.

Therefore, the problem is to find a sampling distribution edhminimizeso, or, equivalently,
E (gb(f()?w(f()?). The theoretical solution can be obtained by calculus ofatian; it can be
shown that the optimal sampling distributigia (z) is proportional toj¢(z)| fx(x). In practice,
however, it is impossible to compute, since we assume in tbepliace that it is hard to compute
().

In Algorithm 4 we give a heuristic method, which combinessthéwo observations. Assume
we have at our disposal a family of candidate importance 8agdistributions, indexed by a
parametef § € ©. The function varEs) estimates, by Monte Carlo, whether a givesatisfies
E (gb(f()) ~ 0.5; if S0, it returns an estimate M(gb(f()?w(f()?), else it returnsc. Note that the
number of Monte Carlo runs required by vargss small, since we are interested only in returning

results in the cases whdﬁb(qS(X)) ~ 0.5, i.e. we are not in the case of rare events.
The first part of the algorithm (line 8) consists in selectmge value off which minimizes

varEstd). This can be done by random exploration of the @ebr by any heuristic optimiza-
tion method (such as Matlabfsr nsear ch).

2For simplicity, we do not show the dependencyin expressions such £(¢(X)), which could be more

accurately described é?s( H(X) ’ 9) .
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Algorithm 4 Determination of a good Importance Sampling distribution. We want to estimate p =
E (¢(X)), where X a random variable with values in R? and ¢(x) € [0;1]; X is drawn from the importance
sampling distribution with parameter 6; w() is the weighting function (Eq.(6.15)).

1: function MAIN

2: n = 1.96; § = 0.1; pCountMin= 10; > (3 is the relative accuracy of the final result
3: GLOBAL Ry = 22—2; > Typical number of iterations
4: > Ry chosen by Eq.(6.14) with= 0.5
5: Roax = 1FE +09; > Maximum number of iterations
6: c= 5—2;

n
7:
8: Find 6, € © which minimizes vares$t);
9:

10: pCountG= 0; pCount= 0; my = 0;
11: for r=1: R,. doO

12: draw a sample of X using parametef;;

13: pCountG=pCountC+¢(x);

14: pCountpCount+-¢(z)w(z);

15: my = my + ((x)w(x));

16: if » > Ry and pCountMin< pCount< r— pCountMinthen
_ _ pCount

17: p="—

18: v="2—p%

19: if v < cp®r then break

20: end if

21: end if

22: end for

23: return p, r

24: end function

25:

26: function VAREST(A) > Test if E <¢(X’)) ~ 0.5 and if so estimat& <¢(X’)2w(f()2)
27: CONSTﬁmm = 03, ﬁmax = 07,

28: GLOBAL Ry;

29: p=0;my=0;

30: forr=1:Ry,do

3L draw a sample of X using parametef:;
32: p=p+o();

33: my = my + (p(z)w(x))*;
34: end for

3/ p=2L;

36: My = %;

3r: If ﬁmin S ZA) S ﬁmax then

38: return ms;

39 else

40: return oo;

41: end if

42: end function
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The second part (lines 10 to 23) uses the Bestd importance sampling as explained earlier. The
algorithms performs as many Monte Carlo samples as reqtareltained a given accuracy level,
using Eq.(6.21) (line 19).

EXAMPLE 6.15:BIT ERRORRATE, RE-VISITED. We can apply Algorithm 4 directly. With the same
notation as in Example 6.14, an estimate of v, the variance of the importance sampling estimator,
is

R
~ 1 T T 2 2
Vest = E Z_:l w <X07 e Xd> 1{X6'+...+X;'>a} — Dest (622)

We computed ., for different values of 6; Figure 6.13 shows the corresponding values of the
required number of simulation runs R (to reach 10% accuracy with confidence 95%), as given by
Eq.(6.21)).

Alternatively, one could use the following optimization. We can avoid the simulation of a normal
random variable by noticing that Eq.(6.18) can be replaced by

p = ]I”(X0+X1+...+Xd>a)
= IP’(X0>a—(X1+...—|—Xd))
= E(P(X(] >a—(X1—|—...+Xd) |X1,...,Xd))

_ E<1_N0’1 <a—(X1—|—...+Xd)>> S E(6(X) 4+ + Xy))

ag

where, as usual, Ny () is the cdf of the standard normal distribution and ¢(z) = 1 — Ny 1(z). So
the problem becomes to compute E (¢ (X7 + ... + Xy)).

We applied Algorithm 4 with the same numerical values as in Example 6.14 and with exponential
twisting. Note the difference with Example 6.14: we modify the distributions of X;...X, but not of
the normal variable X,. The best # is now for E (qS(X)) ~ 0.55 (instead of 0.5) and the number of
simulation runs required to achieve the same level of accuracy is slightly reduced.

In the above example we restricted the choice of the impoetaampling distribution to an ex-
ponential twist, with the same paramefefior all random variables(; ... X,;. There are of course

many possible variants; for example, one might use a diftéréor each.X;, or one can use differ-

ent methods of twisting the distribution (for example reds@); note however that the complexity
of the choice of an importance sampling distribution shawdd outweigh its final benefits, so in
general, we should aim at simple solutions. The interestadar will find a general discussion
and overview of other methods in [98].

6.8 PROOFS

THEOREM 6.6.1

The pseudo-inverse has the property that [55, Thm 3.1.2]

F(z)>p& Fl(p) <z
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LetY = F~'(U). ThusP(Y < y) = P(F(y) < U) = F(y) and the CDF ot is F().

THEOREM 6.6.2

Let NV be the (random) number of iterations of the algorithm, ananv Yk) be the sample drawn at tl¢h iteration.
(These samples are independent, but in gené’r,alandYk arenotindependent). Lef = P(Y ¢ A). We assume
6 > 0 otherwise the conditional distribution &f is not defined. The output of the algorithmis= X .

For some arbitrary measuratikin S, we computé®(X y € B):

JP(XNeB) - Z]P(f(keli’and]\f:k)
k>1

_ ZP(Xk cBand Vi g A, ... Vi1 & A Y, eA)

k>1
_ kglp (Xk €Band V; € A) P (Yl ¢ A) P (y,H ¢ A)
- Z]P’ (Xk € B|f/k € A) (1 — 6)+!

k>1
— Z]P’ (Xl € B|1~/1 € A) 6(1 — g)k—1

k>1
= P (Xl S B|1~/1 S A) 29(1 _ 9)1671

k>1

= P(f(l € BV, EA)

The second equality is by definition &f. The third is by the independence %y, Y3.) and (X, Y ) for k # k.
The last equality is becauge> 0. This shows that the distribution of is as required.

N — 1is geometric with parametérthus the expectation a¥ is 1/6.

THEOREM 6.6.3

Apply Theorem 6.6.2 withX = X andY = (X, U). All we need to show is that the conditional densityX6fgiven
thatU < fY(X) is fy.

To this end, p|ck some arbitrary functign We have

whereK; is some constant. This is true for dlthus, necessarilys; /K = 1 (take¢ = 1).
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6.9 REVIEW

QUESTION 6.9.1. How do you generate a sample of a real random variable with PIDFand
CDFF()? 13

QUESTION 6.9.2. Why do we care about stationarity?

QUESTION 6.9.3. What is rejection sampling ¥

QUESTION 6.9.4. How do you generate a sample of a discrete random variabfe ?
QUESTION 6.9.5. What is importance sampling?

QUESTION 6.9.6. Why do we need to run independent replications of a simul&tiblow are they
obtained '8

QUESTION 6.9.7. Consider the sampling method: Dra®@ N( p) until it returns 0. The value of
the sampléeV is the number of iterations. Which distribution is that a gd&from ? Is this a good
method 71°

QUESTION 6.9.8. If we do a direct Monte Carlo simulation (i.e without impantae sampling) of
a rare event, the theorem for confidence intervals of suquedmbilities (Theorem 2.2.4) gives a
confidence interval. So why do we need importance samplffig ?

13¥In mayn cases matlab does it. If not,/i() is easily invertible, use CDF inversion. Else fif) has a bounded
support, use rejection sampling.

14Non terminating simulations depend on the initial condisipand on the length of the simulation. If the simulator
has a stationary regime, we can eliminate the impact of tnelsition length (in simulated time) and of the initial
conditions.

5Drawing independent samples of an object with some proibadistributionp(.), some conditior” is met. The
result is a sample of the conditional probability|C').

6ith the method of CDF inversion. Leji, be the probability of outcome, k = 1...n andF, = p; + ... + py
(with Fy = 0). DrawU ~ Unif(0, 1); if F, <U < Fj then letN = k.

1A method for computing probabilities of rare events. It dstssin changing the initial probability distribution in
order to make rare events less rare (but not certain).

18To obtain confidence intervals. By running multiple instesof the simulation program; if done sequentially,
the seed of the random generator can be carried over fromuon® tthe next. If replications are done in parallel on
several machines, the seeds should be chosen indepentuletrilyy random sources.

19The distribution of N is geometric withd = 1 — p, so this method does produce a sample from a geometric
distribution. However it draws in avera@erandom numbers from the generator, and the random numberajen
is usually considered an expensive computation comparadléating point operation. # is small, the procedure in
Example 6.11 (by CDF inversion) is much more efficient.

20Assume we simulate a rare event, without importance samypdind find0 success out o Monte Carlo repli-
cates. Theorem 2.2.4 gives a confidence interval for prdibabf success equal tf), %] at confidence level.95;
for example, ifR = 10%, we can say thai < 4-10~%. Importance sampling will give more, it will provide an estite
of, for examples.33 - 1075 4 0.4 - 1075, In many cases (for example when computingalues of tests), all we care
about is whethep is smaller than some threshold; then we may not need impeetsampling. Importance sampling
is useful if we need the magnitude of the rare event.
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CHAPTER 7

PaLM CALCULUS, OR THE IMPORTANCE OF
THE VIEWPOINT

When computing or measuring a performance
metric (as defined in Chapter 1), one should sp~~
ify which observer’'srviewpoint is taken. For ex-
ample, in a simulation study of an informatic
server, one may be interested in the metric “wc
case backlog”, defined as the 95-percentile of
number of pending requests.

One way is to measure the queue of pending
guests at request arrival epochs over a large n
ber of arriving requests, and compute the ¢
percentile of the resulting empirical distributio
An alternative is to measure the queue of pend
requests at periodic intervals (say every seco
over a long period of time and compute the ¢
percentile of the resulting empirical distributio
The former method reflects the viewpoint of :
arriving request, the latter of an observer at
arbitrary point in time. The former method eve
uates the metric using a clock that ticks at evt
request arrival, whereas the latter uses a stanu. «
clock. Both methods will usually provide differ-
ent values of the metric. Therefore, a metric def-
inition should specify which clock, or viewpoint

is used, and the choice should be relevant for the
specific issues being addressed.

In Section 7.1, we give an intuitive definition of event clecnd of event versus time averages;
we show that subtle, but possibly large, sampling biasesraaeoidable. We also show how to use
the large time heuristic to derive Palm calculus formulas,formulas that relate metrics obtained

This fish
is black

This fish | 2
is white

195
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with different clocks.

In the rest of the chapter we formally present Palm calcules, a formal treatment of these
intuitive definitions and formulas. This is a branch of prioitisy which is not well known, though
it is quite important for any measurement or simulation gtahd can be presented quite simply.
In essence, the Palm probability of an event is the conditiprobability, given that some specific
point process has a point. Making sense of this is simplesardte time, but very complex in
continuous time, as is often the case in the theory of stéichaocesses. We do not dwell on
formal mathematical constructions, but we do give formwaad exact conditions under which
they apply.

We introduce Feller’'s paradox, an apparent contradictiomaiting times that can explained by a
difference in viewpoints. We give useful formulas such a&sRate Conservation Law and some
of its many consequences such as Little’s, Campbell’s shisenNeveu’s exchange and Palm’s
inversion formulas. We discuss simulations defined as asichrecurrences, show how this can
explain when simulations freeze and how to avoid transiemiovals at all (perfect simulation).
Last, we give practical formulas for computing Palm probaés with Markov models observed
along a subchain, and use these to derive the PASTA property.

Contents

7.1 Anlinformal Introduction . . . . . ... ... L 197
7.1.1 Eventversus TIMe AVerages . . . . . . v v v v v v v i it e e 197
7.1.2 Thelarge TimeHeuristic . ... .. .. ... .. ... ....... 198
7.1.3 TwoEventClocks . . .. .. .. . .. .. ... . 200
7.1.4 Arbitrary SamplingMethods . . . . ... ... ... ... ..., 201

7.2 PalmCalculus . . . . . . . . 04
7.2.1 Hypotheses . . . . . . . . . . . .. 204
7.2.2 Definitions . . . . ... 204
7.2.3 Interpretation as Time and Event Averages . . . . .. . ... ... 206
7.2.4 The Inversion and Intensity Formulas . . . . .. .. ... ...... .. 207

7.3 Other Useful Palm CalculusResults . . . . . .. ... ... ... ....... 209
7.3.1 Residual Time and Feller's Paradox . . ... ... ..... ... .209
7.3.2 The Rate Conservation Law and Little’s Formula . . . ...... . .. . 212
7.3.3 TwoEventClocks . . ... . ... . . .. ... .. 218

7.4 Simulation Defined as Stochastic Recurrence . . . . . . .. ... ... ... 219
7.4.1 Stochastic Recurrence, Modulated Process . . . .. .. ......219
7.4.2 Freezing Simulations . . . . ... ... ... .. 220
7.4.3 Perfect Simulation of Stochastic Recurrence . . . . ... ... ... 222

7.5 Application to Markov Chain Models and the PASTA Property . . . . . . .. 226
7.5.1 Embedded Sub-Chain . ... ... ... ... ... . .... 6 22
7.5.2 PASTA . . . e e 228

7.6 Appendix: Quick Review of Markov Chains . . . ... ... ........ 230

7.6.1 Markov ChaininDiscrete Time . . . . . . . . . . . ... .. 230



7.1. AN INFORMAL INTRODUCTION 197

7.6.2 Markov Chainin Continuous Time . . . . . . .. ... ........ 231
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7.1 AN INFORMAL INTRODUCTION

In this section we give an intuitive treatment of event verSme averages and explain the use of
event clocks. A formal treatment involves Palm calculus igrgiven in Section 7.2.

7.1.1 BVENT VERSUS TIME AVERAGES

Consider a discrete event simulation that runs for a longpdesf time, and letly, 73, ..., Ty be

a sequence dfelected events, for example, the request arrival times at an informatiawese
Assume that we associate to the stream of selected evemtskaticht ticks at time%,, 17,..., Ty
(theevent clock). An event average statistic is any performance metric that his computed based
on sampling the simulation state at timiEgs i.e. using the event clock. For example, the average
gueue length at the information server upon request acamabe defined as

0 1 = —
n=0

(where@(t~) is the queue size just before tinjeand is an event average statistic.

In contrast, dime average statistic is obtained using the standard clock, assumeawve infinite
accuracy (i.e. the standard clock ticks evéryime units, where is “infinitely small”). For
example, the average queue length, defined by

_ 1 Tn
Q:=—7
Ty — 1o Jg,

Q(s)ds

is a time average statistic.
In signal processing parlance, event averages corresp@uhptive sampling.

EXAMPLE 7.1:GATEKEEPER A multitasking system receives jobs. Any arriving job is first pro-
cessed by a “gatekeeper task”, which allocates the job to an available “application processor”.
Due to power saving, the gatekeeper is available only at times, 0,90, 100, 190, 200, ... (in millisec-
onds). For example a job that arrives at time 20ms is processed by the gatekeeper at time 90ms.

A job that is processed by the gatekeeper at times 0,100, 200... is allocated to an application
processor that has an execution time of 1000ms. In contrast, a job that is processed by the
gatekeeper at times 90, 190, ... has an execution time of 5000ms (Figure 7.1). We assume there
is neither queuing nor any additional delay. We are interested in the average job execution time,
excluding the time to wait until the gatekeeper wakes up to process the job.
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job arrival

0 90100 190200 290300
| M r > (ms)
5000 5000 5000
1000 1000 1000

Figure 7.1:Gatekeeper: jobs are dispatched to a processor with processing time equal to 5000 or 1000 ms

The system designer thinks that the average job execution time is

1000 + 5000

W = 3000

since there are two application processors and this is the average of their execution times.

A customer may have a different viewpoint. If she sends a job to the system at a random instant,
she will be allocated to an application processor depending on the time of arrival. She computes
her performance metric assuming that she picks a millisecond at random uniformly in an interval
[0, 7] where T is large, and obtains

90 10
W. 100~ 5000 + 100 * 000 = 4600
The metric W, is an event average; it can be measured using the event clock that ticks whenever
the gatekeeper wakes up. The metric W, is a time average; it can be measured using a clock that
ticks every millisecond.

This example shows that event averages may be very diffeenttime averages, in other words,
sampling biasmay be a real issue. Therefore it is necessary, when definmetac, to specify
which clock (i.e which viewpoint) is adopted. Further, ohewsld discuss which viewpoint makes
sense for the performance of interest. In the previous el@ripe time average viewpoint is a
better metric as it directly reflects customer experience.

7.1.2 THE LARGE TIME HEURISTIC

Palm calculus is a set of formulas for relating event and twerages. They form the topic of the
other sections in this chapter. However, it may be usefuhtmkthat most of these formulas can
be derived heuristically using tharge time heuristic, which can be described as follows.

1. formulate each performance metric as a long run ratio,caswould do if you would be
evaluating the metric in a discrete event simulation;

2. take the formula for the time average viewpoint and bréalown into pieces, where each
piece corresponds to a time interval between two selectectgy

3. compare the two formulations.
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We explain it on the following example.

EXAMPLE: GATEKEEPER CONTINUED. We can formalize Example 7.1 as follows. The two metrics
are W, (event average, system designer’s viewpoint) and W, (time average, customer’s viewpoint).

1. In a simulation, we would estimate W, and W, as follows. Let T;, 11, ..., TN be the selected
event times (times at which gatekeeper wakes up) and S,, =7, — T,_1 forn =1... N. Let
X, be the execution time for a job that is processed by the gatekeeper at time T,

1 N
W, = NZ_:X" (7.1)

1 I
WC = m XNJr(t)dt (72)

where N7 (t) is the index of the next event clock tick after ¢, i.e. a job arriving at time ¢ is
processed by the gatekeeper at time T,, with n = Nt (¢).
2. We break the integral in Eq.(7.2) into pieces corresponding to the intervals [7},, T}, +1):

1 In
L= Xyt pdt = Xn
We = 70—% Z/ Nt TN Ty 4 Z dat

v, Z S X (7.3)

3. We now compare Eqgs.(7.1) and (7.3). Define the sample average sleep time S := % ZnNzl S,
the sample average execution time X := % Zflv:l X,, and the sample cross-covariance

:—ZS—S(X - X) ZSX
n=1

We can re-write Egs.(7.1) and (7.3) as:

W X
1 & 1 . e,
Wc - —— an = = C _X = X —
~3 ;S S( + S5X) +3
In other words, we have shown that R
We=Ws+ = 7.4
+ 3 (7.4)

Numerically, we find -(SZ = 1600 and Eq.(7.4) is verified.

Eq.(7.4) is our first example of Palm calculus formula; iatek the time averad®’ to the event
averagd/l.. Note that it holds quite generally, not just for the systenExample 7.1. We do not
need any specific assumptions on the distribution of sleggxecution times, nor do we assume
any form of independence. The only required assumptionasttie metric3¥, and W, can be
measured using Egs.(7.1) and (7.2). In the next section,iweeagformal framework where such
assumptions hold.
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timeout

to tl '-‘ to
\/\ v\t "
0,a 0,a a 0,a

Figure 7.2:The Stop and Go protocol

Eq.(7.4) shows that, for this example, the difference inwieints is attributed to the cross-
covariance between sleep time and execution time. A peditesp. negative] cross-covariance
implies that the time average is larger [resp smaller] timenevent average. In Example 7.1, the
cross-covariance is positive and we do find a larger timeaaerlf sleep time and execution times
are non-correlated, the two viewpoints happen to produesdime metric.

7.1.3 Two EVENT CLOCKS

There exist formulas not only for relating time and eventrages, but also for relating different
event averages (see Theorem 7.3.5). We show in this seatiwrsiach formulas can be derived,
using the following variant of the large time heuristic:

1. formulate each performance metric as a long run ratio,oaswould do if you would be
evaluating the metric in a discrete event simulation;

2. take the formula for one event average viewpoint and bitesidovn into pieces, where each
piece corresponds the time interval between two selectextgwf the second viewpoint;

3. compare the two formulations.

EXAMPLE 7.2:STOP AND GO PROTOCOL A source sends packets to a destination. Error recovery
is done by the stop and go protocol, as follows. When a packet is sent, a timer, with fixed value
ty, is set. If the packet is acknowledged before ¢, transmission is successful. Otherwise, the
packet is re-transmitted. The packet plus acknowledgement transmission and processing have a
constant duration equal to ¢y < t;. The proportion of successful transmissions (fresh or not) is
1 — a. We assume that the source is greedy, i.e., always has a packet ready for transmission.
Can we compute the throughput  of this protocol without making any further assumptions ? The
answer is yes, using the large time heuristic.

To this end, we compare the average transmission times sampled with the two different event
clocks. The former (clock “a”) ticks at every transmission or re-transmission attempt; the latter
(clock “0”) ticks at fresh arrivals. Accordingly, let 7, be the average time between transmission or

retransmission attempts, and ry be the average time between fresh arrivals (Figure 7.2).

1. Consider a simulation such that there are N + 1 fresh arrivals, at times Ty, 15, ..., Ty, with
N large. T, are the ticks of clock 0. The estimates of 7, and y are

Ty — Tp
Na
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Tn —T,
m o= (7.5)

where N, is the number of transmission or retransmission attempts generated by packets 1
to N. The estimate of the throughput 6 is

N 1

9: =
In—To 7o

Also, by definition of the error ratio o N,(1 — ) = N thus
To = (1—a)m

2. We focus on 7, and break it down into pieces corresponding to the ticks of clock 0:

N
Tv—T, 1
= = — X
Ta N, N, n; n

where X, is the total transmission and retransmission time for the nth packet, i.e. the time
interval between two ticks of clock 0. Let A,, be the number of unsuccessful transmission
attempts for the nth packet (possibly 0). It comes:

X, = A,t1+tg

N
1 1
Ta = _Na (tl nE:1An —l—toN) = _Na (tl(Na — N) —i—toN))

= at1 + (1 —a)p (7.6)
3. Compare Egs.(7.5) and (7.6) and obtain 7o = -1 + to; the throughput is thus:

1
6 = —— (7.7)
T—at1+ 1o

In this example, as in general with Palm calculus formulas, alidity of a formula such as
Eq.(7.7) does not depend on any distributional or indepecelassumption. We did not make any
particular assumption about the arrival and failure preessthey may be correlated, non Poisson,
etc.

7.1.4 ARBITRARY SAMPLING METHODS

To conclude this section we describe how different viewfsotcur in various situations, with
clocks that may not be related to time. Here too, the largaetiheuristic provides useful rela-
tionships.

EXAMPLE 7.3:FLOwW VERSUSPACKET CLOCK [96]. Packets arriving at a router are classified in
“flows”. We would like to plot the empirical distribution of flow sizes, counted in packets. We
measure all traffic at the router for some extended period of time. Our metric of interest is the
probability distribution of flow sizes. We can take a flow “clock”, or viewpoint, i.e. ask: pick an
arbitrary flow, what is its size ? Or we could take a packet viewpoint and ask: take an arbitrary
packet, what is its size ? We have thus two possible metrics (Figure 7.3):
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(b) Histogram, flow viewpoint (c) Histogram, packet viewpoint

Figure 7.3:Distribution of flow sizes, viewed by an arbitrary flow and an arbitrary packet, measured by an
internet service provider.

Per flow fr(s) = 1/Nx number of flows with length s, where N is the number of flows in the
dataset;

Per packet fp(s) = 1/Px number of packets that belong to a flow of length s, where P is the
number of packets in the dataset;

The large time heuristic helps us find a relation between the two metrics.

1. For s spanning the set of observed flow sizes:

N
fr(s) = Z (Sues) (7.8)

2=

fr(s) = L{Spp=s} (7.9)

ol =
M“U I

1

p

where S,, be the size in bytes of flow n, for n = 1,... N, and F(p) is the index of the flow
that packet number p belongs to.
2. We can break the sum in Eq.(7.9) into pieces that correspond to ticks of the flow clock:

N P
fr(s) = —Z Z l{sn_s}— =SS ey Lsams)

n= lpF n:lp:l

N N
1 1 S
- )SETERND SRR p s = 2 Lis—  (710)
n=1 p=1 n=1 n=1
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3. Compare Egs.(7.8) and (7.10) and obtain that for all flow size s:
fr(s) =nsfr(s) (7.11)

where 7 is a normalizing constant (n = N/P).

Eq.(7.11) relates the two ways of computing the distributbflow sizes. Note that they differ by
one exponent, so it could be that the flow size is heavy taileenvsampled with a packet clock,
but light tailed when sampled with a flow clock.

EXAMPLE 7.4:KILOMETER VERSUSTIME CLOCK: CYCLIST'S PARADOX. A cyclist rides swiss moun-
tains; his speed is 10 km/h uphill and 50 km/h downhill. A journey is made of 50% uphill slopes and
50% downhill slopes. At the end of the journey, the cyclist is disappointed to read on his speedome-
ter an average speed of only 16.7 km/h, as he was expecting an average of % = 30 km/h.
Here, we have two ways of measuring the average speed: with the standard clock (speedometer),
or with the kilometer clock (cyclist’s intuition). Let us apply the large time heuristic.

1. Pick a unit of length (perhaps smaller than the kilometer) such that the cyclist's speed is
constant on a piece of trip of length 1, and let v; be the speed at the [th piece of the trip,
l=1,...,L, where L is the trip length. The average speed measured with the standard clock,
S; and with the kilometer clock, S;. are:

S, = L/T
1 L

where T’ is the trip duration.
2. Break L into pieces corresponding to the km clock:

Lo
T = —
1=1
L
S = —/—— (7.13)
it
3. Thus S; (Eq.(7.13)) is the harmonic mean of v; whereas S;, (Eq.(7.12)) is the arithmetic
mean (Section 2.4.3). The harmonic mean is the inverse of the mean of the inverses. If
the speed is not constant throughout the whole trip, the harmonic mean is smaller than the
arithmetic mean [106], thus the cyclist’s intuition will always have a positive bias (leading to
frustration).

In this case the large time heuristic does not give a closed form relationship between the two
averages; however, a closed form relationship can be obtained for the two distributions of speeds.
Using the same method as in Example 7.3, one obtains

filo) =7 fi(o) (7.14)

where f;(v) [resp. fi(v)] is the PDF of the speed, sampled with the standard clock [resp. km
clock] and 7 is a normalizing constant; f; puts more mass on the small values of the speed v, this
is another explanation to the cyclist’'s paradox.



204 CHAPTER 7. PALM CALCULUS, OR THE IMPORTANCE OF THE VIEWPOINT

7.2 PaLm CALCULUS

Palm calculus is a branch of probability that applies toictary point processes. We give an
intuitive, but rigorous, treatment. A complete mathensadticcatment can be found for example in
[4, 88] or in [95] in the context of continuous time Markov ama

7.2.1 HYPOTHESES

STATIONARITY  We assume that we are observing the output of a simulatioichwe interpret

as a sample of a stochastic procéss). Timet is either discrete or continuous.This process is
stationary if for any anyn, any sequence of times < t, < ... < t, and any time shift; the
joint distribution of (S (1 + u), S(ts + u), ..., S(t, + u)) is independent ofi.. In other words, the
process does not change statistically as it gets older.dctipe, stationarity occurs if the system
has a stationary regime and we let the simulation run longgn¢Chapter 6).

We also assume that, at every timeve are able to make an observati®() from the simulation
output. The value oK (¢) may be in any space. We assume that the prakésgis jointly station-

ary with the simulation state process$t) (i.e. (X (¢), S(t)) is a stationary process). Note that even
if the simulation is stationary, one might easily define oghat are not jointly stationary (such
as: X (t) = the most recent request arrival time at an informationes@nA sufficient condition for
X (t) to be jointly stationary witht () is

1. at every time, X (¢) can be computed from the present, the past and/or the futuheo
simulation states(t), and
2. X (t) is invariant under of change of the origin of times.

For example, if an information server can be assumed to ierstay, thenX () = time elapsed
since the last request arrival time aNdt) = the queue size at timesatisfy the conditions.

7.2.2 DEFINITIONS

POINT PROCESS We introduce now the definition cftationary point process. Intuitively,
this is the sequence of times at which the simulation doeseition in some specified set.

Formally, a stationary point process in our setting is assed with a subseF, of the set of all
possible state transitions of the simulation. It is madédldfrae instantst at which the simulation
does a transition itFy, i.e. such thatS(t~), S(t)) € Fo.

In practice, we do not need to specify explicitly. In contrast, we have a simulation in steadyestat
and we consider times at which something of a certain kingheag; the only important criterion is

to make sure that the firing of a point can be entirely deteechiny observing only the simulation.

For example, we can consider as point process the requirst imes at an information server.

Technically, we also need to assume that the simulationegsots such that the point process is
simple, i.e. with probability 1 two instants of the point pess cannot be equal; (this is true in
practice if the simulation cannot have several transitairthe same time), and non explosive, i.e.
the expected number of time instants over any finite inteésviihite. This implies that the instants
of the point process can be enumerated and can be descriedgseasing sequence of (random)
timesT,,, wheren is integer, and’;,, < 7T,,,1.
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In continuous time, to avoid ambiguities, we assume thadraltesses are right continuous, so that
if there is a transition at timg S(t) is the state of the simulation just after the transition.

The sequencé,, is (as a thought experiment) assumed to be infinite both ipthsent and the
past, i.e. the index spansZ. With the terminology of Section 7.17},),.cz is the sequence of
ticks of the event clock.

THE ARBITRARY POINT IN TIME Since the simulation is in stationary regime, we imagine
that, at time), the simulation has been running for some time. Becausedinémrocess is defined
in terms of transitions of the simulation sta$é¢), it is also stationary. It is convenient, and
customary, to denote the time instants of the point proégssich that

W <T o<T 1 <Ty<0<Ti<Ty < ... (7.15)

In other words,Tj is the last instant of the point process before titn@and7; the next instant
starting from time). This convention is the one used by mathematicians to giveanmg to “an
arbitrary point in time”: we regard = 0 as our random time instant, in some sense, we fix the
time origin arbitrarily.

This differs from the convention used in many simulationbevet = 0 is the beginning of the
simulation. Our convention, in this chapter, is that 0 is the beginning of the observation period
for a simulation that has a stationary regime and has rundoogigh to be in steady state.

INTENSITY Theintensity \ of the point process is defined as the expected number ofsyoént
time unit. We have assumed that there cannot be two pointeatame instant. In discrete or
continuous time, the intensityis defined as the unique number such that the numiger: + 7)

of points during any intervdt, t + 7| satisfies [4]:

E(N(t,t+ 1)) = A1 (7.16)
In discrete time is also simply equal to the probability that there is a potrdraarbitrary time:
A=P(Ty=0)=P(N(0)=1) =P(N(t) =1) (7.17)

where the latter is valid for any by stationarity.
One can think of\ as the (average) rate of the event clock.

PALM EXPECTATION AND PALM PROBABILITY LetY be aone time output of the simulation,
assumed to be integrable (for example because it is boundédiefine the expectatidti (V) as
the conditional expectation af given that a point occurs at tinie

ENY) =E(Y|3n € Z,T, = t) (7.18)

If Y = X(¢) whereX (¢) and the simulation are jointly stationaf/,( X (¢)) does not depend an
Fort =0, itis called the:

DEFINITION 7.2.1 (Palm expectation).
E(X(0)) = E(X(0)| a point of the process,, occurs at time)) (7.19)

By the labeling convention in Eq.(7.15), if there is a poifitte procesqd;, at0, it must beTy, i.e.
E°(X(0)) = E(X(0)|Ty = 0)
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Note that there is some ambiguity in the notation, as thegssi, is not explicitly mentioned (in
Section 7.3.3 we will need to remove this ambiguity).

The Palmprobabilityis defined similarly, namely
P°(X(0) € W) =P(X(0) € W| a point of the process, occurs at time)

for any measurable subsHt of the set of values o (¢). In particular, we can writé® (T, =
0) = 1.
The interpretation of the definition is easy in discrete tiiffi@as we do, we assume that the point process is “simple”,

i.e. there cannot be more than one point any instari this case, Eq.(7.18) has to be taken in the usual sense of
conditional probabilities:

_EWYN(@) _ EYN@) _EYN(@)
=1 X

E(Y)=E(Y|N(t)=1) = =
whereN (t) = 1 if there is a point at time, 0 otherwise.

In continuous time, “there is a point at tinfehas probabilityd and cannot be conditioned upon. However, it is possible
to give a meaning to such a conditional expectation, sinidahe way one can define the conditional probability
density function of a continuous random variable:

.. EYN(tt+7) . EYN(t+71))
B BN T (720

where the limit is in the Radon-Nykodim sense, defined a®vial For a given random variablé, consider the
measureq: defined for any measurable subgeof R by

w(B) = %E (Yz 1{Tn€B}> (7.21)

nez

where) is the intensity of the point proce%s. If B is negligible (i.e. its Lebesgue measure, or length) ihen, with
probability1 there is no event if? andu(B) = 0. By the Radon-Nykodim theorem [91], there exists some fongt

defined orR such that for any3: n(B) = [, g(t)dt. The Palm expectatidi’(Y) is defined ag/(t). In other words,
for a given random variabl¥, E!(Y) it is defined as the function dfthat satisfies, for anys:

E <YZ 1{Tn63}> = A/BEt(Y)dt (7.22)

ne”z

7.2.3 INTERPRETATION AS TIME AND EVENT AVERAGES

In this section we make the link with the intuitive treatmanection 7.1.

TIME AVERAGES. If X (¢) is jointly stationary with the simulation, it follows thate distribu-
tion of X (¢) is independent of; it is called thetime stationarydistribution of X .

Assume that, in addition¥ (¢) is ergodic, i.e that time averages tend to expectationsctwis for
example true on a discrete state space if any state can beecefrom any state)), for any bounded
function ¢, we can estimat&(¢(X (¢))) by (in discrete time):



7.2. PALM CALCULUS 207

whenT is large. An equivalent statement is that for any (measejahibsetl of the set of values
of X ():

P(X(t) € W) ~ fraction of time thatX (¢) is in the seflV’

In other words, the time stationary distributionXf{¢) can be estimated by a time average.

EVENT AVERAGES. We can interpret the Palm expectation and Palm probabdgigvant aver-
age if the procesX () is ergodic (note however that Palm calculus does not requgedicity).
Indeed, it follows from the definition of Palm expectatioath

B (4(X(0))) ~ 1 D0 (X (1)

n=
for N large.
It can be shown [4] that if the proce&¥() is ergodic and integrable théim v, +- 25:1 ¢ (X (T)) = E° (¢(X?)).

An equivalent statement is that, for any (measurable) subsef the set of values ok (¢):
PY(X(t) € W) =P°(X(0) € W) =~ fraction of points of the point process at whigHt) is in W

Thus the Palm expectation and the Palm probability can leegreted as event averages. In other
words, they are ideal quantities, which can be estimatedbgrvingX () sampled with the event
clock.

7.2.4 THE INVERSION AND INTENSITY FORMULAS

formulas that relate time and event averages. Also knowethe name of Ryll-Nardzewski and
Slivnyak’s formula, the inversion formula relates the tistationary and Palm probabilities. The
proof for discrete time, a direct application of the defmitiof conditional probability, is given in
appendix.

THEOREM 7.2.1. (Inversion Formula.)

e In discrete time:

E(X(t)) = E(X(0)) = AE° (i: X(s)> = AE° (i X(s)) (7.23)

s=0
e In continuous time:

Th
E(X(t)) = E(X(0)) = AE° ( X(s)ds) (7.24)
0
By applying the inversion td () = 1 we obtain the following formula, which states that the in-

tensity of a point process is the inverse of the average tiebeden points.
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THEOREM 7.2.2. (Intensity Formula.)

1
X:W@pﬂ@:@@p (7.25)
Recall that the only assumption required is stationariber€ is no need for independence or Pois-

son assumptions.

EXAMPLE 7.5:GATEKEEPER CONTINUED. Assume we model the gatekeeper example as a dis-
crete event simulation, and consider as point process the waking ups of the gatekeeper. Let X ()
be the execution time of a hypothetical job that would arrive at time ¢. The average job execution
time, sampled with the standard clock (customer viewpoint) is

We =E(X(t)) = E(X(0))
whereas the average execution time, sampled with the event clock (system designer viewpoint), is
W, = E'(X (1)) = E°(X(0))

The inversion formula gives

W:W(ﬂ

)(U)dt) = AE® (X (0)T7})
0

(recall that T; =0 under the Palm probability and X (0) is the execution time for a job that arrives
just after time 0). Let C be the cross-covariance between sleep time and execution time:

C == EX(11X(0)) — E°(T1)E°(X(0))
then
W. = X[C+E%X(0)E%(T)]
By the inversion formula A = @% thus
W, = Ws+AC
which is the formula we had derived using the heuristic in Section 7.1.

To be rigorous we need to make sure that the process being simulated is stationary. With the data in
Example 7.1, this appears to be false, as the wakeup times are periodic, starting at time 0. This is not a
problem for such cases: when the simulation state is periodic, say with period 6, then it is customary to
consider the simulation as a realization of the stochastic process obtained by drawing the origin of times
uniformly in [0, 8]. This produces a stochastic process which is formally stationary. In practical terms, this
amounts to choosing the arbitrary point in time uniformly at random in [0, 6].

EXAMPLE 7.6:STATIONARY DISTRIBUTION OF RANDOM WAYPOINT [56]. The random waypoint
model is defined in Example 6.5, but we repeat the definitions here. A mobile moves from one
waypoint to the next in some bounded space S. When arrived at a waypoint, say M, it picks a
new one, say M, 1 randomly uniformly in S, picks a speed V,, uniformly at random between vy,
and vy and goes to the next waypoint M, .1 at this constant speed.



7.3. OTHER USEFUL PALM CALCULUS RESULTS 209

Figure 7.4:Distribution of speed sampled at waypoint (first panel) and at an arbitrary time instant (second
panel). vy = 0.2, vpax = 2M/S.

Figure 7.4 shows that the distribution of speed sampled at waypoints, is uniform between v,,;, and
Umax, @S expected. In contrast, the distribution, sampled at an arbitrary point in time, is different.
We can explain this by Palm’s inversion formula.

We assume that this model has a stationary regime, i.e. that v,;, > 0 (see Section 7.4). The sta-
tionary distribution of V'(¢) is obtained if we know E(¢(V/(t)) for any bounded, test function ¢ of the

speed. Let 0 (v) be the PDF of the speed chosen at a waypoint, i.e. f(v) = %1{%&&%%“}.

VUmax —VUmin
We have

T
E(G(V(H) = AEO(O <z><v<t>>dt)

1

()) = XE" (134 - Mol E° (7-(7%))

My — M,
I ”qﬁ .
0

— A (Ti0(0) = 8
Vo
— &1 [ o) d (7.26)

where T, is the time at which the mobile arrives at the waypoint M,, and K; is some constant.
This shows that the distribution of speed sampled at an arbitrary point in time has PDF

f(0) = Ky f20) (7.27)

This explains the shape in % of the second histogram in Figure 7.4.

A similar argument can be made for the distribution of location. At a waypoint, it is uniformly
distributed, by construction. Figure 7.5 shows that, at an arbitrary time instant, it is no longer so.
Palm’s inversion formula can also be used to derive the PDF of location, but it is very complex [54].
It is simpler to use the perfect simulation formula explained in Section 7.4.3.

7.3 OTHER USEFUL PALM CALCULUS RESULTS

In this section we consider a stationary simulation and atgmiocess following the assumptions
in the previous section.

7.3.1 RESIDUAL TIME AND FELLER’S PARADOX

In this section we are interested in thesidual time, i.e. the time from now to the next point.
More precisely, lefl'"(¢) [resp. T~ (t)] be the first point after [resp. before or at] Thus, for
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Figure 7.5:A sample of 10* points drawn from the stationary distribution of the random waypoint. The
distribution is not uniform, even though waypoints are picked uniformly in the area.

example,I't(0) = T}, and7'~(0) = T;. The following theorem is an immediate consequence of
the inversion formula.

THEOREM 7.3.1. Let X (¢) = T (t) — ¢ (time until next point, also called residual timé&)(t) =
t — T~ (t) (time since last point)7Z(t) = T*(t) — T~ (t) (duration of current interval). For any,
the distributions ofX (¢) andY'(¢) are equal, with PDF:

+0o0
fx(s) = fy(s) = AP(T} > s) = A f2 () (7.28)

S

where f? is the Palm PDF off}; — T;, (PDF of inter-arrival times). The PDF of (¢) is

fz(s) = Asfp(s) (7.29)
In particular, it follows that
E(X(t)) =E(Y(t) = %EO(TE) in continuous time (7.30)
E(X(t) =EY () = %EO(Tl(Tl + 1)) indiscrete time (7.31)
E(Z(t)) — AEY(TD) (7.32)

Note that in discrete time, the theorem means & (¢) = s) = P(Y(t) = s) = A\PY(T} > s)
andP(Z(t) = s) = A\sPY(T} = s).

EXAMPLE 7.7:POISSON PROCESS Assume that 7,, is a Poisson process (see Section 7.6). We
have f9(t) = Ae™** and PY(T} > s) = PO(T} > s) = e thus fx(s) = fy(s) = f2(s).

This is expected, by the memoriless property of the Poisson process: we can think that at every
time slot, of duration dt, the Poisson process flips a coin and, with probability A\d¢, decides that
there is an arrival, independent of the past. Thus, the time X (¢) until the next arrival is independent
of whether there is an arrival or not at time ¢, and the Palm distribution of X (¢) is the same as its
time average distribution. Note that this is special to the Poisson process; processes that do not
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have the memoriless property do not have this feature.

The distribution of Z(t) has density
JH(s) = Nse™

i.e., it is an Erlang-2 distribution. Note here that it differs from the Palm distribution, which is
exponential with rate \. In particular, the average duration of the current interval, sampled at an
arbitrary pointin time, is % i.e. twice the average inter-arrival time % (this is an instance of Feller's
paradox, see later in this section). A simple interpretation for this formula is as follows: Z(t) =
X(t) + Y (t), both X (t) and Y (¢) are exponentially distributed with rate A and are independent.

EXAMPLE 7.8:AT THE Bus SToP. T, is the sequence of bus arrival instants at a bus stop. We do
not assume here that the bus interarrival times T, — T;,_; are iid. E°(T}) = % is the average time
between buses, seen by an inspector standing at the bus stop and who spends the hour counting
intervals from bus to bus. E(77) = E(X(0)) is the average waiting time experienced by you and
me.

N
| EL. O\
By Eq.(7.30):
E(X(t)) = E(X(0)) = % <§ + Avar’ (T — T0)> (7.33)

where VarO(T1 — Tp) is the variance, under Palm, of the time between buses, i.e. the variance
estimated by the inspector. The expectation E(X (¢)) is minimum, equal to 55 when the buses are
absolutely regular (7;, — T,,_1 is constant). The larger the variance, the larger is the waiting time
perceived by you and me. In the limit, if the interval between buses seen by the inspector is heavy
tailed, then E(X (¢)) is infinite. Thus the inspector should report not only the mean time between
buses, but also its variance.

Fork = 1,2,3, ..., theErlang-k distribution with parametek is the distribution of the sum of independent
exponential distributions with rate
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FELLER’S PARADOX. We continue to consider Example 7.8 and assume that Joe Wkeld
to verify the inspector’s reports by sampling one bus iateival time. Joe arrives at timeand
measures/(t) = ( time until next bus- time since last bus By Eq.(7.32)

E(Z(t)) = % +owvar’(T) — Ty)

wherevar®(T; — Ty) is the variance of the inter-arrival time=( [, s*f2(s)ds — 5z). Thus, the
average of Joe’s estimatedbvays largerthan the inspector’s (which is equal }@ by a term equal
to Avar’ (T, — Tp). This happens although both observers sample the samensmtenot with the
same viewpoint). This systematic bias is knowirraller’s paradox. Intuitively, it occurs because
a stationary observer (Joe) is more likely to fall in a laigeetinterval.

We did not make any assumption other than stationarity atih@uprocess of bus arrivals in this
example. Thus Feller's paradox is true for any stationaigtgmocess.

7.3.2 THE RATE CONSERVATION LAW AND LITTLE 'SFORMULA
MIYAZAWA 'S RATE CONSERVATION L AW

This is a fundamental result in queuing systems, but it agph a large variety of systems, well
beyond queuing theory. It is best expressed in continuous. ti

Figure 7.6:Rate Conservation Law.
Consider a random, real valued stochastic pro¢gss with the following properties (Figure 7.6):

e X(t) is continuous everywhere except perhaps at instants ofiarsay point process,,;
e X(t) is continuous to the right;
e X(t) has a right-handside derivativg (¢) for all values oft.

DefineAX; by AX,=0 if t is not a point of the point proce§3 andAX,, = X(7,,) — X(T},),
i.e. AX; is the amplitude of the discontinuity at timeNote that it follows that

X(t) = X(0) + /0 t X'(s)ds + > Ar, 1<, (7.34)

neN
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THEOREM 7.3.2. (Rate Conservation Law [69]) Assume that the point prodgsand X (¢) are
jointly stationary. IfE® |Ay| < co andE | X’(0))] < oo then

E (X'(0)) + AE° (Ap) =0
where) is the intensity of the point proce$s and £° is the Palm expectation.

The proof in continuous time can be found for example in [Ak can interpret the theorem as
follows.

e E(X’(0)) (also equal tdE (X'(t)) for all t) is the average rate of increase of the process
X(t), excluding jumps.

e E%(Ay) is the expected amplitude of one arbitrary jump. TRES (A,) is the expected rate
of increase due to jumps.

e The theorem says that, if the system is stationary, the suati pfmps cancels out, in aver-
age.

Remark. The theorem can be extended somewhat to the cases where spentaéions are
infinite, as follows [70]. Assume the point process can be decomposed as the superposition
of the stationary point process&g, ; = 1...J and that these point processes have no point in
common. LetA? be the jump ofX () whent is an instant of the point proce%y, i.e.

/X ds+ZZA B, (7.35)

7=1 neN

andA! = 0 whenevett is not an instant of the point process.

Assume thatX’(t) > 0 and the jumps of a point process are all positive or all negatMore
precisely, assume that/ > 0for j = 1...] andA] <0forj =TI+1,...J. Last, assume that (¢)
and the point processé&y are jointly stationary. Then

E (X'(0 +Z>\E° A)) = Z NE? (AF) (7.36)
Jj=1 j=I+1

WhereEg is the Palm expectation with respect to the point pro@&sand the equality holds even
if some of the expectations are infinite.

EXAMPLE 7.9:M/GI/1 QUEUE AND POLLACZEK-KHINCHINE FORMULA. Consider the M/GI/1
gueue, i.e. the single server queue with Poisson arrivals of rate A and independent service times,
with mean S and variance ag. Assume p = AS < 1 so that there is a stationary regime (The-
orem 8.3.1). Apply the rate conservation law to X (t) = W (¢)?, where W(t) is the amount of
unfinished work at time ¢.

The jumps occur at arrival instants, and when there is an arrival at time ¢, the jump is
AX = (W(t)+ 8)? —W(t)? = 25W (t) + S2

where S is the service time of the arriving customer. By hypothesis, S is independent of W (t)
thus the expectation of a jump is 2E° (W (¢)) S + S? + 2. By the PASTA property (Example 7.18),
E® (W (t)) = E (W (t)). Thus, the rate conservation law gives

E (X'(t)) + 20E (W (t)) + A (S* +0%) =0
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Between jumps, W (t) decreases at rate 1 if W(¢) > 0, thus the derivative of X is X'(t) =
2W (t) 1w e)>0y and E (X'(t)) = —2E (W (t)). Putting things together:

Q2 0,2
By =2 o)

By the PASTA property again, E (W (t)) is the average workload seen by an arriving customer,
i.e. the average waiting time. Thus the average response time (waiting time + service time) is
(Pollaczek-Khinchine formula for means) :

S(1 —p(1 - K))

R= =

(7.37)

. _1 0'2
Wlthﬁ—§(1+§—§>.

Similarly, applying the rate conservation law to X (t) = e—sW (1) for some arbitrary s > 0 gives the
Laplace Stieltjes transform of the distribution of W (¢) (see Eq.(8.5)).

CAMPBELL’S SHOT NOISE FORMULA

Consider the following system, assumed to be described dgtiite of a stationary simulation
S(t). Assume that we can observe arrivals of jobs, also calletbmess, or “shots”, and that the
the arrival timeg/;, form a stationary point process.

The nth customers also has an “attribute”,,, which may be drawn according to the specific rules
of the system. As usual in this chapter, we do not assume any &b iid-ness, but we assume
stationarity; more precisely the attributg is obtained by sampling the simulation state at time
T, (this is quite general as we do not specify what we put in threukition state). If the attributes
have this property, we say that they anarks of the point process,, and that the procesg.,, 7,,)

is astationary marked point process. We do not specify the nature of the attribute, it can take
values in any arbitrary space.

When thenth customer arrives, she generates a load on the systene, fiorth of work to be done.
Formally, we assume that there is a functidnr, z) > 0 (the “shot”) such thak(s, z) is the load

at times, due to a hypothetical customer who arrived at titvend would have mark. The total

load in the system at timg is

X'(t) =Y Lr,<ph(t — Tp, Zy)
neL
and the total amount of work to be performed, due to custoalezady present in the system is

X(t) =Y 1<y / h(s — T, Z,)ds
t

ne”L

For example, in [7], a customer is an internet flow, its mailksisize in bytes, and the total system
load is the aggregate bit rate (Example 7.7). The averagkllpat an arbitrary point in time, is

L = E (Z 1z, <y h(t — T, Zn)> —E (Z h(—T,, Zn))

neL n<0
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Total load

h(t-T;,z )+h(t-T,,z,)

Total load

Figure 7.7:Shot Noise (top) and Little’s formula (bottom)

where the latter is obtained by taking= 0. The work generated during her lifetime by one
customer, given that her mark is is f0°° h(t,z)dt. The average load generated by one arbitrary
customer can be expressed as a Palm expectation, relathespioint process of customer arrivals,
namely as

work per customer= [E° (/ h(t, Zo)dt) (7.38)
0

(Zy in the formula stands for the attribute of an arbitrary costg). Let) be the intensity of the
point procesqy,, i.e. the customer arrival rate.

The total work decreases at the raté(¢t) and when a customer arrives at tirffig, jumps by
A = f0°° h(t, Zy)dt. The jumps are nonnegative and the derivative is nonpeditius we can
apply Theorem 7.3.2, more precisely, the remark after i #6(¢), with J = 1 andl = 0. We

have thus shown:

THEOREM 7.3.3 (Shot Noise)The average load at an arbitrary point in time is
L = )\ x work per customer (7.39)

where equality holds also if eithdr or the work per customer is infinite.

Eq.(7.39) is also known a&Sampbell’s Formula.

ExampLE 7.10:TCP FLOows. In [7], a customer is a TCP flow, h(t, z) is the bit rate generated
at time ¢ by a TCP flow that starts at time 0 and has a size parameter = ¢ Rt. Thus V =
E° (fy° h(t, Zo)dt) is the average volume of data, counted in bits, generated by a flow during its
entire lifetime. Campbell's formula says that the average bit rate on the system L, measured in
b/s, is equal to AV, where ) is the flow arrival rate.
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THE H = A\G FORMULA

This is an interpretation of the rate conservation law thafuite useful in applications. Consider
some arbitrary system where we can observe arrival and eparf jobs (also called customers).
Let 7;, be the point process of arrivals times, with intensitynot necessarily Poisson, as usual
in this chapter). Also assume that when a job is present irsyBem, it uses some amount of
resource, per time unit (for example, electrical power otJGfycles). Assume the system is
stationary.

LetG,, be the total amount of system resource consumed by fbiying its presence in the system;
and letG' be the average resource consumption per job, i.e. the etjmcdf G, whenn is an
arbitrary customer, and Iéf be the average rate at which the resource is allocated tpijebthe
expectation ofd () at any timet. Eq.(7.39) can be re-formulated as follows.

The H = \G Formula, or Extended Little Formula:

i =)G (7.40)

EXAMPLE 7.11:POWER CONSUMPTION PERJOB. A system serves jobs and consumes in average
P watts. Assume we allocate the energy consumption to jobs, for example by measuring the
current when a job is active. Let £ be the total energy consumed by a job, during its lifetime, in
average per job, measured in Joules. By Eq.(7.40):

P=\E

where ) is the number of jobs per second, served by the system.

LITTLE ’ S FORMULA

Consider again some arbitrary system where we can obsaival and departure of jobs (also
called customers), witl,, the point process of arrivals times, with intensiky Let R,, be the
residence time of theth customern € Z (thus her departure time 15, + R,,). Let N(¢) be the
number of customers present in the system at tinfessume that the mean residence tiRié.e.
the expectation oRt,,) is finite (by the stationarity assumption it is independsit).

We did not exactly define what a customer and the system aresfire we need, formally, to be more precise; this
can be done as follows. We are given a sequéfizes R, R,, € R™), ¢z Stationary with respect to index Assume
thatT,, can be viewed as a stationary point process, with intensity.e. the expectation df,, — 7,1 is finite,
Theorem 7.4.1). The number of customers in the system atitisnen defined by

N(t) =Y Ln,<t<r, 1)
nez

Note that, by stationarity) is also equal to the departure rate. Defitg) by R(t) = R, if and
onlyif T,, <t < T,.1, 1.e. R(t) is the residence time of the most recently arrived custot&ma
t. Also let

&
=
~

I
=
S
oy
S

I
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We can apply Campbell’s formula by letting, = R, andh(t,z) = 1<}, i.e. the load
generated by one customeriias long as it is present in the system; equivalently, we cplydipe
rate conservation law witl (¢) = residual time to be spent by customers present in in thersyste
This gives the celebrated theorem:

THEOREM 7.3.4 (Little’s Formula). The mean number of customers in the system atttilNe =
E(N(t)), is independent aofand satisfies

N =)\R
where) is the arrival rate andr the average response time, experienced by an arbitrarypousst

Little’s formula makes no assumption other than statidgpahn particular, we do not assume that
the residence times are independent of the state of thersyatel wedo notassume that the arrival
process is Poisson. Also note that the formula holds evathgmeV or R is infinite.

Little’s formula is very versatile, since it does not say Wwha call a system and a customer. The
next section is an example of this versatility.

DISTRIBUTIONAL LITTLE FORMULA

Assume we are interested not just in the average number tdroess in a system, but in the
distribution of ages in the system. More precisely,sfix> 0; we would like to knowN (),
defined as the average number of customers in the systemmiéthea> r. Call fz() the PDF of
customer residence time. Consider the virtual system, eBach that we count only customers
that have been present in the system for at lgasime units:

Original System Thenth customer arrives at tinig, and stays for a duratioR,,

Virtual System The nth customer arrives at timé,, + ro. If 7,, < ro, this customer leaves
immediately. Else, this customer stays for a durafign— r.

Apply Little’s formula to the virtual system. The averagestamer residence time in the virtual

system is
/T:O(r—ro)fR(r)dr - /OO [/rds]fR dr—/ /fR \dsdr
:/ U Falr dr}ds—/ FE(s)ds

whereF¥,() is the complementary CDF of the residence time,kg(r) = [ fr(r)dr. Thus

N(rg) = A / FE(r)dr

T0
Let fx() the PDF of the distribution of ages at an arbitrary pointime;j i.e. such that(r,) =
Nf S (r)dr. Itfollows that fy (r) = £ F5(r) = £Fg(r), i.e

1 o0
- ﬁ/r fr(r)dr (7.41)
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Eq.(7.41) is called ®istributional Little Formula. It relates the PDF of the age of a customer
sampled at an arbitrary point in time to the PDF of resideimoes fz. Note the analogy with
Eq.(7.28) (but the hypotheses are different).

7.3.3 Two EVENT CLOCKS

Assume in this section that we observe two point processes fine same stationary simulation,
sayA,, B,, n € Z. Let A\(A) [resp. A\(B)] be the intensity of thed [resp. B] point process.
WheneverX (t) is some observable output, jointly stationary with the datian, we can sample
X (t) with the two event clocksl, or B, i.e. we can define two Palm probabilities, denoted with
E3(X(0)) and E(X(0)).

We can also measure the intensity of one point process usergher process’s clock; for example,
let \4(B) be the intensity of thé? point process measured with the event cleci et N[tq, t2)

be the number of points of processin the time intervalt,, t,). We have

Aa(B) = E} ( Np[Ag, Ay)) (7.42)

i.e. itis the average number &f points seen between tw points.

THEOREM 7.3.5. (Neveu’s Exchange Formula)

>

M(B) = % (7.43)

E%(X(0)) = Ma(B)EY (ZX(AH)1{BogAn<Bl}> (7.44)

nEL

>

Eq.(7.44) is the equivalent of the inversion formula EQ8J, if we replace the standard clock by
clock A and the point process, by B,,; indeed the last term in Eq.(7.44) is the sum of t§)
values observed at all points that fall betwee, and B;.
It follows from this theorem that
1
Aa(B)
which is the equivalent of Eq.(7.25), namely, the intensityhe point proces#, measured with

A’s clock, is the inverse time between two arbitrdypoints, again measured withis clock (the
last term,N4[ By, By ), is the number of ticks of the clock between twa3 points).

= E} (Na[0, B1)) = E (Na[Bo, By)) (7.45)

The following theorem follows immediately from Theorem .b.and Eq.(7.45).
THEOREM 7.3.6. (Wald’s Identity)

0 _ E} (X nez X (An) Lipy<a,<Bi})
E4(X(0)) = EQ (NalBo. By)

(7.46)

Eq.(7.46) is calledVald's identity. It is often presented in the context of renewal processés, b
this need not be: like all Palm calculus formulae, it regualy stationarity, and no independence
assumption.
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EXAMPLE 7.12:THE STOP AND GO PROTOCOL We re-visit the computation of the stop and go
protocol given in Example 7.2. The A point process consists of the emission times of successful
transmissions, and the B point process consists of all transmission and retransmission attempts.
Apply Eq.(7.45): .
Aa(B)
Note that N4[By, By) is 1 if the attempt at By is successful and 0 otherwise, thus the right-handside
in the equation is the probability that an arbitrary transmission or retransmission attempt is suc-

cessful. By definition of «, thisis 1 — «. Thus % = 1 — «. Compute \(B) from Eq.(7.25):

ﬁ = (1 — a)ty + at;. Combining the two gives

= E% (NalBo, B1))

as already found.

All formulas in this section continue to hold if we replace tfemi-closed intervals that span one tick of an event clok
to the next, such a4, A1) [resp.[Bo, B1)], by the semi-closed intervalsiy, A;] [resp. (Bo, B1]], but do not hold
if we replace them by closed or open intervals (sucfas A1] or (Ao, A1)).

One can even replace them by the so-calletbnoi cells, which are the intervals that are bounded by the midfile
two successive points, for example one can replageA;) by [2A=1t4e ActAi) o (ActAe Aot Ai] Thys, for
example,

E% ( Np[Ao, A1) = E ( Np(Ao, A1)

o (e Aot ) gy (At ot )

Aa(B)

and Eq.(7.44) can be generalized to

EO <ZX 1{B0<A <Bl}> :)\A EB <ZX 1{B(}<A <B1}>

nez nez

B)EY <Z X (An) 1 posimn _y _miims }>

neZ

]EO <ZX ]_ B 1+BQ<A <31+B2}>
n=""73

nez

E2%(X(0)

7.4 SMULATION DEFINED AS STOCHASTIC RECURRENCE

7.4.1 S OCHASTIC RECURRENCE, MODULATED PROCESS

A simulator can be defined as discrete event or as stochasticrence (Chapter 6). This also
provides a simple, yet powerful model, to analyze statipibat time correlated systems.

Recall that a stochastic recurrence is defined by a sequgneec 7Z, (also called the modulator
state at theath epoch) and a sequengg > 0, interpreted as the duration of th¢h epoch. The
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Figure 7.8:The Gilbert Loss Model. When the channel is in state 0 the packet loss ratio is 0, in state 1 it is
p1. The average number of consecutive periods in state i is qi (1 =0,2).

state space fa¥,, is arbitrary, not necessarily finite or even enumerable. ¥¢eime that~,,, S,,)
is random, but stationafywith respect to the index. As usual, we do not assume any form of
independence.

We are interested in thenodulated process (Z(t), S(t)) defined byZ(t) = Z,,S(t) = S,
whenevetrt belongs to the:th epoch (i.e. whed,, <t < T,.,). We would like to apply Palm
calculusto(Z(t), S(t)).

EXAMPLE 7.13:L0ss CHANNEL MODEL. A path on the internet is modelled as a loss system,
where the packet loss ratio at time ¢, p(t) depends on a hidden state Z(t) € {1, ..., I} (called the
modulator state). During one epoch, the modulator remains in some fixed state, say ¢, and the
packet loss ratio is constant, say p;. At the end of an epoch, the modulator changes state and a
new epoch starts.

Once in a while we send a probe packet on this path, thus we measure the time average loss ratio
p. How does it relate to p; ? Apply the inversion formula:

5= > mipiSi
Zi W?Si

where 7 is the probability that the modulator is in state i at an arbitrary epoch (proportion of i
epochs) and S; is the average duration of an i-epoch.

For example, assume that Z,, is the Gilbert loss model shown in Figure 7.8, i.e. a discrete time
two state Markov chain, and S,, is equal to one round trip time. We have 79 = 2= fori = 0, 1. It

~ qo+q1’
follows that
qopP1

qo + q1

p=

7.4.2 FREEZING SIMULATIONS

In the previous example, we had implicitly assumed that weagply Palm calculus, i.e. that the
process”(t) is stationary. In the rest of this section we give condititorsthis assumption to be
valid.

2This means that the joint distribution 6%,,, S,, . .., Znm, Sntm) iS independent of.
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We first make a technical assumption. It says that the numbepachs per time unit does not
explode. More precisely, for any fixeg > 0, call

D(ty) = Z Lisg+. 48, 1<to}

n=1

We interpretD(t,) as the number of epochs that are entirely included in theviak€o, ¢|, given
that we start the first epoch at timeThe technical assumption is

H1 For everyt,, the expectation oD (%) is finite.

Surprisingly, though Z,,, S,,) is stationary with respect to, this is not enough to guarantee sta-
tionarity of Z(¢). To see why, assume th#tt) is stationary and that there exists a stationary point
processl;, such thatl,, ., — 7, = S,,. Apply the inversion formula:

1
A:FW%% (7.47)

wheref?J(t) is the probability density function df,, (it does not depend omby hypothesis). Thus
we need to assume that the expectatiof,pfs finite. The next theorem says that, essentially, this
is also sufficient.

THEOREM 7.4.1. Assume that the sequenggsatisfiedH1 and has finite expectation. There exists
a stationary procesg(t) and a stationary point process, such that

1. Tpr — T, = S,
2. Z, = Z(T,)

The theorem says that we can apply Palm calculus, and ircpkmtitreat”,, as the state of a sta-
tionary simulation sampled with the event clock derivedrir§,. The proof can be found in [4],
where it is called “inverse construction”.

ConditionH1 is often intuitively obvious, but may be hard to verify in seroases. In the sim-
ple case wheré&),, are independent (thus iid since we assume stationarity mgpect ton) the
condition always holds:

THEOREM 7.4.2 (Renewal Case)f the S, are iid and.S,, > 0, then conditiorH1 holds

The next example shows a non iid case.

EXAMPLE 7.14:RANDOM WAYPOINT, CONTINUATION OF EXAMPLE 7.6. For the random waypoint
model, the sequence of modulator states is

Zn — (Mna Mn+17 Vn)
and the duration of the nth epoch is

d (Mn> MTL-‘rl)

S, =
Vn

(7.48)

where d (M,,, M,,+1) is the distance from M,, to M, ;1.
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peed (mls)
peed (mls)

Figure 7.9:Freezing simulation: random waypoint with v,,,;, = 0. The model does not have a stationary
regime and the simulation becomes slower and slower. First panel: sample of instant speed versus time
for one mobile. Second panel: speed averaged over [0;¢] for one mobile (zig zag curve) or for 30 mobiles
(smoother curve). The average speed slowly tends to 0.

Can this be assumed to come from a stationary process ? We apply Theorem 7.4.1. The average
epoch time is

R(So) = E (%) — B (d (My, Myy1)) B (%)

since the waypoints and the speed are chosen independently. Thus we need that E (v%) < 0,
i.e. Umin > 0.

We also need to verify H1. We cannot apply Theorem 7.4.2 since the epoch times are not inde-
pendent (two consecutive epoch times depend one one common waypoint). However, but S,,, and
S, are independent if n — m > 2, and one can show that H1 holds using arguments similar to the
proof of Theorem 7.4.2 [56].

What happens if the expectation®f is infinite ? 1t can be shown (and verified by simulation) that
the modelfreezes as you run the simulation longer and longer, it becomes riloety to draw

a very long intervalS,,, and the simulation state stays there for long. This is agrésting case
where non stationarity is not due to explosion, buaging (Figure 7.9). In the random waypoint
example above, this happens if we choogg = 0.

7.4.3 PERFECT SIMULATION OF STOCHASTIC RECURRENCE

Assume we are interested in simulating the modulator pe€8st), S(t)). A simple method
consists in drawing a sample 6%, S;) from the joint distribution with PDFf} 4(z, s), then
decide that the simulation stays in this state for a duratigmhen drawz;, S; from its conditional
distribution given(Zy, Sy) and so on. For a stochastic recurrence satisfying the hgpethof
Theorem 7.4.1, as the simulation time gets large, the siialavill get into its stationary regime
and its state will be distributed according to the statigrehstribution of(Z(t), S(t)).

It is possible to do better, and start the simulation diyentl the stationary regime, i.e. avoid
transients at all. This is callgeerfect simulation. It is based on Palm’s inversion formula, which
gives a way to sample from the stationary distribution, agwmain now.

We want to start a simulation of the modulator procgsg ), S(t)), in stationary regime. We need
to draw a sample from the stationary distribution(&f¢), S(¢)) but this is not sufficient. We also
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need to sample the time until the next change of modulatte.stherefore, it is useful to consider
the joint process$Z(t), S(t), T"(t)), whereT*(¢) is the residual time, defined in Section 7.3.1 as
the time to run until the next change in modulator state, i.e.

if T, <t<T,then TT(t) =T, —1

THEOREM 7.4.3 (Stationary Distribution of Modulated Proceskgt (Z,,, S, ).cz Satisfy the hy-
potheses of Theorem 7.4.1 and f@gs(z, s) be the joint PDF of(Z,, S,.), independent of. by
hypothesis. The stationary distribution @f(¢), S(¢), 7" (¢)) (defined above) is entirely charac-
terized by the following properties:

1. The joint PDF of Z(t), S(t)) is
fzs(z,s) = nsf%s(z, s) (7.49)
wheren is a normalizing constant, equal to the inverse of the exgtiext of S, ;

2. The conditional distribution df'* (¢) given thatZ(¢t) = z and S(t) = s is uniform on[0, s].

Recall thatZ,, takes values in any arbitrary space, but you may think of &raslement oR* for
some integek?.

Note that the theorem does not directly give a formula forjtivet PDF of (Z(t), S(t), T"(t)),
though this can be derived, at least in theory, from the coatlon of items 1 and 2 (see [54] for
an example).

Also do not confuse item 2 with the unconditional distribatiof the residual tim&*(¢). From
Theorem 7.3.1, we know that the distributionf (¢) has PDF proportional td — F9(t), where
FY() is the CDF ofS,,, i.e. it is not uniform.

We can recover this result from the above theorem, as foll@essider a test functiopy() of the residual tim& =+ (¢).
The theorem says that

E(o(TT(1)| Z(t) =s,5(t) =s) = l/OS B(t)dt

thus

E(¢(TH () = ”/Zez/ooo

which shows that the PDF @+ (t) isn(1 — F2(t)), as given in Theorem 7.3.1.

3Formally, Z,, may take values in some arbitrary spat@nd.S,, is a positive number. We assume that there is a
measurg: on Z and the PDE“%S(Z, s) is defined with respect to the measure produgt ahd the Lebesgue measure
on (0, o0)
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Figure 7.10:Perfect Simulation of Random Waypoint. First Panel: 7 samples of previous waypoint (P),
current mobile location (M), and next waypoint (V) sampled at an arbitrary point in time. P and N are not
independent; their joint PDF is proportional to their distance. (Compare to the distribution obtained when
sampling an arbitrary waypoint: there, by construction, P and N are independent and uniformly distributed),
they are independent, by definition of the model). Given P and N, M is uniformly distributed on [P, N].
Second panel: 10000 samples of the next waypoint, sampled at an arbitrary point in time. The distribution
is not uniform, with a larger density towards the edges.

We obtain a perfect simulation algorithm by immediate aggilon of the above theorem, see
Algorithm 5. Note the factos used when sampling the initial time interval: we can intetphis
by saying that the probability, for an observer who sees yiséem in its stationary regime, of
falling in an interval of duratiors is proportional tos. This is the same argument as in Feller’s
paradox (Section 7.3.1).

Algorithm 5 Perfect simulation of Modulated Process
1: Sample(z, s) from the joint distribution with PDFysfg,S(z, s) (Eq.(7.49))
2: Samplet uniformly in [0, s]
3: Start the simulation witlZ (0) = 2, S(0) = s, 77(0) =T

EXAMPLE 7.15:PERFECT SIMULATION OF RANDOM WAYPOINT. We assume that the model in
Example 7.14 has a stationary regime, i.e. that v,,;,, > 0. The modulator process is here Z(t) =
(P(t),N(t),V(t),S(t)) where P(t) [N(t)] is the previous [next] waypoint, V' (¢) is the instant speed
and S(t) is the duration of the current trip. Note that S(¢) is determined by Eq.(7.48), i.e.

d(P(t), N(t)
V(t)

so it is a deterministic function of (P(¢), N(¢),V (t)) and can be omitted from the description of the
modulator process.

S(t) =

Note that by standard change of variable arguments:

d(p,n
fenyv(p,n,v) = %fP,N,S(I%naS)
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d(p, n)
flo-"’,N,V(pvn>U) = 02 f%N’S(p,TL,S)

A direct application of Theorem 7.4.3, item 1, gives the joint PDF of (P(t), N(t), V (¢)):

d(p,n
fP,N,V(pv”%U) = (’02 )nsflo:’,N,S(pvn> 8) = nsflg7N,V(p>n7,U)

d(p,n)

= nfpyyv(p,nv)

Now, by definition of the random waypoint model, speed and waypoints are chosen independently
at a waypoint, i.e.

fg,N,V(pv”%U) = f}(;,N(p>n)f8'(U)
Thus
1
fP,N,V(p>n7U) = Ud(P>n)flg,N(P>n);f\9(U) (750)

Since the joint PDF is the product of the PDFs of (P, N) on one hand, V' on the other hand, it
follows that these two are independent, i.e., when sampled at an arbitrary point in time, the trip
endpoints on one hand, and the chosen speed on the other hand, are independent. Furthermore,
by marginalization, the joint PDF of (P(t), N(t)) is

fen(p,n) =md(p,n) (7.51)

for p,n in the area of interest, and 0 otherwise, and where 7 is a normalizing constant. Thus the
joint PDF of trip endpoints is proportional to their distance, i.e. we are more likely to see long trips
in average (this is reminiscent of Feller's paradox in Section 7.3.1, though in space, not in time).
It follows also that the distribution of a trip endpoint is not uniform, and that the two endpoints are
not independent (though they are when sampled at waypoints). Figure 7.10 shows samples from
the marginal distribution of P(¢) (which is the same as that of N(¢)). We used rejection sampling
(Theorem 6.6.3), which does not require knowing the normalizing constant 7;.

We also obtain that the distribution of speed at an arbitrary point in time is proportional to %f‘o/(v),
which we had already found in Example 7.6. After some algebra, one finds that the CDF of V (¢) is

Inv — Invmin

Fy(v) (7.52)

In vmax — In Umin

for vmin < v < Vmax, 0 if v < vpin and 1 if v > vyax.
Let M(t) be the mobile location at time ¢. The residual time is related to M (t) by

so that adding either 7+ (¢) or M(t) to the modulator process are equivalent. Thus we can take as
process state (P(t), N(t),V (t),M(t)). A direct application of Theorem 7.4.3, item 2, together with
change of variable arguments as above, give that the conditional distribution of M (t) given that
P(t) =p,N(t) = n,V(t) = v is uniform on the segment [p, n]. In particular, it is independent of the
speed V().

We summarize the findings in Algorithm 6.
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Algorithm 6 Perfect simulation of Random Waypoint

1: Sample speed from the distribution with CDFFy, in Eq.(7.52) (e.g. using CDF inversion,
Theorem 6.6.1).

2: Sample previous waypoiptand next waypoint from the distribution with PDF proportional
to the distance from to n (e.g. using rejection sampling Theorem 6.6.3).

3: Samplem uniformly on the segment that joipsandn, e.g. by sampling uniformly in [0, 1]
and lettingm = (1 — u)p + un.

4: Start the simulation witl?(0) = p, N(0) = n, V(0) = v, M(0) = m.

7.5 APPLICATION TO MARKOV CHAIN MODELS AND THE
PASTA PROPERTY

In this section we consider a stochastic procggg (the state of the simulation) that can be ex-
pressed as a Markov chain, in discrete or continuous timem&lby, this means that the state at
time ¢ contains all information for advancing the simulation. Msisnulations that we perform in

a computer fall in this framework, since the simulation peog uses only information available in
memory. This does not mean that Markov models are alwaysdberbodels to analyze a prob-
lem, as the state space may be prohibitively large. But isgmevide a convenient framework
to reason about what we are doing, for example to understéwad the PASTA property means
(Section 7.5.2). In this section we limit ourselves to Markbains over a finite state space, as this
provides considerable simplifications.

In appendix of this chapter (Section 7.6) we give a quickeenaof Markov chains. There are many
very good books on the topic, see for example [21, 108, 17].

7.5.1 BvBEDDED SuB-CHAIN

If we observe a Markov chain just after some selected triansit we obtain aembedded sub-
chain, which is itself a discrete time Markov chain, clocked by slkeéected transitions. We explain
in this section how to compute all elements of the embeddédiain, in particular the Palm
probabilities for events observed with the clock of the edusa subchain.

Consider first discrete timei(¢) is a stationary Markov chain with enumerable state sgadae

are interested in observing the transitionsSgt), which is equivalent to observing the process
(S(t — 1), 5(t)). Note that this is also a Markov chain. L&, C S? be a subset of the set of
possible transitions, and cdl],, n = 1, 2... the time instants at which the chain does a transition
in Fy, i.e.,

T Y oinf{t>1:(S¢t—1),5(t) € Fo}
T, < inf{t>T,1:(S(t—1),8(t) € Fo}

We assume that there is an infinity of such times, k. < oo with probability 1, and further,
that the expected time between visits is also ffnifEhen, by Theorem 7.4.1, we can trdatas a
stationary point process associated with the stationarygsss (¢).

“this is true for example if5, consists of only recurrent non null states of the ch&ift — 1), S(¢).
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The sequence of states observed just after a transiti@n,), is itself a discrete time Markov chain,
since the knowledge of the state at thih transition is sufficient to compute the probabilities
of future events (this is the strong Markov property). ThgquemceY, = S(T,,) is called the
embedded sub-chain. We call matrix of selected transitions the matrix of probabilities”
defined by

Ci,j = Qi,j 1{(i,j)€]:o}

for all (7, 7) and where is the transition matrix of5 (see Eq.(7.57)). The matrik' is simply
derived by inspection. We also define the matfix by

def

Jij = P(S(1h) = j|S(0) = i)

so that/; ; is the transition probability of the chaly, if i is a reachable state &f,. Note that/ is
not equal ta”, as the next theorem shows.

In continuous time, the definitions are similar (recall tihxat assume right-continuous sample
paths, so a selected transition occurs at tinie (S(¢~), S(t)) € Fo). The matrix of selected
transitions is now a rate matrix, given by

Cij = Aijl{ij)er)

for all (i, 7) and whereA is the transition rate matrix of (with 4;;, = — Z#Z_ A, ;). Here we
assume that looping transitions are not possible(i,e) ¢ F, for all i. Note thatY,, is a discrete
time Markov chain even if(¢) is in continuous time.

THEOREM 7.5.1. (Embedded Subchain) Consider a stationary Markov chain in discrete or
continuous timeS(t) with ¢ € Z or t € R, with stationary probabilityr, defined over some
enumerable state space. Consider an embedded sub-Xhainc N, with the assumptions above,
and with matrix of selected transitiolds

1. The transition matrix/ of the embedded sub-chaif satisfiegd — Q) + C).J = C (discrete
time) or(C — A)J = C (continuous time).

2. The intensity of the point process of selected transtion = » i miCs ;.

3. The probability that an arbitrary selected transition(isj) is %7&'0@]‘ (in discrete time this
is defined a®°(S_; =4, Sy = j); in continuous time aB°(Sy,- = i, Sy = 7)).

4. The probability to be in statgjust after an arbitrary selected transition gszz. mCi ;. The
probability to be in state just before an arbitrary selected transition}sq > i Cij

EXAMPLE 7.16:QUEUING NETWORK IN FIGURE 8.24. There are two stations, called “Gate” and
“Think Time”, one class of customers; we assume to simplify that the service times in both stations
are exponentially distributed with parameters p (at “Gate”) and v (at “Think Time”). The system
can be described as a continuous time Markov chain with state = number of customers at station
“Gate”, so that n € {0,.., K} where K is the total population size. This is a single class product
form network, and from Theorem 8.5.1, the stationary probability is

1 1 1

PO = Ry e TR =
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where we explicitly wrote the dependency on the total population size and 7(K) is a normalizing
constant.

Consider as selected transitions the arrivals at station “Gate”. The matrix of selected transitions is
given by
Cpnt1=(K —n)vand C,,y =0if n #n+1

The probability that the number of customers is n just after an arrival is, by item 4 of Theorem 7.5.1:

1 1 1 1

PO(”) = Xp(” —1)C(n—1,n)= A(K) p—1 (K — n)lwvK-n

This is the same as p(n — 1|K — 1) if we ignore the normalizing constants, more precisely:

po(n) = %p(n — 11K —1) (7.53)

; K K K—1)-: .
Since Y. p°(n) =Y p(n — 1|K — 1) = 1, the constant n)(\n(K))IS 1. i.e.

po(n) =pn—1K—1) (7.54)

In other words, an arriving customer samples the network in the same way as if this customer
would be removed (this is an instance of the Arrival Theorem 8.6.6). It follows also that

n(K —1)
n(K)

which is an instance of the Throughput Theorem 8.6.2.

A= (7.55)

7.5.2 PASTA

Consider a system that can be modeled by a stationary Mahaim §(¢) in discrete or continuous
time (in practice any simulation that has a stationary regand is run long enough). We are
interested in a matrix of’ > 0 of selected transitions such that

Independence For any staté of S(t), >, C; ; ' \is independent of

i.e. the rate of occurrence of a selected transition is iaddpnt of the global simulation state.
Further, this assumption implies that the Point processletsed transitions is a Bernoulli process
(discrete time) or a Poisson process (continuous time) inimsity A (see Section 7.6 for the
definition of Poisson and Bernoulli processes).

THEOREM 7.5.2 (PASTA). Consider a point process of selected transitions as defibetiex The
Palm probability just before a transition is the stationgrmpbability.

The theorem says that, in stationary regime, the BernaulRoisson clock of selected transitions
sees the system in the same way as the standard clock.

InterpretC' as external arrivals into a queuing system. The theoremawiras “Poisson Arrivals
See Time Averages”, hence the acronym. Note however thatddmomination is misleading:
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Poisson alone is not sufficient, we need that the point peooéselected transition has a rate
independent of the state (see Example 7.19).

EXAMPLE 7.17:ARP REQUESTSWITHOUT REFRESHES IP packets delivered by a host are pro-
duced according to a Poisson process with A packets per second in average. When a packet
is delivered, if an ARP request was emitted not more than t, seconds ago, no ARP request is
generated. Else, an ARP request is generated. What is the rate of generation of ARP requests ?

Call T,, the point process of ARP request generations, p its intensity and p the probability that an
arriving packet causes an ARP request to be sent. First, we have u = pA (to see why, assume
time is discrete and apply the definition of intensity).

Second, let Z(t) = 1 if the ARP timer is running, 0 if it has expired. Thus p is the probability that an
arriving packet sees Z(t) = 0. The PASTA property applies, as the IP packet generation process
is independent of the state of the ARP timer. (You may establish a formal link with Theorem 7.5.2
as follows. Think in discrete time. The system can be modeled by a Markov chain with X (¢) =i =
the residual value of the timer. We have Q;;,—1 = 1fori > 0, Qo, = A, Qo0 = 1 — A. The selected
transitions are IP packet deliveries, and the probability that one IP packet is delivered in one slot
is A, and does not depend on the state i.)

By the inversion formula:

p=P(Z(t) = 0) = pEO(Ty — t,) = p (% - ta) — 1 ut, (7.56)

_ 1
T Ata+1?

A

Combining with ;n = pA gives p SE vt

and the rate of generation of ARP requestsis u =

EXAMPLE 7.18:M/GI/1 QUEUE. A similar reasoning shows that for a queuing system with Poisson
arrivals and independent service times, an arriving customer sees the system (just before its own
arrival) in the same way as an external observer arriving at an arbitrary instant.

EXAMPLE 7.19:A POISSON PROCESS THAT DOES NOTSATISFY PASTA. The PASTA theorem re-
quires the event process to be Poisson or Bernoulli and independence on the current state. Here
is an example of Poisson process that does not satisfy this assumption, and does not enjoy the
PASTA property.

Construct a simulation as follows. Requests arrive as a Poisson process of rate A, into a single
server queue. Let T, be the arrival time of the nth request. The service time of the nth request
is assumed to be %(Tnﬂ — T,). The service times are thus exponential with mean % but not
independent of the arrival process. Assuming the system is initially empty, there is exactly 1
customer during half of the time, and 0 customer otherwise. Thus the time average distribution of
queue length X (¢) is given by P(X(t) =0) =P(X(¢t) = 1) = 0.5 and P(X(t) = k) =0for k > 2. In
contrast, the queue is always empty when a customer arrives. Thus the Palm distribution of queue
length just before an arrival is different from the time average distribution of queue length.

The arrival process does not satisfy the independence assumption: at a time ¢ where the queue
is not empty, we know that there cannot be an arrival; thus the probability that an arrival occurs
during a short time slot depends on the global state of the system.
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APPLICATION TO MEASUREMENTS . The PASTA property shows that sampling a system at
random observation instants, distributed like a PoissoBaynoulli process, independent of the
system state, provides an unbiased estimator of the tintageelistribution.

7.6 APPENDIX: QUICK REVIEW OF M ARKOV CHAINS

7.6.1 MARKOV CHAIN IN DISCRETE TIME

Let S be afinite set. A discrete time stochastic procegs) is a Markov chain ors if the future
evolution ofS given all past up to timeis entirely determined by (¢). Thetransition matrix is
the matrix of probabilitieg); ; defined by

Qij =P(S(t+1) = j[5(t) = 1) (7.57)

forall i andjin S.

The state space can be partitionecc@mmunication classes as follows: two statesand; are

in the same communication class i j or if the chainS(¢) can go fromi to j in a finite number
of transitions (each transition must have a positive pradibgh and vice-versa, frony to i. A
communication class is eithexcurrent (once the chaii¥(¢) has entered the class it will remain in
the class forever) or not, also callgdnsient. If a class is transient, with probability 1, the chain
will leave it and never return. States that belong to a teartsilass are also called transient.

Let 7(¢) be the row vector of probabilities at timei.e 7;(t) = P(S(¢) = i). Then for allt € N:

m(t) = n(0)Q" (7.58)
For the chainS(¢) to be stationary, we needt) independent of, which implies thatr satisfies

the linear system
{ WZ:;T?? . (7.59)
S 4

It turns out that this also sufficient, i.e4f(0) is solution of Eq.(7.59), thef(¢) is stationary. A
solution of Eq.(7.59) is called stationary probability of the Markov chain.

Note that, becaus@ is a stochastic matrix, any solutianc RS of Eq.(7.59) is necessarily non-
negative. Since is finite the situation is simple: stationary probabiliteesrespond to recurrent
classes. More precisely

e There is at least one recurrent class.

e For every recurrent clagsthere is one stationary probability vectof, such thatr{ > 0 if
1 € candr{ = 0 otherwise; any stationary probability is a weighted averapther®’s.

¢ If there is only one recurrent class, the chain is calleztucible. If the chain is irreducible,
there is exactly one stationary probability, and vice-aetise. if Eq.(7.59) has only one
solution the chain is irreducible.

e The chain isrgodic in the wide senséf it is irreducible, and vice-versa.

SSome authors use a more restrictive definition and say thatta §ipace markov chain is “ergodic” if it is irre-
ducible and aperiodic, see later. We prefer to use the gedefiaition, which is that time averages tend to expecta-
tions.
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o If there is more than one recurrent class, the chain will exaly enter one recurrent class
and remain there forever. The probability that the chaiemntecurrent classdepends on
the initial condition.

e If 7 is a stationary probability vector arids a transient stater; = 0.

Thus, whensS is finite, there is always at least one stationary regime héf ¢hainS(¢) is not
irreducible (i.e. not ergodic) there may be several statipmegimes, and the stationary regime
that the chain eventually enters may be random. This hapfperxample for systems that may
have several failure modes.

Consider an ergodic chain (with finite state space). It is®stary if the initial distribution of state
is the stationary probability. Otherwise, it becomes stary as — oo, but there is a technicality
due to periodicity. A recurrent clagss calledperiodic with periodd if all cycles in the class have
a length multiple of somé > 2 (i.e. wheneveX (t) =i, X (t +s) =i for: € cands > 0, s must
be a multiple ofd); otherwise, the class is aperiodic. A chain with a singireent class is said
periodic [resp. aperiodic] if its unique recurrent claspesiodic [resp. aperiodic].

If the chain is ergodic and aperiodic then

tlim Tt)=m
wherer is the unique stationary probability and thus the chain bexostationary for large Else,
if the chain is periodic with period

1
tlim a(7r(1t)+7r(1t+1)+...+7r(1t+d— 1)=m
—00
which can be interpreted as follows. Change the time orgmaomly uniformly in{0, 1, ..., d —
1}. Then ag — oo, the chain becomes stationary.

If the state space is enumerable but infinite, the situasanare complex; there may not exist a
recurrent class, and even if there is, there may not existtesary probability (the chain “escapes
to infinity”). However, there is a simple result. If the chasnrreducible, then Eq.(7.59) hasor

1 solution. If it hasl solution, then it is ergodic and all statements above forgadéc chain over
a finite space continue to hold.

7.6.2 MARKOV CHAIN IN CONTINUOUS TIME

In continuous time, the definition of the Markov Chain is damii.e. S is an enumerable set and
the continuous time stochastic procegs$) is a Markov chain orS if the future evolution ofS
given all past up to time is entirely determined by (¢). We assume as usual th&tt) is right-
continuous, i.eS(t™) = S(t), so that if there is a transition at timeS(¢) is the state just after the
transitior?. Note that some authors reserve the term Maittwainto discrete time, whereas some
others reserve it to discrete or continuous time processasaadiscrete state space (as we do).

The transition matrix is replaced by a matrix of rates, chtleerate transition matrix, or gener-
ator matrix, A. It has the property that

P(S(t + dt) = j|S(t) = i) = A;dt + o(dt) (7.60)

5Transitions in continuous time are often called “jumps”
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fori # j. ThusA,; is interpreted as the rate of transition from state j and is necessarily
nonnegative. If the state space is infinite, we need to assbateghe process is not explosive,
which means here that for dlke S:

D A< oo (7.61)
J#i
It is customary to pose
Ajj = — Z A j (7.62)
i

so thatA has non-negative entries everywhere except on the diagnd@j A;; = 0. It can be
shown that the time until the next jump given ttsdt) = 7 is an exponential random variable with
parameter-A, ;.

Let 7(¢) be the row vector of probabilities at timei.e 7;(¢) = P(S(¢) = ¢). Then for allt > 0:
m(t) = w(0)e! (7.63)

(the exponential of a matrix is defined like for complex numsdgye = Y>> | A" /nl).
A stationary probability is a row vectar that satisfies

TA=0
{ DiesTi = 1 (7.6
S ?

which is the replacement for Eq.(7.59). Otherwise, the oéSection 7.6.1 applies, mutatis mu-
tandi, with one simplification: there is no issue of peridgic Thus, in particular, a continuous
time Markov chain over a finite state space becomes staji@sar— oo.

For more details about Markov chains in continuous time 34k

7.6.3 PROISSON AND BERNOULLI

Those are the two memoriless stationary point processes.

A Bernoulli process with intensityq € [0, 1] is a point proces$,, € Z in discrete time, such that
the points are independently drawn. In other words, at ey, toss a coin and with probability
q decide that there is a point, otherwise there is not. Withtémminology of Section 7.2, the
sequencéV(t) is iid. The time intervals between points, = 7,1 — T,,, are independent and are
such thatS,, — 1 has a geometric distribution with paramegefThe same holds for the time from
now to the next point.

A Poisson process T, € R with intensityA > 0 is the continuous time equivalent of a Bernoulli
process. We do not define it here formally, but, instead, igsvain properties:

The probability that there is a point jn ¢ + dt] is Adt + o(dt)

The number of points in disjoint time intervals are indeparidandom variables.

The number of points in an interval of duratiens a random variable with distribution
Poissonkt)

The time intervals between points, = 7,1 —1,,, are independent and have an exponential
distribution with parametex. The time from now to the next point has the same distribution
(but see also Example 7.7).
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It can be shown that the Poisson process with intensity the limit, in various senses, when
dt — 0, of the Bernoulli process with intensity = \dt, when we map the time slot of the
Bernoulli process to a continuous time interval of duration

7.7 PROOFS

Except for Theorem 7.4.2 and Theorem 7.5.1, we give the prioadiscrete time, as they are simple and require only
a first course on probability. The proofs in continuous tilmat are not given can be found in [4], [88] or [70].

THEOREM 7.2.1 Let N(t) = 1 if the point process has a point at time0 otherwise. We show only that
E(X(0)) = AE° (Zf;l X(s)), as the second equality is similar. By definition of a comdiiéil probability and of:

Ty T
E° (Z X(s)> =E (Z X(S)N(O))
s=1 s=1

Now for s > 0, the event $ < Ty” is equivalentto ‘N (1,s — 1) = 0" thus
T
E° (ZX(s)) = (ZX (0)Lyn(1,s-1)= 0}>
s=1
= (ZX S)LiN(1—s,1)= 0}) ( ZN $) LN (1—s,1)= 0})

where the last line is by stationarity. L€t (—1) be the most recent time at which a selected event occuredebafo
at time—1. This time is finite with probability 1, by stationarity. Wee N (—s)1;y1—s,1)—0y = 1 if and only if
T-(—1) = —s, thus, with probabilityl:

1—ZN $)1{N(1-s,1)=0}

which shows the formula.

THEOREM 7.3.1 X(t) is jointly stationary withT},, thus its distribution is independent fand we can apply
the inversion formula. For any> 0 we have

Tlfl
P(X(0) = s) = E(1{x(0)=s}) = AE (Z 1{X<u>—s}>
u=0
Given that there is a point tand0 < u < Ty — 1, we haveX (u) = T} — u, thus
Tlfl
P(X(0) = s) = AE° (Z 1{T1_u+5}>
u=0
Now the sum in the formula is if 73 > s and0 otherwise. Thus
P(X(0) =7) = AE? (1{1,54)) = APY(T} > s)

which shows the formula faK (¢). The formula forY (¢) is similar, usingy,, = wfor0 < u < T; — 1.
For Z(t), apply the inversion formula and obtain

Tlfl
]P)(ZO = S) = )\]EO <Z l{Zu—s}>
u=0
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Now underP?, Z,, = T} does not depend anfor 0 < u < T} — 1 thus

Ty—1

P(ZO = S) = /\EO <1{T1 =s} Z ) = )\E Tll{T1 S}) = /\S]P)O( = S)

THEOREM 7.3.5 Apply the inversion formula to thé point process and t& (t)N4(t) where N4 (t) is 1 if
there is an4 point att and0 otherwise. Note that

B1—1

ZX )1{Bo<A,<B} = Z X N4(s)

newr s=DBg

thus

AB)E (X(0)N4(0)) = EY <ZX ) 1(By<a. <Bl}>

neZ

0
/\(B)% = EO (ZX l{Bo<An<Bl}>

neZ

A)Ep (Z X(4 1{Bo<An<Bl}> (7.65)

nez

A(B)E} (X(0))

Apply the last equation t& (¢) = 1 and obtain Eq.(7.43). Combine Eq.(7.65) with Eq.(7.43) @loidin Eq.(7.44).

THEOREM 7.4.2 First note that the expectation df(¢y) is

> P(So+...+ S 1< t) (7.66)

n>1
Pick some arbitrary, fixed > 0; by Markov’s inequality:
P(So+...+ 8,1 <tg) < €K (6_5(5”“*5"*1))
= eSoG(s)”

whereG(s) := E (e=*%) is the Laplace-Transform ¢f;. We havei(s) = 1 if and only if 55, = 0 with probability
1. Thus, by hypothesig;(s) < 1 sinces > 0. By Eq.(7.66):

N(to)) < ey (G(s))

n>1
THEOREM 7.4.3 Let¢ be an arbitrary bounded test functionft), S(t). Apply Palm’s inversion formula:
T
E(¢(Z(t),S(t)) = AE° ( o(Zo, Tl)dt>
0

= AE° (Th¢(Zo,T1)) = AE° (So9p(Zo, So))
A st st
Zx(0,00)

from where item 1 follows, withy = A.

Since the knowledge @ (¢(Z(t), S(t))w(TT(t))) for anyg, 1) determines the joint distribution 6% (¢), S(¢), T (t)),
to show item 2, it is sufficient to show that for any boundedt fanctiony of 7 (¢) and any bounded test function
of Z(t), S(t), we have:

E (¢(Z(t), S(t)(T* (1)) = /

zeZ,s>0

o515 sz.0) ([ Tuto ) duceyas
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which, is equivalent to

E ($(Z(t), ST (t))) = /

zeZ,s>0

51 5(0) [ witsan) auteyas (7.67)

Apply Palm’s inversion formula again:

So
E (o(Z(1), S()p(TT (1) = AEO( ; ¢(Zo,50)¢(30—u)du>

1[5

= AE° <S¢(Z()7SO)E ; ¢(50—U)du>

- s ([ (s = wian) autzpas

which, after the change of variable= s — w« in the inner integral is the same as Eq.(7.67).

THEOREM 7.5.1 By the strong markov property:
Jij =P (Xp, = j| X1, = i) = P(Xp+(0) = j|Xo = 1)
Condition with respect to the next transition, selectedair n

Jij= Y. Qirt Y. QirP(Xr+) =j|X1 =kand X, = i)
k(i k)EF k(i k) € F

Now, for (i, k) & F, given thatX, = i, X; = k, we haveT*t(0) = T*(1). Thus, the last term in the previous
equation is

Z Qi kP(X7+(1) = jlX1 =k and Xo = i) = Z Qi kJk,i
k(i k)¢ F k(i k) F
Combining the two gived = C + (Q — C).J which shows item 1.

Now, by definition of an intensity = Z(i,j)eF P(Xo = j,X_1 = 1) andP(Xy = j,X_1 = i) = mQ;,;, which
shows item 2. '

By definition of the Palm probability:

. . 1 1 ) .
PU(X_y =i, Xg=j) = XE(l{X,lzj}l{Xo:z‘}l{(i,j)eF}) = XP(XA =J,Xo = 1)1{G jery

which shows item 3. Item 4 follows immediately.

THEOREM 7.5.2 The probability that there is a transition at tihegiven thatX, = i, is ), independent of.
ThusN (1) is independent of the state at tifieSince we have a Markov chain, the state at tindepends on the past
only through the state at time ThusN (1) is independent oN (¢0) for all ¢ > 0. By stationarity, it follows thatV (¢)

is iid, i.e. is a Bernoulli process.

The relation between Palm and stationary probabilitidefd from Theorem 7.5.1, item 4. The Palm probability to
be in state just before a transition is

1 A
—m »_Cli,j) = —m
Ao 4 (t.4) Ao

where)\ is the A of Theorem 7.5.1. The sum of probabilities is 1, thus necrégssf}g =1.
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7.8 REVIEW QUESTIONS

QUESTION 7.8.1. Consider the Surge model with one user equivalent in Se8tmb. Assume the
average inactive off period id, the average active off period &, the average number of URLs
requested per active period 18, and the average response time for a URL requegt.i¥Vhat is
the throughput of requets ?

QUESTION 7.8.2. A distributed protocol establishes consensus by peridigiteaving one host
send a message toother hosts and wait for an acknowledgement [5]. Assumeithestto send
and receive an acknowledgement are iid, with distributit{n). What is the number of consensus
per time unit achieved by the protocol ? Give an approxinratising the fact that the mean of the

kth order statistic in a sample of is approximated byT‘l(niH). 8

QUESTION 7.8.3. (ARP protocolwith refreshes) IP packets delivered by a host are produced
according to a stationary point process wittpackets per second in average. Every packet causes
the emission of an ARP if the previous packet arrived mora thaeconds agot{ is the ARP
timer). What is the average number of ARP requests genepatesecond ?°

QUESTION 7.8.4. Consider the notation of Theorem 7.3.1. Is the distributb# (¢) equal to the
convolution of those ok () and Y (¢) ? °

Using the large time heuristic, one findls= m

8cCall T,, the point process of the starting points for consensus mufile required answer is the intensiyf
T,. We havex = E°(T7). Now assuming that a round starts at timeve havel; = max;—; ., S; whereS; ~ iid
with distribution F(). Thus

PY Ty <t) =P(S; <tand..andS, <t)=F()"
thus
+oo
Bm)= [ (- FoMa
0

and
1

o T (L=F)m)d

A=

n+1

9Apply Neveu's exchange formula to : first process = ARP retjgasssions (intensity\;); second process =
all packet arrivals (intensity) and X, = 1. This gives\; = AE°(N;(0,7]), whereE? is the Palm probability
for the second point process and is the number of ARP requests. Given that there is a packetbat time0,
N1(0,{] = 1g1,_7,>¢,3- Thus the required throughputlds = AP°(Ty > ¢,). It depends only on the tail of the
packet inter-arrival time.

100n one handZ(t) = X (t) + Y (t), so it seems tempting to say yes. It is true for a Poisson psoddowever,
consider the case whefg, 1 — 7, is constant equal to sonie under Palm. TheX (¢) andY (¢) are uniform on
[0, T, the convolution has a positive density @h27'), whereasZ (t) is constant equal t&'. The answer is naX (t)
andY (t) are not independent, in general.

The Palm distribution ofy is that of the maximum of: iid random variables, thug® (T;) ~ F~1 ( n )
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Queuing phenomena are very frequent in computer and conaation systems, and explain a
large number of performance patterns. There is a large bioalyadable results in queuing theory;
in this chapter, we focus on results and concepts that ayebreadly applicable, some of them
are little known. We present four topics, which constitutgoad coverage of all the techniques
required in practice.

First, we start with simpledeterministic results; they provide results on transient phenomenons,
and also some worst case bounds. These are often overldaketiey do provide a first, some-
times sufficient, insight. Second we presepéerational lawsfor queuing systems; in some sense
they are the “physical laws” of queuing: Little’s formulagtDASSA property, network and forced
flows law. Here we make frequent use of Palm calculus (ChafteThese results also provide
tools and bounds for fast analysis. Third, we give a seriesmple, though important results for

237
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single queueswith one or several servers and for the processor sharingegtieese can be taken
as models for systems without feedback. Fourth, we discessork of queues which can be
used to model systems with feedback, and also complex aitens. Here we made the topic as
simple as possible, but the result is not too simple, as iBeseme description complexity.

We give a unified treatment of queuing networks; we discugsets such as the MSCCC station,
a powerful model for concurrency in hardware or software\ittle networks, which are used
to model bandwidth sharing in the Internet. This latter tppaetwork is traditionally presented
as a type of its own, a non product form queuing network. Wavdhat it must not be so: all of
these are instances of the general theory of multi-clasdystdorm queuing networks. Presenting
these results in this way simplifies the student’s job, aetlsea single framework to learn, instead
of several disparate results. It is also more powerful asowigdes new ways to combine existing
building blocks.

Last, we illustrate on a example how the four different tsmian be articulated and provide differ-
ent insights on the same performance question.
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8.1 DETERMINISTIC ANALYSIS

8.1.1 DeESCRIPTION OF A QUEUING SYSTEM WITH CUMULATIVE FUNC-
TIONS

A deterministic analysis is often very simple, and provifiest insights of a queuing system.
Perhaps the simplest, and most efficient tool in this toolbdke use of cumulative functions for
arrival and departure counts, which we explain now. For peeeatment, see [55, 23].

Consider a system which is viewed as a black box. We make nofigpassumptions about its
operation; it may be a network node, an information systém,léhe cumulative functions are:

e A(t) (input function): amount of work that arrives into the system in the timerveé0, ¢]
e D(t) (output function): amount of work done in the time intervil, ¢|
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Assume that there is some time< 0 at which A(ty) = D(t,) = 0. We interpret,, as an instant
at which the system is empty. The main observations are:

e Q(t) :== A(t) — D(t) is the backlog (unfinished work) at time

e Defined(t) = min{u>0: A(t) < (D(t+w)} (horizontal deviation on Figure 8.1). If
there is no loss of work (no incoming item is rejected) andh@ system is first in, first out
(FIFO), thend(t) is the response time for a hypothetical atom of work that wautive at
timet.

The next example shows how this can be used for worst casgsanal

time
L

Figure 8.1:Use of cumulative functions to describe a queuing system.

ExXAMPLE 8.1:PLAvouT BUFFER  Consider a packet switched network that carries bits of infor-
mation from a source with a constant bit rate » (Figure 8.2) as is the case for example, with circuit
emulation. We have a first system S, the network, with input function A(t) = rt. The network
imposes some variable delay, because of queuing points, therefore the output A’() does not have
a constant rate . What can be done to re-create a constant bit stream ? A standard mechanism

Apits

A(t) A’ (t) D(t)

—~ s o)

Figure 8.2:A Simple Playout Buffer Example

is to smooth the delay variation in a playout buffer. It operates as follows. When the first bit of data
arrives, at time d(0), it is stored in the buffer until some initial delay has elapsed. Then the buffer is
served at a constant rate » whenever it is not empty. This gives us a second system &', with input
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A’() and output D(). What initial delay should we take ? We give an intuitive, graphical solution.
For a formal development, see [55, Section 1.1.1].

The second part of Figure 8.2 shows that if the variable part of the network delay (called delay
jitter) is bounded by some number A, then the output A’(¢) is bounded by the two lines (D1)
and (D2). Let the output D(t) of the playout buffer be the function represented by (D2), namely
D(t) = rt — d(0) — A. This means that we read data from the playout buffer at a constant rate r,
starting at time d(0) + A. The fact that A'(t) lies above (D2) means that there is never underflow.
Thus the playout buffer should delay the first bit of data by an amount equal to A, a bound on
delay jitter.

QUESTION 8.1.1. What is the required playout buffer sizé ?

8.1.2 REICH’'SFORMULA

This is a formula for describing the backlog in a single semugeue. Consider a lossless, FIFO,
system, with a constant service rat@nd with unlimited buffer size.

THEOREM 8.1.1 Reich). The backlog at timein the system defined above is

Q(t) = max (A(t) — A(s) — c(t — 5))

s<t

EXAMPLE 8.2:SCALING OF INTERNET DELAY. We are interested in knowing whether queuing
delays are going to disappear when the Internet grows to broadband. The following analysis is
due to Norros [74] and Kelly [45].

Assume traffic on an internet link grows according to three scale parameters: volume (v), speedup
(s) and number of users (u). This is captured by the relation:

A(t) =0 Ai(st) (8.1)
=1

We are interested in the delay; assuming the link is a constant rate server with rate ¢, this is the
backlog divided by c. We also assume that the capacity of the link is scaled with the increase in
volume: ¢ = cyvsu. The question is now: how does the delay depend on v, s, u ?

The maximum delay, D(v, s, u) is derived from Reich’s formula:

Do) = (24 1)

t>0 C

The dependence on v and s is simple to analyze. It comes

D(v,5,1) = mex <UA1(st) B t) s <A1(t) B f) _ %D(L 1.1)

t>0 c t>0 coS s

and similarly for « # 1 we have D(v, s, u) = %D(l, 1,u). Thus the delay is independent of volume
scaling, and is inversely proportional to the speedup factor s. The dependence on « requires more

LA bound on buffer size is the vertical distance betweét) and A’(¢); from Figure 8.2, we see that it is equal to
2rA.
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assumptions. To go further, we assume a stochastic model, such that the queue length process
Q(t) is stationary ergodic. We can use Reich’s formula:

Q(0) = max (A(-t) — ct)
where A(—t) is now the amount of work that has arrived in the interval [—¢,0]. We assume that
Eq.(8.1) continues to hold. Further, we model A;(—t) by a fractional brownian traffic [74]. This is a
simplified model which captures long range dependence, i.e. the often observed property that the
auto-correlation function does not decay exponentially. This means that

Ai(—t) = Mt + VI aBY (t)

where Bf;{ is fractional brownian motion, X\ the traffic intensity, and a a variance parameter. Frac-
tional brownian motion is a gaussian process, with mean At and variance \at?*1. By (t) is self-
similar in the sense that the process By (kt) has the same distribution as k% By (t).

Assume that the A;s are independent. It follows from the properties of fractional brownian motion
that A(—t) is also fractional brownian traffic. Its mean is u\ and its variance is uat?, thus it has
intensity u\ and same variance parameter a.

By Reich’s formula

D<1,1,u>:max<A<t>—t>:max[@_l)HmBH(t) ! }

t>0 \ Col >0 co co/u

Do the change of variable t = k7. It comes

D(1,1,u) ~ max Ki - 1) k7 + VAak! By (1) — ]

>0 [\ co co/u

1
where ~ means same distribution. Take k such that £ = % i.e. k =u 20-#), Then we have

D(1,1,u) ~u~ 2m D(1,1,1)

In summary, the delay scales according to

1
D(v,s,u) = WD(L 1,1)

with b = ﬁ In practice, we expect the Hurst parameter usually lies in the range [0.67, 0.83] thus
1.5 < b < 3. In summary, delay decreases with speedup, and more rapidly with number of users.

8.2 OPERATIONAL LAWS FOR QUEUING SYSTEMS

These are robust results, i.e. which are true with very fesumptions on the queuing system.
other than stability. Many of them directly derive from Chexp7, such as the celebrated Little’s
law. The laws apply to a stationary system; for a single quthey are true if the utilization is
less thanl. This type of analysis was pioneered in [34]; an originanstalone treatment can be
found in [35].



8.2. OPERATIONAL LAWS FOR QUEUING SYSTEMS 243

8.2.1 DEPARTURES AND ARRIVALS SEE SAME AVERAGES (DASSA)

THEOREM 8.2.1. (DASSA) Consider a system where individual customers coraed out. As-
sume that the arrival proces$, and the departure proceds, are stationary point processes, and
that they have no point in common (thus there are no simutiasarrivals or departures).

Let N(t) € N be the number of customers present in the system atttitiesume thaiv (), A,
and D,, are jointly stationary (see Section 7.2).

Then the probability distribution oW (¢) sampled just before an arrival is equal to the probability
distribution of N (¢) sampled just after a departure.

The proof is given in Section 8.10; it is a direct applicatadrthe Rate Conservation law in Theo-
rem7.3.2.

EXAMPLE 8.3:INTER-DEPARTURE TIME IN M/GI/1 QUEUE. We want to compute the distribution
of inter-departure time in the stable M/GI/1 queue defined in Section 8.3 (i.e. the single server
gueue, with Poisson arrival and general service time distribution), and would like to know in which
case it is the same as the inter-arrival distribution.

First note that the time between two departures is equal to one service time if the first departing
customer leaves the system non-empty, and, otherwise, the same plus the time until the next
arrival. The time until next arrival is independent of the state of the system and is exponentially
distributed, with parameter the arrival rate A. Thus the Laplace Stieltjes transform? of the inter-
departure time is

Lp(s) = (1-p)Ls(s) +pLs(s)

A+ s

where Lg is the Laplace Stieltjes transform of the service time and p is the probability that a
departing customer leaves the system empty.

By DASSA, p is also the probability that an arriving customer sees an empty system. By PASTA
(Example 7.18), it is equal to the probability that the queue is empty at an arbitrary point in time,
which is also equal to 1 — p, with p = AS and S = mean service time. Thus

Lp(s) = Ls(s) <p + M)

A+ s

which entirely defines the probability distribution of inter-departure times.

The inter-departure times have the same distribution as the inter-arrival times if and only if Lp(s) =

A/ (A + s). Solving for Lg gives Lg(s) = A?p/is, i.e. the service time must be exponentially dis-

tributed and the M/GI/1 queue must be an M/M/1 queue.

“The Laplace-Stieltjes transform of a non-negative randareble X is defined byLx (s) = E (e7*%). If X
andY are independent; x 1y (s) = Lx(s)Ly (s); X is exponentially distributed with parametgiif and only if

Lx(s) = Ais.
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8.2.2 LITTLE 'SLAW AND APPLICATIONS

THEOREM 8.2.2 (Operational Law)Consider a stationary system that is visited by a flow of cus-
tomers (for a formal definition, see Theorem 7.3.4).

e [Throughput] The throughput, defined as the expected number of arrivalsgeond, is
also equal to the inverse of the expected time between #sriva

o [Little]

AR=N

where) is the expected number of customers arriving per secBrislithe expected response
time seen by an arbitrary customer andis the expected number of customers observed in
the system an arbitrary time

e [Utilization Law] If the system is a single server queue with arrival ratand expected
service times:

P(server busy= p := \S

If it is a B-server queue:

E(number of busy servers- sp

» |t

with p := 22,

QUESTION 8.2.1. Consider a single server queues that serves only one custdradime. What
is the average number of customers not in service (i.e. invéigng room ?)3

THE INTERACTIVE USER MODEL The interactive user model is illustrated inFigure 8:3.
users send jobs to a service center. Tiek time is defined as the time between jobs sent by one
user. CallR the expected response time for an arbitrary job at the s=oédater,Z the expected
think time and\ the throughout of the system. A direct application of Liglaw to the entire
system gives:

THEOREM 8.2.3 (Interactive User).
MZ+R)=n

EXAMPLE 8.4:SERVICE DESK. A car rental company in a large airport has 10 service attendants.
Every attendant prepares transactions on its PC and, once completed, send them to the database
server. The software monitor finds the following averages: one transaction every 5 seconds,
response time = 2 s. Thus the average think time is 48 s.

8.2.3 NETWORKS AND FORCED FLOWS

We often find systems that can be modeled as a directed grajdd @ network. We consider
models of the form illustrated on Figure 8.4. If the total rhen of customers is constant, the

3N, = N — p, this follows from items 2 and 3 in Theorem 8.2.2.
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Z R
O
. 8 A |Service
Center
O
Q n users

Figure 8.3:The Interactive User Model

network is called “closed”, otherwise “open”. In Sectiod 8ve will study such networks in more

detail.
)\k
de k
2 fo) G,

Figure 8.4:Network Model

THEOREM8.2.4 (Network Laws)Consider a stationary network model wherss the total arrival
rate.

e [Forced Flows| A\, = AV, where )\, is the expected number of customers arriving per
second at nodé andV, is the expected number of visits to nddiey an arbitrary customer
during its stay in the network.

e [Total Response Time] Let R [resp. R;] be the expected total response tifReseen by an
arbitrary customer [resp. by an arbitrary visit to nodg.

R=> RV
k

EXAMPLE 8.5:Transactions on a database server access the CPU, disk A and disk B (Figure 8.5).
The statistics are: Vopy = 102,V = 30,Vg = 68 and Ropy = 0.192s, Ry = 0.101s, Rg =
0.016 s

The average response time for a transaction is 23.7 s.
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8.2.4 BOTTLENECK ANALYSIS

Common sense and the guidelines in Chapter 1 tell us to andlytzlenecks first. Beyond this,
simple performance bounds in stationary regime can be fiwynaksing the so-called bottleneck
analysis. It is based on the following two observations:

1. waiting time is> 0
2. aserver utilization is bounded hy

O j
%8ﬂ :>
O () T

nusers
in think time

Figure 8.5:Network example used to illustrate bottleneck analysis. n attendants serve customers. Each
transaction uses CPU, disk A or disk B. Av. numbers of visits per transaction: Vopy = 102,V = 30, Vg =
17; av. service time per transaction: Scpyy = 0.004s, Sp = 0.011s, Sg = 0.013s; think time Z = 1s.

We illustrate the method on Figure 8.5. The network is a comtion of Figure 8.3 and Figure 8.4.
Transactions are issued by a poolofustomers which are either idle (in think time) or using the
network. In addition, assume that every network node is glsiserver queue, and I8}, be the
average service time per visit at nadeThus R, — S, is the average waiting time per visit at node
k. The throughpuh is given by the interactive user model:

n

A 8.2
Z+> . ViRy (8.2)

and by forced flows, the utilization of the server at nddis p, = \V,.S,. Applying the two
principles above gives the constraintsan

{ i i T VS (8.3)

— maxy Vi, Sk
Similarly, using Eq.(8.2) and Eq.(8.3), we find the follogigonstraints on the response time

R>>", ViSy

Figure 8.6 illustrates the bounds. See also Figure 8.15.

A nodek that maximizes/,, S, is called, in this model, &ottleneck. To see why a bogtleneck
determines the performance, consider improving the sybiedecreasing the value ®4,.5, (by
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throughput WZ+ 2V, S)

1/(V,S,)

(Vepy Scpy)

Figure 8.6: Throughput bound (B0) obtained by bottleneck analysis for the system in Figure 8.5, as a
function of the number of users n. B1, B2: typical throughput values for a system without [resp. with]
congestion collapse.

reducing the number of times the resource is used, or byaigishe resource by a faster one). If
k is not a bottleneck, this does not affect asymptote on Fi§ueand only marginally increases
the slope of the bound at the origin, unliketifis a bottleneck. On Figure 8.6, we see that the
bottleneck is the CPU.

Among the two bounds in Eq.(8.3), the former is accuratevaidad (when there is no queuing),
and the latter is expected to be true at high load (when thitebetk is saturated). This is what
makes bottleneck analysis appealing, as the two bounds bote ends of the spectrum. Note
however that, at high loads, congestion collapse might ma@nd then performance would be
worst than predicted by the bound.

QUESTION8.2.2.What happens to the example of Figure 8.5 if the CPU procgssite is reduced
from 0.004 t0 0.003 ? t00.002 ? *

8.3 CLASSICAL RESULTS FOR A SINGLE QUEUE

The single queue has received much attention, and ther@algiaal results available for a large
class of systems with random arrivals and service. We give &eninimal, but useful set of result.
For more details on some topics, the classical referen@isi[7]; a more compact and up to date
textbook is [71]. We start with some notation and a genesalte

8.3.1 KENDALL’S NOTATION
The classical notation for a queue, in its simplest formfihe typeA/S/s/ K where:

e A (character string) describes the type of arrival processstaads for the most general
arrival processA =G| means that the arrival process is a point process witmtigrarrival
times, M is for a Poisson arrival process.

4The disk A becomes the bottleneck. Decreasing the CPU psimgeme t00.002 does not improve the bound
significantly.
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e S (character string) describes the type of service proceskr e most general service
processS =Gl means that the service times are iid and independent @frthal process,
S =M is the special case of Gl with exponential service tinfes;D with constant service
times.

e BandK are integers representing the number of servers and theigafmaximum number
of customers allowed in the system, queued + in service).nN¥he- oo, it may be omitted.

e Let A, be the arrival time and),, the service time of theth customer, labeled in order
of arrival. We assume that the sequelige, S,,) is stationary with respect to the index
and that it can be interpreted as a stationary marked pootegs (i.e. the expectation of
A,41 — A, isfinite, see Theorem 7.4.1).

e The service discipline is by default FIFO, otherwise it isnti@ned explicitly.

8.3.2 THE SINGLE SERVER QUEUE
STABILITY

We consider the most general queue with one single servewdhdnfinite capacity. Note that
we do not assume Poisson arrivals, and we allow service timeepend on the state of the
system. We assume that the system is work conserving. Mergsply, leti (¢) be the backlog
process, i.e. the sum of the service times of all customatsaite present in the system at time
t. When a customer arrive$l/(¢) increases by the (future) service time of this customer. The
work conserving assumption means thatt) decreases at rafeover any time interval such that
Wi(t) > 0.

An important issue in the analysis of the single server questability. In mathematical terms, it
means whether the backldy (¢) is stationary. When the system is unstable, a typical belbavi

is that the backlog grows to infinity.

The following is the general stability condition for the gie server queue. Lét be the expectation
of the service time) the intensity of the arrival process (expected number ofals per second)
andp = \S the utilization factor.

THEOREM 8.3.1. (Loynes [3, Thm 2.1.1])

If p < 1 the backlog process has a unique stationary regime. In @wgosiary regime, the queue
empties infinitely often.

Furthermore, for any initial condition, the waiting time thfe nth customer converges in distribu-
tion asn — oo to the waiting time for an arbitrary customer computed in $it@tionary regime.

If p > 1 the backlog process has no stationary regime.

A heuristic explanation for the necessary condition is,tlifahe system is stable, all customers
eventually enter service, thus the mean number of begisrongervice per second s From
Little’s law applied to the server (see Section 8.2), we have the probability that the server

is busy, which is< 1. Forp = 1 there may or may not be stability, depending on the specific
gueue. Be careful that this intuitive stability result holzhly for a single queue. For networks of
interconnected queues, there is no such general resuls@sded in Section 8.4. The theorem is
for a queue with infinite capacity. For a finite capacity quebere is, in general, stability for any
value ofp (but for p > 1 there must be losses).

QUESTION 8.3.1. Consider a queuing system of the form G/G/1 where the setwieeS,, of
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customern is equal to the int_er-arrival timed,,.; — A,,. What are the values qgf and of the
expected number of customeys? °

QUESTION 8.3.2. Give an example of stable and of an unstable single servarequithp = 1. ©

M/GI/1 QUEUE The arrival process is Poisson with parametesind the service times and
independent of each other and of the arrival process, witeremgl distribution. Fop < 1 the
gueue is stable and far > 1 is is unstable. Using the rate conservation law as in Examgle
we obtain the Laplace Stieltjes transform of the waitingetif@ollaczek-Khinchine formula for
transforms):
s(1—p)
L = 8.5
wi(s) s — A+ Ls(s) (8:5)

whereLs is the Laplace Stieltjes transform of the service time. Nb#g, by PASTA, the waiting
time has the same distribution as the workload sampled atginaaty point in time.

QUESTION 8.3.3. Give the Laplace Stieltjes transforfly; of the response timé.

The distribution of the number of customéYst), at an arbitrary point in time, is obtained by first
computing the distribution of the number of customers seendeparture times, and then using
DASSA ([46, Section 5.6]). The distribution is known via itdgransform?®:

Ls(A—Az2)
Ls(A—Xz)—z
(this formula is also called Bollaczek-Khinchine formula for transforms). The mean values of

number of customers in system or in waiting room and the megponse times and waiting times
are easily derived and are given below:

Gnw(z) =1 —p)(1-2) (8.6)

N:fQ—K—FpWith/i:%(l-i-g—%):%(1+COVS)
N,

_ w

o 5(11_—f 1-x)) (8.7)
_1-p

T Sk

W - lTp

Note the importance of the coefficient of variation (CoV) lné service time.

QUESTION 8.3.4. Which of the quantitie/, N,,, R, W are Palm expectations %

M/M/1 QUEUE Thisis a special case of the M/GI/1 queue where the servitestare exponen-
tially distributed. Here it is possible to obtain all statawy probabilities in explicit (and simple)
form, by directly solving the equilibrium equations of theaMov process. One finds that the
distribution of the number of customers at an arbitrary pwinime is, wherp < 1:

P(N(t) = k) = (1 - p)p" (8.8)

)\ = £ thusp = 1. There is always exactly one customer in the queue. Thus 1.

5The example in Question 8.3.1 is stable with- 1. The M/M/1 queue witlp = 1 is unstable.

"The response time is the sum of the service time and the \gditire, and they are independent. Thiig(s) =
Ls(s)Lw (s).

8The z-transform G v (2) of an integer random variabl¥ is defined byG y (z) = E (2).

‘R.W
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and the distribution of the service time of an arbitrary oosgr is given by
PO (Ry <z)=1—e (1775 (8.9)

Furthermore, Eq.(8.7) applies with= 1.

M/M/1/K Q UEUE This is a modification of the M/M/1 queue where the total numifecus-
tomers is limited toK. If a customer arrives when the queue is fulled, it is droppdte M/GI/1
formulas cannot be applied, but, instead, one can direotlyeshe equilibrium equations of the
Markov process.

The system has a stationary regimedarvalue ofp. The distribution of the number of customers
at an arbitrary point in time is

P(N=Fk) = npkl{ogkgK}

. 1—

r .
K+11fp_1
By PASTA, the probability that the system is full is equalve foss probability and is

(1—p)p"

PY( arriving customer is discardéd= P(N(t) = K) = s
—p

GI/GI/1 QUEUE This is the general single server queue where inter-araimel service times
are independent of each other and are i.i.d. In general gsedlform solution exists, but numerical
procedures are available.

One approach is based on a the following equation, whichtsanastic recurrence:
Wn - (Wn—l + Sn—l - An + An—1)+

where the notatiofiz) ™ meansmax(z,0) andW,, = W (A,,) is the workload in the system just
before thenth arrival, i.e. the waiting time for theth customer (herel,, is the arrival time and
S, the service time of theth customer). Let’, = A, — A,_1 + S,,. Note thatC,, is i.i.d. and
independent ofV,,_; thus

W, S (W, - O (8.10)

If p < 1the system has a stationary regime, and the stationarybditstm of waiting timell/’ must
satisfy
W (g — oy (8.11)

whereC' is a random variable with same distribution4s — A,,_; + S,,. This equation is called
Lindley’s equation. It is classical to use CDFs, which gives the following eqigwnt form of
Eq.(8.11):
Oifx <O
F - x
v = { T e - el

where Fyy, is the CDF of waiting times and is the PDF of4,, — A,_1 + S,. EQ.(8.11) is an
equation of the Wiener-Hopf type and can be solved, at l@astany cases, using the theory of
analytical functions; see [46, Section 8.2].

(8.12)
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A second approach consists in solving Eq.(8.10) directldisgretization. Pick a time stepand
let, forn € Nandk € Z

wl = P (W e [kd, (k +1)5)) (8.13)
s = P(S, € [kd, (k+1)d)) (8.14)
ar = P(—A, + Au_y € [k0, (k +1)6)) (8.15)

Note thatw, = s, = 0 for £ < 0 anda,, = 0 for £ > 0 and that the arraysanda are independent
of n. EQ.(8.10) can be approximated by

(w" 1*s*a)k1fk>0

Yico(w" ™ x s a), (8.16)
0if k<0

wh
Wi
w?
Wy
wn
Wy

wherex is the discrete convolution. The error we are making is dugigoretization and should
decrease witl. In fact, Eq.(8.16) is exact for the modified system where e@paced the service
times inter-arrival times by approximations that are npléts of 9; such an approximation is by
default for the service time, Eq.(8.14), and by excess feinker-arrival time, Eq.(8.15); thus the
approximating system haspavalue less than the original system. If the original systemstable,

so is the approximating one, and by Loynes’ theorem, thatitar converges to the stationary
distribution of waiting time. The method thus consists inmauically evaluating Eq.(8.16) until
the norm of the difference™ — w"~! becomes small; the convolution can be computed using the
fast Fourier transform. See [39] for an example where thighotkis used.

A third type of methods uses mixtures of exponentials to exprate the distributions of inter-
arrival and service times as in Section 8.8.1. Then theostaty distributions can be computed
explicitly; see [52, 72].

WHAT THIS TELLS Us

Though most practical systems are unlikely to exactly fitdabkgumptions of any of the models in
this section, the analytical formulas do explain pattehas &re observed in practice. The models
in this section are for systems without feedback, since theaprocess is not influenced by the
state of the queuing system. Important features of sucles\sare:

e Non Linearity of Response Time At low values of the utilization factop, the response
time tends to increase slowly, and linearly within contrast, ag approaches, the response
time grows toco (Figure 8.7). Thus the impact of a small traffic increase anthtically
different, depending on the initial value of the utilizatifactor.

QUESTION 8.3.5. What happens for the system in Figure 8.7 if the traffic voluroeases
by 20% ?1°

¢ Variability Considered Harmful : The Pollacezk-Khinchine formula for the mean in Eq.(8.7)
shows that response time and queue sizes increase withriabilty of the service time.
See also Figure 8.8.

0The system becomes unstaple- 1; in practice it will lose requests, or enter congestionajuse.
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Figure 8.7:Average response time versus requests per second for a database server modeled as M/GI/1
gueue. The time needed to process a request is 0.1 second and its standard deviation is estimated to 0.03.
The maximum load that can be served if an average response time of 0.5 second is considered acceptable
is 8.8 requests per second. If the traffic volume increases by 10%, the response time becomes 1.75, thus
is multiplied by a factor of 3.5.
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Figure 8.8:Mean response time for M/GI/1 queue, relative to service time, for different values of coefficient
of variation CoVg = % from top to bottom: CoVs = 1.4, CoVg = 1 (M/M/1 queue) and CoVs = 0 (M/D/1
queue).
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8.3.3 THE PROCESSORSHARING QUEUE, M/GI/1/PS

This is a special case of the single server queue, witlPteeessor Sharing (PS) service dis-
cipline instead of FIFO. Here we assume that the server ebvitself equally into all present
customers; this is an idealization whén— 0 of the round robin service discipline, where the
server allocates times slices of duration turn to each present customer. If there Areustomers
in the queue, the residual service time for each of them dsereat a rate/N. This is also called
egalitarian processor sharing. Loynes’s theorem applies and the system is stable when.

The workload procesH/ (t) is the same as for FIFO queues, but the distribution of watiimes
and of customers is not the same. We give results for the siogde where arrival are Poisson and
service times are i.i.d. and independent of the arrival gsec They are both simple and striking.
We assume < 1. First, the stationary probability is [92]:

P(N(t) = k) = (1 - p)p" (8.17)

which shows in particular that it depends on the service tiis&ibution only through its mean
(this insensitivityproperty is common to many queues in the theory of networksegted in
Section 8.4). It follows that

Second, the average response tifRyeof an arbitrary customer, conditional to its service tifye
satisfies [47]

-
‘WI ‘b
)

(8.18)

o=

—_

—p

i
1—p
i.e. itis as if an arbitrary customers sees a server for lHexlme, but with a rate reduced by the
factor1/(1 — p). EQ.(8.18) and Eq.(8.19) can be simply deduced from resuection 8.4 if the
distribution of service times can be decomposed as a mixfugrponentials; see [100]. Eq.(8.17)
is a special case of results for product-form queuing néisi@ee Section 8.4.

E (Ry |So = 7) =

(8.19)

WHAT THIS TELLS US

Compare the M/M/1 and M/M/1/PS queues, where it is implicéttthe M/M/1 queue is FIFO.
The stationary distribution of numbers of customers aratidal, therefore (by Little’s law) the
mean response times are identical, too. However, the gonditmean response time, given the
service time, are very different. For M/M/1/PS, it is giventbq.(8.19). For the M/M/1 queue, the
response time is the sum of waiting time plus service timd,tha waiting time is independent of
the service time. The mean waiting time is given in Eq.(8.i&hw = 1, therefore, for the FIFO
queue:

Figure 8.9 plots the conditional response time for both FEf@ PS queues, and several values
of x.

PS and FIFO have the same capacity and the same mean respuseélowever, the PS queue
penalizes customers with a large service time, and the fyesglroportional to the service time.
This is often considered adairnessproperty of the PS service discipline.
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Figure 8.9:Expected response time given that the service time of this customer is = versus utilization p, for
M/M/1 queues with FIFO (dashed) and PS (plain) service disciplines, for various values of z. Mean service
time S'is 1 time unit

QUESTION 8.3.6. For which value of the service timeare the expected response times for M/M/1
and M/M/1/PS equal ?*

8.3.4 3NGLE QUEUE WITH B SERVERS

The multiple server queue is defined by the fact that at iagistomers can be served in parallel.
Thus, the workload process decreases at a rate equahtdV(t), 1) whereN (t) is the number of
customers present in the queue. The utilizatiemnow defined by = %S. The stability condition

is less easy than for single server queues. Whenl there is a stationary regime but it many not
be unique [3, 2.3]. Whep > 1 there is no stationary regime.

M/M/B Q UEUE

For more specific system, one can say more. A frequently ugsdm is the M/M/B queue, i.e.
the system with Poisson arrivalB, servers, exponential service times and FIFO disciplinee Th
system can be studied directly by solving for the statiomapbability. Here whemp < 1 there

is a unique stationary regime, which is also reached asytnpliy when we start from arbitrary
initial conditions; forp > 1 there is no stationary regime.

Whenp < 1 the stationary probability is given by

(Bp)*
P(N(t)=k) = ntlpk ?fongB
n=g— it k> B

(8.21)

When the service time is equal to the mean service tinse
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1

— (Bp)" Bp)®
:0<@'p)+ (Bp)

ithn™' =
R B!(1—p)

2

and the stationary CDF of the waiting time for an arbitrargtomer is
PO(Wy <z) = 1—pe BU-P5

| L STB- By
withp = ——andu = BO (Bp!)l
1=pu D im0 i

The probability of finding all servers busy at an arbitrarynpan time or at a customer arrival is
(Erlang-C formula):
P(all servers busy=P(N(t) > B) =p (8.22)

Average quantities can easily be derived:

1—p
_ pp
w 1—p

pS
B(1-p)
pS

B(1-p)

==

+ 85

%\ =i

M/GI/B/B Q UEUE This is the system with Poisson arrivals,servers, arbitrary (but indepen-
dent) service times and no waiting room. An arriving custothat finds allB servers busy is
dropped.

The system is stable for any value @and the stationary probability of the number of customers
is given by
k B

B k

B
PNW = k) = musisy 0 L
k=0 '

k!

The probability that an arriving customer is droppedEslgng Loss Formula, or Erlang-B
Formula):

B
P°(arriving customer is dropped= P(N(t) = B) = n(BBp') (8.23)

WHAT THIS TELLS US

The simple M/M/B model can be used to understand the benefdaaf sharing. Consider the
systems illustrated in Figure 8.10.

Assume processing times and job inter-arrival times candieted as independent iid exponential
sequences. Thus the first [resp. second] case is modelec d4/Mi2 queue [resp. a collection
of two parallel M/M/1 queues]. Assume load is balanced ewbatween the two processors. Both
systems have the same utilizatipn The mean response for the first system is obtained from
Section 8.3.4; we obtaif}_%. For the second system it is simpﬂ% (Figure 8.10).

We see that for very small loads, the systems are simila@scéed. In contrast, for large loads,
the response time for the first system is much better, withia egual tol + p. For example, for
p = 0.5, the second system has a response fifi¢imes larger.

However, the capacity is the same for both systems: the bhefiddiad sharing may be important
in terms of response time, but does not change the capaditye afystem.
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Figure 8.10:Mean response time over service time for systems 1 (bottom) and 2 (top), versus utilization
factor p.

8.4 DEFINITIONS FOR QUEUING NETWORKS

Realistic models of information and communications systeénvolve interconnected systems,
which can be captured by a queuing networks. In general, mehnocan be said about a queu-
ing network. Even the stability conditions are not known @ngral, and there is no equivalent of
Loynes’theorem for networks. Indeed, the natural conditiat the utilization factor is less than 1
is necessary for stability but may not be sufficient — see {@&6hn example of a multi-class queu-
ing network, with FIFO queues, Poisson arrivals and exptaleservice times, which is unstable
with arbitrarily small utilization factor.

Fortunately, there is a broad class of queuing networkssohealledmulti-class product form
gueuing networks for which there are simple and exhaustive results, givehigand the follow-
ing section. These networks have the property that thetios&y probability has product form.
They were developed &CMP networks in reference to the authors of [10] &elly networks

in reference to [44]. When there is only one class of custenieey are also calledackson
networks in the open case [42] and Gordon and Newell netwiorkise closed case [37]. For a
broader perspective on this topic, see the recent bookaf8#]24]. This latter reference presents
in particular extensions to other concepts, including thegative customers” introduced in [36].
A broad treatment, including approximate analysis for noodpct form queuing networks can
also be found in [101].

We now give the common assumptions required by multi-clasdyrt form queuing networks
(we defer a formal definition of the complete process thatudess the network to Section 8.8).

8.4.1 (QLASSES, CHAINS AND M ARKOV ROUTING

We consider a network of queues, labeled= 1, ..., S, also calledstations. Customers visit
stations and queue or receive service according to thecpkatistation service discipline, and
once served, move to another station or leave the networansiers are instantaneous (delays
must be modeled explicitly by means of delay stations, see\e

Every customer has an attribute callddss, in a finite set{1,...,C}. A customer may change
class in transit between stations, according to the folgwprocedure (calletarkov routing
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in [103]).There is a fixed non-negativeuting matrix ) = (qi’jf) such that for alls, c:

i /
s,s’,c,c

Do qj,’j,' < 1. When a classc customer leaves station(because her service time is com-
pleted), she does a random experiment such that: with pﬂdba@;’j’ she joins station’ with

classc’; with probabilityl — >, qj”j,’ she leaves the network. This random experiment is per-
formed independently of all the7past and present statesaie¢bwork. In addition, there are fresh
independent Poisson arrivals, also independent of theapaspresent states of the network;is

the intensity of the Poisson process of arrivals of classustomers at station We allowr? = 0

for some or alls andc.

We say that two classesc are chain equivalent if ¢ = ¢ or if it is possible for a class-
customer to eventually become a claSsustomer, or vice-versa. This defines an equivalence
relation between classes, the equivalence classes addadlins. It follows that a customer may
change class but always remains in the same chain.

A chain(C is calledclosed if the total arrival rate of customers, .., A is 0. In such a case

we require that the probability for a customer of this chareave the network is also, i.e.
> v.sw = 1forallc € C and alls. The number of customers in a closed chain is constant.

A chain that is not closed is callegben. We assume that customers of an open chain cannot cycle
forever in the network, i.e. every customer of this chaimgwally leaves the network.

A network where all chains are closed is called@sed network, one where all chains are open
is called aropen network and otherwise it is anixed network.

We define the numbe# (visit rates) as one solution to

05 = 05407 + v (8.24)

s’.c

If the network is open, this solution is unique affccan be interpretéd as the number of arrivals
per time unit of class-customers at station If ¢ belongs to a closed chaiff; is determined only
up to one multiplicative constant per chain. We assume tisatray(0?), . is one non identically
zero, non negative solution of Eq.(8.24). ’

Chains can be used to model different customer populatidiie & class attribute may be used to
model some state information, as illustrated in Figure 8.11

It is possible to extend Markov routing to state-dependeuting, for example, to allow for some
forms of capacity limitations; see Section 8.8.6.

8.4.2 CATALOG OF SERVICE STATIONS

There are some constraints on the type of service statidmsea in multi-class product form
gueuing networks. Formally, the service stations mussfatine property called “local balance in
isolation” defined in Section 8.8, i.e., the stationary adoibty of the station in the configuration
of Figure 8.4.3 must satisfy Eq.(8.96) and Eq.(8.97).

In this section we give a catalog of station types that arerknto satisfy this property. There
are only two categories of stations in our list (“insengtivand “MSCCC”), but these are fairly
general categories, which contain many examples such ag$¥ar Sharing, Delay, FIFO, Last

12This interpretation is valid when the network satisfies tiabitity condition in Theorem 8.5.1
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Figure 8.11:A Simple Product Form queuing network with 2 chains of customers, representing a machine
with dual core processor. Chain 1 consists of classes 1, 2 and 3. Chain 2 consists of class 4.

Come First Serve etc. Thus, in practice, if you have to daterrwhether a given station type is
allowed in multi-class product form queuing networks, agrsolution is to look up the following
catalog.

We use the following definitions. Every station type is dedibg

e adiscipline: this specifies how arriving customers are queued, and wihistomers receive
service at any time. We also assume that theresig@on buffer: this is where customers
are placed while waiting or receiving service, and is regmésd with some form of data
structure such that every position in the station buffer lpamddressed by an indéx 7
whereZ is some enumerable set. #fis the state of the station buffer at a given tinsejs
the class of the customer present at positigggual to—1 if there is no customer present).
Further we will make use of two operations.

B' = add(B, 1, c) describes the effect of adding a customer of claasposition indexed by

7 into the station buffer described I8

B’ = remove(B, i) describes the effect of removing the customer present éigos if any

(if there is no customer at positianremove(B, i) = B).

For example, if the service discipline is FIFO: the datacttrce is a linear list such & =

(c1, o, ..., c,) Whereg; is the class of théth customer (labeled in arrival order); the index set
iISZ = N;add(B,i,¢) = (c1,...¢i_1, ¢, Ci, ..., ¢) @ndremove (B, 1) = (1, ...Ci—1, Cit1y -y Cn)-
We call|5| the number of customers present in the buffer; we assumd thatiways finite
(but unbounded).

e aservice requirement, also calledservice time. For example, if a customer is a job, the
service requirement may be the number of CPU cycles requirégds a packet or a block
of data, it may be the time to transmit it on a link. We assuna service requirements
are random and drawn independently from anything else wleeristmer joins the service
station. Unless otherwise specified, the distribution eofise requirements may depend
on the station and the class. Allowing service requirementiepend on the class is very
powerful: it allows for example to model service times theag eorrelated from one visit to
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the next.

e aservice rate: this is the speed at which the server operates, which magndepn the
customer class. If the service ratd jghe service duration is equal to the service requirement
(but the response time may be larger, as it includes waitng)t The service rate may be
used to model how resources are shared between classeat@bia st

CATEGORY 1: Insensitive Station OR Kelly-Whittle STATIONS

This category of stations is called “insensitive” or “KeMWhittle”, for reasons that become clear
below. We first give a formal, theoretical definition, thest he most frequent instances.

FORMAL DEFINITION.

1. The service requirement may be any phase type distrilutigpractice, this may approxi-
mate any distribution, see Section 8.8.1. The serviceilligion may be dependent on the
class.

2. (Insertion Probability) There is an array of numbergi, 3) > 0 defined for any index
i € 7 and any station buffer statg such that: when a clagsustomer arrives and finds the
station buffer in statés just before arrival, the position at which this customerdsed is
drawn at random, and the probability that this customer teeddht position indexed hiis

v (i, add (B, i,c)) (8.25)

The same happens whenever a customer finishes a servicgjpbasthe phase type service
distribution), at which time the customer is treated as a aewal.
We assume to avoid inconsistencies that., v (i,add (B,4,c)) = 1 and~v(i,B) = 0 if
there is no customer at positiom 5.

3. (Whittle Function) There is a function’( ), called the Whittle Function, defined over the set
of feasible station buffer states, such thgi3) > 0 and the service rate allocated to a user
in position: of the station buffer is

VU (remove (B, 7))
v (B)

~(i, B) (8.26)

if there is a customer present at positiomnd0 otherwise. Note that any positive function
may be taken as Whittle function; the converse is not tree any rate allocation algorithm
does not necessarily derive from a Whittle function.

One frequently considers the case where

U(B) = &(7) (8.27)

whereri = (n4, ..., nc) with n. the number of classcustomers i3, and®() is an arbitrary
positive function defined oN°. In other words, the Whittle function in such cases depends
on the state of the station only through the numbers of custsifnot their position in the

buffer). The function® is called thebalance function; the quantityq’g(_ﬁ%“) is the rate
allocated to class. As with Whittle function, any positivéd may be taken as balance
function, but the converse is not true, any rate allocatioeschot necessarily derive from a

balance function.
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4. We assume that for any indéxclassc and station buffer staté

{ remove (add (B,14,c¢),i) = B (8.28)

if B; is not empty:add (remove(B,1),i,B;) = B

i.e. a state remains unchanged if one adds a customer andiatelg removes it, or vice-
versa.

This formal definition may seem fairly appalling, but, as wew next, it is rarely necessary to
make use of the formal definition. Instead, it may be easitrdk up the next list of examples.

EXAMPLES OF INSENSITIVE STATIONS.

For each of these examples, the service requirement distibmay be any phase type distribu-
tion, and may be class dependent.

Global PS (Processor Sharing) The station is as in the Processor Sharing queue of Sec8dh 8.

All customers present in the station receive service, atesagual to}—L when there are cus-
tomers of any class present at the station.

This is a Kelly-Whittle station by taking as station buffeetordered list of customer classes
B = (¢1,...,¢,). Adding a customer at positionhas the effect that existing customers at
positions> i are shifted by one position, thus Eq.(8.28) holds. When mcmsr arrives, it

is added at any positionto n + 1 with equal probability#, i.e.y(i,B) = |B| (recall that
|B| is the total number of customers in when the buffer statg)isThe Whittle function is
simply U (B) = 1 for every5. Thus the service rate allocated to a custom%r, Bs required.

Global LCFSPR This service station ikast Come First Serve, Preemptive Resume (LCF-

SPR). There is one global queue; an arriving customer is indeatehe head of the queue,
and only this customer receives service. When an arrivalrsgthe customer in service is
preempted (service is suspended); preempted customersgeservice where they left it,
when they eventually return to service.

This is a Kelly-Whittle station by taking as station buffeetordered list of customer classes
B = (ci,...,c,) as in the previous example. When a customer arrives, it isgétposition
1,i.e.v(i, B) = 1;=1;. The Whittle function is als@(5) = 1 for every3. Thus the service
rate allocated to a customerligo the customer at the head of the queue, @talall others,
as required.

Per-Class Processor Sharing This is a variant of the Processor Sharing station, wherse¢he

vice rate is divided between customers of the same class cestomer receives service at
rate— wheren, is the number of classcustomers present in the system.

Thisisa Kelly-Whittle station by taking as station buffes@lection ofC' lists, one per class.
Only customers of classmay be present in theh list. Anindex is a couplé = (¢, 7) where

c is a class index ang an integer. Adding a customer at positios= (c, j) has the effect
that existing customers in thh list at positions> ; are shifted by one position, and others
do not move thus Eq.(8.28) holds.

When a class customer arrives, it is inserted into th#h list, at any positiorl to n. + 1,
with equal probability. Thus((c, j), B) = 0 if the customer at positiofr, ;) is not of class

¢, andi otherwise. We take as Whittle functian(3) = 1 for everyB. It follows that the
service rate allocated to a customer of cIaEs as claimed above.

Per-Class LCFSPR This is a variant of the LCFSPR station, where one customeclpss may

be served, and this customer is the last arrived in this class
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This is a Kelly-Whittle station by taking as station buffez@lection ofC' lists, one per class
as for per-class PS. When a clasgustomer arrives, it is added at the head ofdhequeue,
thusv(i, B) = 1if i = (¢, 1) and the class at the head of il queue in3 is ¢, otherwise
0. It follows that the service rate allocated to a customérusless it at the head of a queue,
i.e. this customer is the last arrived in its class. We takeé/agtle functionW(B) = 1 for
everyB. It follows that this station is equivalent to a collectiohn®@ independent LCFSPR
service stations, one per class, with unit service ratech.ea

Infinite Server (IS) or Delay station There is no queuing, customers start service immediately.
This is a Kelly-Whittle station by taking the same statioffféuand insertion probability as
for Global PS, but with Whittle functiod(B) = X wheren = |B] is the total number of
customers present in the station. It follows that the servate allocated to any customer
present in the station i§ as required.

PS, LCFSPR and IS withclass dependent service rate Consider any of the previous exam-
ples, but assume that the service rate is class dependehtepends on the number of
customers of this class present in the station (cail.) the service rate for clag3.

Thus, for Global PS, the service rate allocated to a ctagsstomer is%; for Per-Class

PS, it is%. For Global LCFSPR, the service rate allocated to the unapstomer in
service isr.(n.); for Per Class LCFSPR, the service rate allocated to the classtomer in
service isr.(n.). For IS the rate allocated to every classustomer is.(n.).

This fits in the framework of Kelly-Whittle stations as folls. For PS and LCFSPR (per-

class or global) replace the Whittle function by:

C

1
v® =1l a7

c=1

so that
U (remove (B, 1))

U (B)

as required. For IS, repladeby ¥ (B) = % Hle Ww
service rate. ’

PS, LCFSPR and IS withqueue size dependent service rate Consider any of the first five pre-
vious examples, but assume that the service rate is claspendent, and depends on the
total number of customerns present in the station (call(n) the service rate ). Thus for
Global PS, the service rate allocated to one custon%rlﬂisif this customer is of clasg for

Per-Class PS, it iéfli). For Global LCFSPR, the service rate allocated to the unayise
tomer in service iﬁ(;z); for Per Class LCFSPR, the service rate allocated to evestpmer
ahead of its queue ign). For IS, the service rate for every customer(s).

This fits in the framework of Kelly-Whittle stations as folls. For PS and LCFSPR (per-
class or global) replace the Whittle function by:

=r.(n.)

in order obtain the required

1
\I/ —
(B) r(1)r(2)...r(n)
so that o (B.1))
remove N .
as required. For IS, repladgeby ¥ (B) = %Ww in order obtain the required service

rate.
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Symmetric Station, also callecKelly station: This is a generic type introduced by Kelly in [44]

under the name of “symmetric” service discipline.
The station buffer is an ordered list as in the first exampte/abFor an arriving customers
who findsn customers present in the station, the probability to joisitiani is p(n + 1, ),
where>" ! p(n + 1,i) = 1 (thusy(B,i) = p(|B| ,7)). The rate allocated to a customer in
positioni is p(n, 1) when there are customers present. The name “symmetric” comes from
the fact that the same function is used to define the inseptioibability and the rate.
This fits in the framework of Kelly-Whittle stations, with Wtie function equal to 1. The
global PS and global LCFSPR stations are special cases yfs{ations.

Whittle Network This is a Per-Class Processor Sharing station where thetlé/fuhction is a
balance function, i.e¥(B) = ®(7). It follows that the service rate for a classustomer is

1 &7 — 1,)
() (8.29)
wherel, = (0,..1,...0) with a1 in positionc. This type of station is used in [13] to model
resource sharing among several classes.

A network consisting of a single chain of classes and onelesiM¢hittle Station is called
a Whittle Network. In such a network, customers of clagisat have finished service may
return to the station, perhaps with a different class.

A Whittle network can also be interpreted as a single clasgfi+station network, as fol-
lows. There is one station per class, and customers may jyntloe station of their class.
However, class switching is possible. Since knowing themtat which a customer resides
entirely defines its class, there is no need for a customearny @ class attribute, and we
have a single class network.

In other words, a Whittle Network is a single class networkw#S service stations, where
the rate allocated to statiens q’f;” . The product form network in Theorem 8.5.1 implies
that the stationary probability that there arecustomers in stationfor all ¢ is

C
1 _
P(it) = 5c1>(ﬁ) | A (8.30)
c=1

whereS, is the expected service requirement at statigh the visit rate andy a normalizing
constant.

Note that the stationary probability in Eq.(8.30) dependly @n the traffic intensity, = S.0.,
not otherwise on the distribution of service times. Thidsihsensitivity property; it applies not
only to Whittle networks, but more generally to all servitat®ns of Category 1, hence the name.

CATEGORY 2: MSCCC Station

This second category of station contains as special cadelf@ stations with one or any fixed
number of servers. It is calledlultiple Server with Concurrent Classes of Customers in
reference to [26, 51, 11]. A slightly more general form thaesented here can be found in [2].

The service requirementust be exponentially distributed with the same parameter forlabses
at this station (but the parameter may be different at dgifiestations). If we relax this assumption,
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this station is not longer admissible for multi-class pradiorm queuing networks. Thus, unlike
for category 1, this station type s&nsitiveto the distribution of service requirements.

The service discipline is as follows. There dpeservers and~ token pools. Every class is
associated with exactly one token pool, but there can baaeskasses associated to the same
token pool. The size of token poglis an integefl;, > 1.

A customer is “eligible for service” when both one of tBeservers becomes available and there
is a free token in the poaj that this customer’s class is associated with. There isglesgueue

in which customers are queued in order of arrival; when aesdsecomes idle, the first eligible
customer in the queue, or to arrive, starts service, anekblgth one server and one token of the
corresponding pool. The parameters sucliza$3 and the mapping of classes to token pools
may be different at every station.

The FIFO queue witlB servers is a special case with= 1 token pool, and’; = B.

In addition, this station may have a variable service ratelwkepends on the total number of
customers in the station. The rate must be the same for alteta(rates that depend on the
population vector are not allowed, unlike for Category listes).

EXAMPLE 8.6:A DUAL CORE MACHINE. Figure 8.11 illustrates a simple model of dual core pro-
cessor. Classes 1, 2 or 3 represent internal jobs and class 4 internal jobs. All jobs use the dual
core processor, represented by station 1. External jobs can cycle through the system more than
once. Internal jobs undergo a random delay and a variable delay due to communication.

The processor can serve up to 2 jobs in parallel, but some jobs require exclusive access to a
critical section and cannot be served together. This is represented by an MSCCC station with 2
servers and 2 token pools, of sizes 1 and 2 respectively. Jobs that require access to the critical
section use a token of the first pool; other jobs use tokens of the second pool (the second pool
has no effect since its size is as large as the number of servers, but is required to fit in the general
framework of multi-class product form queuing networks).

The delay of internal jobs is represented by station 2 (an “infinite server” station) and the com-
munication delay is represented by station 3 (a “processor sharing” station, with a constant rate
server).

Internal jobs always use the critical section. External jobs may use the critical section at most
once. This is modelled by means of the following routing rules.

e Jobs of classes 1, 2 or 3 are internal jobs. Jobs of class 1 have never used the critical
section in the past and do not use it ; jobs of class 2 use the critical section; jobs of class 3
have used the critical section in the past but do not use it any more.

After service, a job of class 1 may either leave or return immediately as class 1 or 2. A job of
class 2 may either leave or return immediately as class 3. A job of class 3 may either leave
or return immediately as class 3.

e Jobs of class 4 represent internal jobs. They go in cycle through stations 1, 2, 3 forever.

e At station 1, classes 2 and 4 are associated with token pool 1 whereas classes 1 and 3 are
associated with token pool 2, i.e. G(1) =2,G(2) = 1,G(3) =2 and G(4) = 1. The constraints
at station 1 are thus: there can be up to 2 jobs in service, with at most one job of classes 2
or4,
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The routing matrix is

q;’% ar; @y = B

q%’gl, = 2]

Q3:3 = Q3]

0w Logiy = L ogy = L
qi’j, = 0 otherwise

where all numbers are positive, a; <1 and a; + 81 < 1.

There are two chains: {1,2,3} and {4}. The first chain is open, the second is closed, so we have
a mixed network.

Let v be the arrival rate of external jobs and p; the probability that an arriving job is of class i. The
visit rates are

Class1: 6] = vy 02 = 0, 63 = 0;
Class2: 6} = y(p2+5llf;1); 02 — 0, 03 — o
Class 3: 6} = v (p?, + aaopa + 1_plal> ;03 = 0; 63 = 0
Class 4: 6 = 1; 02 = 1; 03 = 1

Note that the visit rates are uniquely defined for the classes in the open chain(1, 2 and 3); in
contrast, for class 4, any constant can be used (instead of the constant 1).

8.4.3 THE STATION FUNCTION

Auxiliary Station

Class /

—

. Class 2 Station

S
C1as> HH

09

Figure 8.12:Station s in isolation.
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STATION IN | SOLATION

The expression of the product form theorem usesstagion function, which depends on the
parameter of the station as indicated below, and takes asnarg the vectofi = (nq,...,n¢)
wheren,. is the number of classcustomers at this station. It can be interpreted as theostaly
distribution of numbers of customers in the station in isola up to a multiplicative constant.

More precisely, imagine a (virtual) closed network, madthaf station and one external, auxiliary
Per Class PS station with mean service tilrend service raté for all classes, as in Figure 8.12.
In this virtual network there is one chain per class and eekxysc has a constant number of cus-
tomerskK... The product form theorem implies that, for any values oftbetor X' = (K1, ..., Keo),
this network has a stationary regime, and the stationaryginitity that there are,; customers of
class 1, ..nc customers of clas§' is

oy 1 . (8.31)
f(n) e otherwise

ol 0 if n, > K, for some ¢
PISO (n) —

—

wheren(K) is a normalizing constant (independentdf

It is often useful to consider thgenerating function G() of the station function, defined as the
transform of the station function, i.e. fo¥ = (71, ..., Z¢):

C
G(Z)=) f@]]z (8.32)
c=1

>0

(Note that, in signal processing, one often uges instead ofZ; we use the direct convention,
called the “mathematician’stransform”). The following interpretation of the genenatfunction

is quite useful. By Theorem 8.5.2?,(2) is the normalizing constant for the open network made of
this station alone, fed by independent external Poissocegses of rates,., one for each class
Upon finishing service at this station, customers leave éteaork and disappear.

In the rest of this section we give the station functions g different stations introduced earlier.

STATION FUNCTION FOR CATEGORY 1

Let pop(B) o (nq,...,nc) Wheren, is the number of class customers at this station when the
station buffer is in stat& (i.e. n. = >, ., 1{5,—}). The station function is

C

fay=>_ wBJ]s- (8.33)

pop(B)=ri e=1

where the summation is over all station buffer stdider which the vector of populations ig S.
is the mean service time for clasat this station, and’ is the Whittle function of this station.

Note that that the station functioniisdependent of the insertion probabilities~. For example,
the stationary probability is the same whether the staBd?S or LCFSPR, since they differ only
by the insertion probabilities.

In the case where the Whittle function is a balance functien,¥(B) = ®(7), the summation
may in some cases be computed.



266 CHAPTER 8. QUEUING THEORY FOR THOSE WHO CANNOT WAIT

1. If the station uses global queuing as in the Global PS anddLCFSPR examples, there
are#fnc! station buffer states for a given population vector, with: |77| = Zle ne. The
station function is .

n! _
f(i) = —7——(n) | | ¢ (8.34)
Hc:l TZC! 01;[

2. Ifthe station uses per class queuing as in the Per Classd®Bea Class LCFSPR examples,

there is one station buffer state for one population veatdrthe station function is

C
f(i) = @@ [ S (8.35)

Global PS/Global LCFSPR/Kelly Station with constant rate. In these cases we can assume
that the service rate is 1; for all of these disciplines tla¢ieh function is given by Eq.(8.34) with
® () = 1. The generating function is

1

G(Z) = _
=15 5z

(8.36)

Per Class PS/Per Class LCFSPR with constant rateHere too we can assume that the service
rate is 1; the station function is given Eq.(8.35) witfvi) = 1. The generating function is

- 1
G(Z) = — 8.37
7 =lli=5z (8.37)
IS with constant rate. Here too we can assume that the service rate is 1; the stamatidn is
given by Eq.(8.34) withb(77) = 1/n!. The generating function is

C
G(Z) = exp (Z SCZC> (8.38)

STATION FUNCTION FOR CATEGORY 2

For the general station in this category, the station famcis a bit complex. However, for the
special case of FIFO stations with one or more servers, iatample closed form, given at the
end of this section.

General MSCCC StationRecall that the station parameters are:

r(): service rate when the total number of customeis is

S: the mean service time (independent of the class)

B: number of servers

G number of token poolsf;: size of token pool; G: mapping of class to token pool, i.e.
G(c) = g when clasg: is associated with token pogl

The station function is
(8.39)
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with |77] = 39 ., = (x4, ..., 2¢) andz, = 2 e:(c)=g e (the number of customers associated

with token poolg). The functiond is a combinatorial function of € Z¢, recursively defined by
d(z) = 0if 2, <0 for somey, d(0, ...,0) = 1 and

d(Z) x bs(Z) = > d(F —T,) (8.40)

wherebs(¥) ¢ nin (B, Zle min (:cg,Tg)> is the number of busy servers ang= (0, ..1...0)
with a1 in positiong. Note that

if ) < B then d(Z
i me (g, T, en H 7 (i, T

In general, though, there does not appear to be a closed torth €xcept when the station is a
FIFO station (see below).

For the MSCCC station, the generating function cannot bepced explicitly, in general, but
when the service rate is constant, ic¢i) = 1 for all 7, one may use the following algorithm. Let
D be the generating function af i.e.

G

V)= Y d@) [ xz (8.41)
FENCG g=1

with X = (X;..X¢). For7 € {0.. Ty} x ... x {0..T¢}, let

G
DA(X) ¥ > d(@) [ xz
g=1

Z>0,min(xy,Ty)=T74,Yg
SO thatD(X) = 3" o 711w x 0.1 P7(X). One can comput®-() iteratively, usingDg(X) =
1, D;(X') = 0if 7, < 0 for someg and the following, which follows from Eq.(8.40):

— 1 X
D?(X) _ _ X D?_ﬂ (X) (842)
R T T 22,

It is sometimes useful to note that

-1

g=1T! (1_ gl{Tg—Tg})

The generating function of the MSCCC station with constantise rate is then given by

if 7> 0and bs(7) < B (8.43)

G(Z) = D(X1, ..., X) (8.44)

with X, = S (Zc such that G(c)=g ZC) for all token poolg.

FIFO with B servers. This is a special case of MSCCC, with much simpler formulas tin the
general case. Here the parameters are
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e 7 (i): service rate when the total number of customers is

e S: the mean service time (independent of the class)
e B: number of servers

The station function is derived from EQ.(8.39) with = 1. One finds? = (]ri]) andd(j) =
! 5 forj > 1. Thus:

H{:l min(B,i
. Sil ii!
f(n) = RO . (L | (8.45)
Hi:l [T(Z> mll’l(B, Z)] Hc:l nc!
In the constant rate case, the generating function folloars fEq.(8.43):
- X2 XB—l XB
)=1+X+—+... 8.46
Gy =1+ Xt 5+ +(B—1)!+B!(1—§) (8.40)

with X = S Z..
In particular, for the=IFO station with one server and constant rate the station function is

Sl |
n) = ———— 8.47
(i) T (8.47)
and the generating function is
= 1
G(Z) = — (8.48)
1-5%¢ . 7,

EXAMPLE 8.7:DUAL CORE PROCESSOR INFIGURE 8.11. The station functions are (we use the
notation n; instead of n}):

! (.
flmne,ng,ng) = d(ng +ng,ny +ng) (1 & 13)Hn + ) Shymtnatnatg
n1!n2!n3!n4!
2,2 g2yn2 L
finy) = (5"
7!

i) = (8%

In the equation, d corresponds to the MSCCC station and is defined by Eq.(8.40). The generating
functions for stations 2 and 3 follow immediately from (8.38) and (8.37):

G2y, Z3, 23, Z4) = €%

1
G (Zv, Z2, Z3, Zs) T-35,.
— 4

For station 1, we need more work.

First we compute the generating function D(X,Y) def Zm>0,n>0 d(m,n)X™Y™, using Eq.(8.40).
One finds -

Dop(X,Y) = 1
Dio(X,Y) = —
Doi(X,Y) = Y
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. XY
Dia(XY) = 55 (XDoa+YDio) =1+
1 V2
0,2(X,Y) 2_X R v
Dis(X)Y) = — (XD YD =
1,2( 9 ) 2_X_Y( 0’2+ 1’1) (2—X_Y)(2_Y)(1_X)

and D is the sum of these 6 functions. After some algebra:

Y2
D(X,Y) = <1 +Y + 7> (8.49)

1-X 2-X-Y

Using Eq.(8.44), it follows that the generating functions of station 1 is

GY(Zy, Zy, Z3, Z4) = D(SY(Zy + Z4), 84 (2, + Z3)) (8.50)

QUESTION 8.4.1. Compare the station function for an IS station with constarivice rate and
equal mean service time for all classes with a FIFO statiotihwonstant rate and3 — oo. 3

QUESTION 8.4.2. What is the station functioff() for the auxiliary station used in the definition
of the station in isolation ?*

QUESTION 8.4.3. Verify thatD( X, 0) [resp. D(0, Y)] is the generating function of a FIFO station
with one server [resp. 2 servers] (whef¥ ) is given by Eq.(8.49)); explain wh?

8.5 THE PRODUCT-FORM THEOREM

8.5.1 BRoDuUCT FORM

The following theorem gives the stationary probability einmber of customers in explicit form;

it is the main available result for queuing networks; thegjiml proof is in [10]; extension to any

service stations that satisfies the local balance propeity[i78] and [44]; the proof that MSCCC

stations satisfy the local balance property is in [51, 11je proof that all Kelly-Whittle stations

satisfy the local balance property is novel and is given ictia 8.10 (see Section 8.8 for more
details).

13Both are the same: Eq.(8.45) and Eq.(8.34) Witit) = 1/n! give the same resulff (i) = —5——

_ [T, ne!”
11t is a Per Class PS station with. = 1 for all ¢ thus f*"*(77) = 1. The product form theorei’n implies that the

stationary probability to see. customers in the station of interestjig(77).

We find 5 and1 + Y + % as given by Eq.(8.46).

The generating functio® (X, Y") is thez-transform of the station function with one class per tokesug, and is
also equal to the normalizing constant for the station fed Bpisson process with rat&for group 1 and” for group
2. If Y = 0 we have only group 1 customers, therefore the station isah®esas a single server FIFO station with

arrival rateX; if X = 0, the station is equivalent to a FIFO station with 2 serversamival rateY’.
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THEOREM 8.5.1. Consider a multi-class network as defined above. In pawicitl uses Markov
routing and all stations are Kelly-Whittle or MSCCC. Assutiat the aggregation condition in
Section 8.8.3 holds.

Letn? be the number of clagscustomers present in statisandi® = (n$, ..., n,). The stationary
probability distribution of the numbers of customers, gxists, is given by

14 < .
p@i, %) = -] ( a1 (eg)"c> (8.51)

n s=1 c=1

wheref? is the visit rate in Eq.(8.24)f%() is the station function ang is a positive normalizing
constant.
Conversely, lef be the set of all feasible population vectais= (77!, ..., 7°). If

> 11 (fs(ﬁs) I1 (95)”3> < 00 (8.52)

ne€ s=1 e=I
there exists a stationary probability.

In the open network case, any vectat, ...i7°) is feasible, whereas in the closed or mixed case, the
set of feasible population vectofsis defined by the constraints on populations of closed chains
ie.

Zni :KC

ceC s=1

for any closed chaid, whereK is the (constant) number of customers in this chain.

Note that the station function depends only on the traffiensities. In particular, the stationary
distribution is not affected by the variance of the servieguirement, for stations of Category 1
(recall that stations of Category 2 must have exponentialcerequirement distributions).

QUESTION 8.5.1. What is the relationship between the sum in Eq.(8.52)pnd®

8.5.2 SABILITY CONDITIONS

In the open case, stability is not guaranteed and may dependralitions on arrival rates. How-
ever, the next theorem says that stability can be checkedeay station in isolation, and corre-
spond to the natural conditions. In particular, patholabinstabilities as discussed in the intro-
duction of Section 8.4 cannot occur for multi-class prodaoih queuing networks.

6They are equal.
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THEOREM 8.5.2 (Open Case)Consider a multi-class product form queuing network as eeffin
above. Assume that it spen For every statiors, 6° = (65, ..., 0¢,) is the vector of visit rates,
f* the station function and*() its generating function, given in Equations (8.36), (8,38)44),
and (8.46).

The network has a stationary distribution if and only if fmeey stations

G5 (6°) < o0 (8.53)
If this condition holds, the normalizing constant of Thenr®.5.1 isy = Hle Gs(és). Further,
let P*(7i*) be the stationary probability of the number of customerdatien s. Then

S
p(i',..i%) = [ P*(7) (8.54)

i.e. the numbers of customers in different stations arepeddent. The marginal stationary prob-
ability for stations is :

P) = o) 8.5

The proof follows from the fact that the existence of an iratr probability is sufficient for sta-
bility (as we assume that the state space is fully connebiethe aggregation condition). If the
network is closed or mixed, then the corollary does not hiodd, the states in different stations
arenot independent though there is product-form. Closed networks are alwggtde but it may
not be as simple to compute the normalizing constant; effi@gorithms exist, as discussed in
Section 8.6.

For mixed networks, which contain both closed and open shaitability conditions depend on
the rate functions, and since they can be arbitrary, not ncachbe said in general. In practice,
though, the following sufficient conditions are quite useflihe proof is similar to that of the
previous theorem.

THEOREM 8.5.3. (Sufficient Stability Condition for Mixed Networks Consider a multi-class
product form queuing network as defined above. Assume thattiwork is mixed, with'. classes

in closed chains and’, classes in open chains. L&t = (my, ..., m¢,) be the population vector
of classes in closed chains, afid= (n4, ..., n¢,) the population vector of classes in open chains.
For every statiors andm define

Co
L@y = > fo(m, ) ] 02)™ (8.56)
7eNCo c=1

wheref*(m, ) is the station function.
If

L*(0)m) < oo, Vm, Vs
the network has a stationary distribution.

In simple cases, a direct examination of Eq.(8.52) leadsnple, natural conditions, as in the
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next theorem. Essentially, it says that for the networksmered there, stability is obtained when
server utilizations are less than 1.

THEOREM 8.5.4 (Stability of a Simple Mixed Network)Consider a mixed multi-class product
form queuing network and assume all stations are eitheryksthtions (such as Global PS or
Global LCFS), IS or MSCCC with constant rates.

LetC be the set of classes that belongfgen chains. Define the utilization facter at stations

by

p’ = % Z o7 if stations is MSCCC withB*® servers, and mean service tirié

ceC

p° = Z 0:S:  if stations is a Kelly station with mean service tin$ for class:.
GE@

The network has a stationary distribution if and onlyif< 1 for every station Kelly or MSCCC
stations. There is no condition on IS stations. .

ExAamMPLE 8.8:DUAL CORE PROCESSOR INFIGURE 8.11. Let g € (0, 1] be the probability that an
external job uses the critical section and » > 0 be the average number of uses of the processor
outside the critical section by an external job. Thus 61 + 6} = vr and 6 = vq. By Theorem 8.5.4,
the stability conditions are

v(ir+q)St <

qu‘l <
where S! is the average job processing time at the dual core processor. Note that we need to
assume that the processing time is independent of whether it uses the critical section, and of
whether it is an internal or external job. Thus the system is stable (has a stationary regime) for

V< Sigrmatr) Note that the condition for stability bears only on external jobs.

Let K be the total number of class 4 jobs; it is constant since class 4 constitutes a closed chain. A
state of the network is entirely defined by the population vector (ny,na, n3, ns,n3); the number of
jobs of class 4 in station 3 is K — ny — n3, and ng = 0 for other classes. The set of feasible states
is

&= {(n1,n2,n3,n4,ni) € N° such that ny —|—n?1 < K}

The joint stationary probability is

1
P(ny,n2,n3,n4,n3) = ——d(ng + ng,ny +ng
(nl +n3)!(n2 —|—’I’L4)' 1\n 1\n 1\n3 [ al\ni+notns+ng ; 32\n2 1 a3\ K —n4—n?2
e R o G LR o TCR L

where we made explicit the dependency on K in the normalizing constant. This expression, while
explicit, is too complicated to be of practical use. In Example 8.9 we continue with this example
and compute the throughput, using the methods in the next section.
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8.6 COMPUTATIONAL ASPECTS

As illustrated inExample 8.8, the product form theoremutjtoit provides an explicit form, may
require a lot of work as enumerating all states is subjecbtolinatorial explosion, and the nor-
malizing constant has no explicit form when there are clagd®ins. Much research has been
performed on providing efficient algorithms for computingtnics of interest for multi-class prod-
uct form queuing networks. They are based on a number ofeistieg properties, which we now
derive. In the rest of this section we give the fundamentidas used in practical algorithms; these
ideas are not just algorithmic, they are also based on dpgEoiperties of these networks that are
of independent interest.

In the rest of this section we assume that the multi-clasduymoform queuing network satisfies
the hypotheses of the product form theorem 8.5.1 as dedanifgection 8.4, and has a stationary
distribution (i.e. if there are open chains, the stabil@pdition must hold — if the network is closed
there is no condition).

8.6.1 (CONVOLUTION

THEOREM 8.6.1. (Convolution Theorem.)

Consider a multi-class product form queuing network withseld and perhaps some open chains,
and letX be thechain population vector of theclosedchains (i.e.K¢ is the number of customers
of chainC; it is constant for a given network).

Letn(ﬁ) be the normalizing constant given in the product form theo&5.1. Lety’ a formal
variable with one component per chain, and define

— def by
F,(Y) =Y n(E) ]y
K>0 ¢

Then
S

F,(Y)=]]c (2 (8.57)
s=1
whereG?® is the generating function of the station function for siats, and 7% is a vector with
one component per class, such that

Z: = Yc0: whenever € C and C is closed
Z: = 62 whenever is in an open chain

The proof is a direct application of the product form theorasing generating functions. Eq.(8.57)
is in fact aconvolution equation, since convolution translates into product of generatuncf
tions. It is the basis for theonvolution algorithm, which consists in adding stations one after
another, see for example [6] for a general discussion and¢bdetworks with MSCCC stations
other than FIFO. We illustrate the method in Example 8.9\Wwelo
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8.6.2 THROUGHPUT

Once the normalizing constants are computed, one may darweghputs for classat stations,
defined as the mean number of classrivals at (or departures from) statien

THEOREM 8.6.2. (Throughput Theorem [20]) The throughput for class of the closed chai@

at stations is
o (E-T)
N(K)=0———-F+—~ (8.58)
n(K)

It follows in particular that, for closed chains, the thrbpgts at some statiarepend only on the
throughput per class and the visit rates Formally, choose for every closed chdira station
so(C) effectively visited by this chain (i.€)___. 65 > 0); define theper chain throughput C as

ceC Ve

the throughput at this statiok (K) o Y ece )\EO(C)(K). Since for closed chains the visit ra#'s

are determined up to a constant, we may decide tpJet., 9:°©) = 1, and then for all class € C
and statiors: . .
N(K) = Ae(K)6 (8.59)
Also, the equivalent of Eq.(8.58) for the per chain througfip
o _n(F-L)
n(K)

(which follows immediately by summation ane C).
Note that the throughput for a classf anopenchain is simply the visit ratés.

Last but not least, the throughput depends only on the n@img@lconstants and not on other
details of the stations. In particular, stations that affedint but have the same station function
(such as FIFO with one server and constant rate Kelly funotvdh class independent service
time) give the same throughputs.

The next example illustrates the use of the above theoretheistudy of a general case (a mixed
network with an MSCCC station). There are many optimizaiohthis method, see [22] and
references therein.

EXAMPLE 8.9:DUAL CORE PROCESSOR INFIGURE 8.11, ALGORITHMIC ASPECT We continue
Example 8.8. Assume now that we let all parameters fixed except the arrival rate A\ of external
jobs and the number K of internal jobs; we would like to evaluate the throughput . of internal jobs
as a function of A and K as well as the distribution of state of internal jobs.

We can use the throughput theorem and obtain that the throughput A\(K) for class 4 is (we drop
the dependency on A from the notation)

K1)

~n(
ANK) = o (8.61)

We now have to compute the normalizing constant n(K) as a function of K. To this end, we use
the convolution equation EQq.(8.57):

Fy(Y) = GHZHYG*(ZH)G3(Z?) (8.62)
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Figure 8.13:Throughput X of internal jobs for the dual core processor in Figure 8.11, in jobs per millisec-
ond, as a function of the number of internal jobs. Dotted curve: throughput that would be achieved if the
internal jobs would not use the critical section, i.e. any job could use a processor when one is idle. z is
the intensity of external traffic that uses the critical section and y of other external traffic. There are two
constraints : = + A < 1 (critical section) and = + y + A < 2 (total processor utilization). For the dotted line
only the second constraint applies. In the first panel, the first constraint is limiting and the difference in
performance is noticeable. In the last panel, the second constraint is limiting and there is little difference. In
the middle panel, both constraints are equally limiting. S* = 1,5 = 5, 5% = Imsec.
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with

ARES (9%79579?{71/)
Z? = (0,0,0,Y)
Z3 = (0,0,0,Y)

The generating functions G, G2, G? are given in Example 8.7. It comes:

1

_ gl S2y

(8.63)
with z = v¢S', y = vrS! and D() defined in Eq.(8.49).
We can compute n(K') by performing a power series expansion (recall that F,(Y) = > o n(K)YK)
and find n(K) numerically. Alternatively, one can interpret Eq.(8.63) as a convolution equation

. def = g
= m* ez With £, (V) = S cqym(B)Y* = DY S +2,y), F,(Y) = 5, FL(Y) = L
and use fast convolution algorithms or the fi | t er function as in Example 8.11. The throughput
for internal jobs follows from Eq.(8.61) and is plotted in Figure 8.13.

8.6.3 EQUIVALENT SERVICE RATE

This is a useful concept, which hides away the details of tostand, as we show in the next
section, can be used to aggregate network portions. Consihee arbitrary statiom, of any
category, with station functiori*(). We callequivalent service rate for classc at stations the
quantity

o det 271 = 1)
() L e (8.64)
@)
It can be shown that**(7i*) is indeed the average rate at which customers of clagpart from
stations when statiors is imbedded in a multi class queuing network and given thantiimbers

of customers at stationis 7%, i.e.

= > > P@uerf)

EEL(s,T1°) Feg!(s,E)

wheree'is a global micro state of the network (see Section 8.8.2 fefaition), £(s, 77°) is the
set of global micro-states for which the population vectostations is 77°, £'(s, €) is the set of

of global micro-states such that the transit@n— fis a departure from station, P() is the
stationary probability of the network ande, ) is the transition rate. This is true as long as the
network satisfies the hypotheses of the product form theoagch is a direct consequence of the
local balance property.

To s we associate ger class PSstation with unit service requirement for all classes anthwi
balance functionf*(7i*). This virtual station is called thequivalent station of stations. By
construction, it is a category 1 station and, by Eq.(8.3&)stiation functions of this virtual station
and ofs are identical. Further, the rate of service allocated taaruers of class is alsoyu*(7*).
Thus, as far as the stationary probability of customers icemed, using the original station or
the equivalent station inside a network make no differelide have an even stronger result.
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| Stations | Equivalent Service Raye'*(i7°) |

Kelly Stations with Class Dependent Service
Rate. Recall that this contains as special cases

. S$(,,8) e 1
Global PS and Global LCFSPR stations wijth Tc(nc)\ﬁﬂS_g
constant rate.
Kelly Stations with Queue Size Dependent ey mE 1
Service Rate. (| )|ﬁ§|§_g
IS station with Class Dependent Service Rate| ré(nd)ng &

IS station with Queue Size Dependent Service
Rate.

FIFO station withB servers and queue size de-

pendent service rate. Recall that this is a station

of Category 2 hence the service requirement is L ynin (B, |i7*|) r(|7|)
. - - Ss )

exponentially distributed and has the same mean

S* for all classes.

Table 8.1: Equivalent service rates for frequently used stations. Notation: 7* = (n3,...,n&) with n® =
number of class c customers at station s; S? is the mean service requirement; r3(n?) is the rate allocated to
a class ¢ customer when the service rate is class dependent; »*(]7i*|) is the rate allocated to any customer
when the service rate depends on queue size; |7i°| is the total number of customers in station s. For a
constant rate station, take r5() = 1 or r*() = 1.

THEOREM 8.6.3. (Equivalent Station Theorem [78]) In a multi-class prodémtm queuing net-
work any station can be replaced by its equivalent statioith wquivalent service rate as in
Eq.(8.64) so that the stationary probability and the thrbpgt for any class at any station are
unchanged.

Note that the equivalent station and the equivalent seratedepend only on the station, not on
the network in which the station is imbedded. It is remarkabht it is thus possible to replace
any station by a per class PS station. Note however that the &guiee is only for distributions
of numbers of customers and for throughputs, not for delayridutions; indeed, delays depend
on the details of the station, and stations with same stdtiootion may have different delay
distributions.

The equivalent service rates for a few frequently usedastatare given in Table 8.1. For some

stations such as the general MSCCC station there does neaapp be a closed form for the
equivalent service rate. The equivalent service rate id unsthe following theorem.
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THEOREM 8.6.4. ([85])
Consider a multi-class product form queuing network withseld and perhaps some open chains,
and letK” be thechain population vector of theclosedchains. For any class of the closed chain
C and any statiors, if n? > 1:
Lo 1 S
Pe (i K—1¢) —=X\(K 8.65
<n C) ,uzs(ﬁs) C( ) ( )

R)=p (-1,

whereP* | . ‘I?) is the marginal probability at statiom and Ai([?) is the throughput for class
at stations.

This theorem is useful if the equivalent service rate istéigle or is numerically known. It can
be used if one is interested in the marginal distributioné station; it requires computing the

—

throughputs\(K), for example using convolution or MVA. Eq.(8.65) can be used¢ompute
pPs(n® I?) iteratively by increasing the populations of closed ch§@#g. Note that it does not

give the probability of an empty station; this one can be coteg by using the fact that the sum
of probabilities isl.

EXAMPLE 8.10:DuAL CORE PROCESSOR INFIGURE 8.11, CONTINUED. We now compute the
stationary probability that there are n jobs in station 2 given that there are K internal jobs in total.
By EQ.(8.65):

52

P%(n|K) = P?(n — 1|K — 1)\(K) - (8.66)

since the equivalent service rate for station 2 (which is an IS station) is Z; when there are n
customers in the station. This gives P?(n|K) for 1 < 1 < K if we know P%(.|K — 1); P(0|K) is
obtained by the normalizing condition

K
> Pn|K)=1
n=0

We compute P%(.|K) by iteration on K, starting from P?(0/0) = 1 and using the previous two
equations. The mean number of jobs is station 2 follows:

K
N*(K) =) nP(n|K) (8.67)
n=0
Similarly for station 3, with
P3(n|K) = P3(n — 1|K — 1)\(K)S® (8.68)

since the equivalent service rate for station 3 (which is a PS station) is % The mean number of
internal jobs in station 1 follows: N} (K) = K — N?(K) — N3(K).

We derive the mean response times for internal jobs in stations 1 to 3 by using Little’s law: Rj(K) =
N*(K)

Wfors: 1,2,3.

By Little’s law, (R} + R? + R})\ = K; for large K, A & 0pax = min(1 — 2,2 — 2 — y) and R? ~ S?,
Rj ~ 5% (most of the queuing is at station 1), thus Rj(K) ~ 72— — 52 — 5% for large K. The results
are shown in Figure 8.14.
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Figure 8.14First panel: Mean Response time for internal jobs at the dual core processor, in millisecond,
as a function of the number K of internal jobs. Second panel: stationary probability distribution of the
number of internal jobs at stations 1 to 3, for K = 10. (Details of computations are in Examples 8.10
and 8.11; S' = 1,52 = 5,53 = Imsec, . = 0.7, y = 0.8.)
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8.6.4 SJUPPRESSION OFOPEN CHAINS

In an open network, the product form theorem implies thasstdtions are independent in the
stationary regime, and thus the network is equivalent tdlaan of stations in isolation. In the
mixed or closed case, this does not hold anymore, and sttiades are mutually dependent.

It is possible to simplify mixed networks by removing operaits. In the modified network, there
are only closed chain customers, with the same routing rgff} for all ¢, ¢’ in closed chains;

—

the stations are the same, but with a modified station functieet G*(Z) be thez transform of
the station function ané’ the visit rates in the original network with open chains.Ha tmodified
network, thez transform of the station function is

Z! = Z.if cisiin a closed chain

Z! = 62 if cisin an open chain (8.69)

G"*(Z) = G*(Z") with {
In the aboveZ is a vector with one component per class in a closed chainressg’ has one
component per class, in any open or closed chain.

THEOREM 8.6.5. (Suppression of Open Chains) Consider a mixed multi-class network that
satisfies the hypotheses of the product form theorem 8.5dhsi@er the network obtained by
removing the open chains as described above. In the mod#ieaork the stationary probability
and the throughputs for classes of closed chains are the sanrethe original network.

The proof is by inspection of the generating functions. Nbg# the modified stations may not
be of the same type as the original ones; they are fictiticatsosts as in the equivalent station
theorem. Also, the equivalent service rates of the moditigions depend on the visit rates of the
open chains that were removed, as illustrated in the nexhpba

EXAMPLE 8.11:DUAL CORE PROCESSOR INFIGURE 8.11, CONTINUED. We now compute the
stationary probability at station 1. We suppress the open chains and compute the equivalent
service rate at station 1. We have now a single chain, single class network, with only customers
of class 4. Stations 2 and 3 are unchanged; station 1 is replaced by the station with generating
function:
Gll(Z) = GI(H%’ 9%7 9?1” Z)

where G' is given in Eq.(8.50). With the same notation as in Example 8.9, G’'(z) = D(ZS' +z,y)
with D given by Eq.(8.49), and thus

1

R e A

2
Y
1 — 8.70
( +y+2—w—y—Z51> (8.70)
The station function f*(n) of the modified station 1 is obtained by power series expansion G'' (Z) =
> 50/ (n)Z™. modified as follows. Since G"! is a rational function (quotient of two polynomials),
its power series expansion can be obtained as the impulse response of a filter with rational
transform (Section D.1.8). Consider the filter

1 y?
S —— — 8.71
1—w—BSl< +y+2—x—y—BSl> (8.71)

where B is the backshift operator. The sequence (f1(0), f'*(1), f1(2)...) is the impulse response
of this filter, and can be obtained easily with the f i | t er function of matlab. The equivalent service
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rate of station 1 for internal jobs is

/11
1 f (n — 1)
=" 8.72
Since we know the equivalent service rate, we can obtain the probability distribution P"'(n) of
internal jobs at station 1 using Theorem 8.6.4 as in Example 8.10. The results are shown in
Figure 8.14.

8.6.5 ARRIVAL THEOREM AND MVA V ERSION 1

Mean Value Analysis (MVA) is a method, developed in [86], which does not compie hor-
malizing constant and thus avoids potential overflow pnaoisleThere are many variants of it, see
the discussion in [6].

In this chapter we give two versions. The former, describrethis section is very simple, but

applies only to some station types, as it requires to be abtletive the response time from the
Palm distribution of queue size upon customer arrival. Téeord, described in Section 8.6.7
is more general and applies to all stations for which theedint service rate can be computed
easily.

MVA version 1 is based on the following theorem, which is assguence of the product form
theorem and the embedded subchain theorem of Palm caldiiaerem 7.5.1).

THEOREM 8.6.6. (Arrival Theorem)
Consider a multi-class product form queuing. The probapdistribution of the numbers of cus-
tomers seen by customer just before arriving at statisthe stationary distribution of

¢ the same network if the customer belongs to an open chain;
e the network with one customer less in its chain, if the custdmlongs to a closed chain.

Consider now &losednetwork where all stations are FIFO or IS with constant rat@re equiv-
alent in the sense that they have the same station functiomea®f these (thus have the same
equivalent service rate). Indeed, recall that stationaspabilities and throughput depend only on
the station function. For example, a station may also belaaldS station with class independent
service requirement of any phase type distribution, whi the same station function as a FIFO
station with one server and exponential service time. Inrése of this section we call “FIFO”
[resp. I1S] station one that has the same station functiorsasgée server, constant rate FIFO [resp.
IS] station. Recall that at a FIFO station we need to assuatdtie mean service requirements are
the same for all classes at the same station; for the IS stditimay be class dependent.

First we assume the FIFO [resp. IS] stations are truly FIRSrS], not just equivalent stations
as defined above. We will remove this restriction later. Né{ /') be the mean number of class

customers at stationwhen the chain population vectoris. The mean response time for a class
¢ customer at a FIFO statianwhen the population vector 5 is

RI(K) = (1 +) NHK - IC)> Sk
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whereC is the chain of class. This is because of the exponential service requiremenhgston:
an arriving customer has to wait f6r multiplied by the number of customers present upon arrival;
in average, this latter number)s _N:(K — 1¢) by the arrival theorem. By Little’s formula:

RAK)N(K) = N (K)
Combining the two gives

N3 (K) = (1 + Z NY(K -1 ) S (8.73)
which is valid for FIFO stations. For a delay station one finds
N3(K) = X(K)S® (8.74)

This gives a recursion foV*(K) if one can get determina:(K). The next observation is
Eq.(8.59), which says that if we know the throughput at o visited by a chain, then we
know the throughputs for all stations and all classes of &meeschain. The last observation is that
the sum of the numbers of customers across all stations aolhsdes of chaid is equal toK.
Combining all this gives: for every chaih if K- > 0 then

K, S _ _
o=y [ > o (1 + Z N3 (K - 1c)> S 4> 08 (8.75)
Ac(K) ceC Ls:FIFO s:I8
and -
Ae(K) =0if Ko =0 (8.76)
For every FIFO statior and clasg:
Ni(ﬁ) = 98)\5(0 (1 + Z N Ta@)) S if KC(c) >0 (8.77)
= 0if K =0 (8.78)

Second, we observe that the resulting equations depenanonihe station function, therefore they
apply to equivalent stations as well.

The MVA algorithm version 1 iterates on the total population, adding customers one gy on
At every step, the throughput is computed using Equatiorb{8. Then the mean queue sizes at
FIFO queues are computed using Equation (8.77), which sltheeloop. We give the algorithm
in the case of a single chain. For the multi-chain case, thperighm is similar, but there are many
optimizations to reduce the storage requirement, see [6].

EXAMPLE 8.12:MEAN VALUE ANALYSIS OF FIGURE 8.5. We model the system as a single class,
closed network. The CPU is modelled as a PS station, disks A and B as FIFO single servers, and
think time as an IS station. We fix the visit rate gthinktime g 1 g that 6PV = Vepu: 94 =V, and
68 = Vg- Note that the routing probabilities need not be specified in detail, only the visit rates are
required.

The CPU station is not a FIFO station, but is has the same station function, therefore we may
apply MVA and treat it as if it would be FIFO.

Figure 8.15 shows the results, which are essentially as prediced by bottleneck analysis in Fig-
ure 8.6.



8.6. COMPUTATIONAL ASPECTS

283

Algorithm 7 MVA Version 1: Mean Value Analysis for a single chain closed multi-class product form
gueuing network containing only constant rate FIFO and IS stations, or stations with same station functions.

1: K = population size

22 2=0 > throughput
3: @* = 0 for all stations € FIFO > total number of customers at stationQ® = > N¢
4: Compute the visit rate® using Eq.(8.24) aanCC:1 0l =1

5: 0° =" 06 for everys € FIFO

6: h =3 1s 2055 4+ > cpmro 0°5° > constant term in Eq.(8.75)
7. for k=1: Kdo

8: A= h+ngF1io O > EQ.(8.75)
9 Q° = N°5°(1+ @°) forall s € FIFO
10: end for
11: The throughput at statiohis A
12: The throughput of classat stations is A¢?
13: The mean number of customers of clasg FIFO statiors is Q*6%/6°
14: The mean number of customers of clasg IS stations is \§2S?

30

Figure 8.15:Throughput in transactions per second versus number of users, computed with MVA for the

network in Figure 8.5. The dotted lines are the bounds of bottleneck analysis in Figure 8.6.
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8.6.6 NETWORK DECOMPOSITION

R

“ e \

Figure 8.16: Decomposition procedure: original network A/, with subnetwork S; simplified network N;
equivalent station S; subnetwork in short-circuit As.

A key consequence of the product form theorem is the pogyitol replace an entire subnetwork
by an equivalent single station. This can be done recuksasd is the basis for many algorithms,
such as MVA version 2.

Consider a multi-class product form netwokk and a subnetworl§. The stations irS need not
directly connected and the network can be closed, mixed @n .ol the network is mixed or open,
we consider that outside arrivals are from some fictitioasich 0, and0 ¢ S. We create two
virtual networks:A” and /s and a virtual statio as follows (Figure 8.16).

The virtual statiorS, called theequivalent station of S, is obtained by isolating the set of stations
S from the network\ and collapsing classes to chains. Insitjéhere is only one class per chain,

i.e. a customer’s attribute is its chain furthermore, the station is a “per class PS” station, with
service rate to be defined latér

N, called thesimplified network, is obtained by replacing all stations &by the equivalent

stationS. In A, routing is defined by the corresponding natural aggregatie. is the same as if
the stations ir5 were still present but not observable individually. Thus tbuting matrixj is:

P8 = ¢ ifseSands €8

qc c [ Ne

"Observe that within one service station customers canraigaclass, therefore if we aggregate a subnetwork
into a single station, we must aggregate classes of the daane as well.



8.6. COMPUTATIONAL ASPECTS 285

S.s 0 if C, g C
QC7 r= 1 s 5,8 -

c i ZSES,CEC chm, ifceC
.S Oif cZC
qc7C - E s,s’

s'eS,c'eC qc,c’

o 0if C #C’
QC 7C/ = 1 s 5,8

’ % ZS,S’ES,C,C’EC ecqc,c’

be = D 0
seS,ceC
where, for exampleggjl is the probability that a chaii customer leaving statiaf joins station
s with classc. If there are some open chains, recall that 0 represents arrivals and departures
and we assumed ¢ S; in such cases, the external arrival rate of ciatustomers to the virtual

stationS is
M= > X
seS,ceC
and the probability that a chaithcustomers leaves the network after visitifigs

> et

seS,ceC

S

whereg:° ©y Do qj,’j,/ is the probability that a classcustomer leaves the network after
visiting stations.

The visit rates in\" are the same as K for stations not irS; for the equivalent statio8, the visit
rate for chairC is f. given above. The station function of the equivalent stafida computed in
such a way that replacing all stationsSrby S makes no difference to the stationary probability of
the network. It follows, after some algebra, from the pradoan theorem; the precise formulation
is a bit heavy:

Fo(k) = > I1 [fs(ﬁs) 11 (g—s) ] (8.79)

(71*)ses such that 30 s .ccni=kc s€S

wherek is a population vector of closed or open chains. Note thaty hmppen that some chain
Co be “trapped” inS, i.e customers of this chain never lea¥e The generating function of the
virtual stationS has a simple expression

cﬂ@:H@@%mmm:@%Q (8.80)
seS ¢

whereC(c) is the chain of class. HereC spans the set of all chains, closed or open. Thus, the
equivalent statiots is a per-class PS station, with one class per chain, and wal#nbe function
f(k). In the next theorem, we will give an equivalent statemeat ibeasier to use in practice.

The second virtual networly/s is called thesubnetwork in short-circuit. It consists in replacing
anything notinS by a short-circuit. InVs, the service times at stations notSrare0 and customers
instantly traverse the complement®f This includes the virtual statioi which represents the
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outside, so\s is a closed netwofR. The population vectok remains constant iNs; the visit
rates at stations i& are the same as in the original network for closed chains.ckases that
belong to a chain that is open in the original network, we iobtiae visit rates by setting arrival
rates tol.

THEOREM 8.6.7. (Decomposition Theorem [78])
Consider a multi-class network that satisfies the hypothe$e¢he product form theorem 8.5.1.
Any subnetworl§ can be replaced by its equivalent statiSnwith one class per chain and station
function defined by Eq.(8.80). In the resulting equivalestivork \/, the stationary probability
and the throughputs that are observable are the same as iarthmal network.
Furthermore, ifC effectively visitsS, the equivalent service rate to chain(closed or open) at the
equivalent statiors is . .

1S (k) = N (k) (8.81)

Where)\és(lZ) is the throughput of chaid for the subnetwork in short-circuit’s when the popu-
lation vector for all chains (closed or open)ﬁs

The phrase “that are observable” means: the numbers ofraastmf any class at any station notin
S; the total number of customers of chdirthat are present in any station®f the throughputs of
all classes at all stations notdf) the throughputs of all chains. Recall that the per chaioubhput
)\C(K’) (defined in EQ.(8.59)) is the throughput measured at sontiersta effectively visited by
chainC. The stations; is assumed to be the same in the original and the virtual mksyavhich

is possible since the visit rates are the same.

If C does not effectively visif (i.e. if 4. o Zses’cec 2 = 0) then the equivalent service ratg®

is undefined, which is not a problem since we do not need it.

By the throughput theorem, Eq.(8.81) can also be writtgH{k) = % wheren*(k) is the
normalizing constant for the subnetwork in short-ciro\fif.

If S consists of a single station with one class per chain at tht®s, then the equivalent station
is the same as the original station, as expected. Also, #wdm implies, as a byproduct, that the
equivalent service rate for classt a statiors, as defined in Eq.(8.64), is equal to the throughput
for classc at the network made of this station and a short circuit forgetass (i.e. every class
customer immediately returns to the station upon serviogptetion, with the same class).

ExAamMPLE 8.13:DuaL CORE PBOCESSOR INFIGURE 8.11,CONTINUED. We replace stations 2 and
3 by one aggregated station S as in Figure 8.17. This station receives only customers of class 4
(internal jobs). Its equivalent service rate is

N (ng —1)

() (8.82)

p*(ng) =
where 7*(n,4) is the normalizing constant for the network A5 obtained when replacing station 1 by
a short-circuit as in Figure 8.17; the z transform of n* is given by the convolution theorem 8.6.1.:

1

_ . S%y
Fr¥) =" 15y

(8.83)

18Be careful that this is different from the procedure used mtefining the station in isolation. Vs, S is
connected to a short-circuit, i.e. a station where the seméquirement i§; in contrast, in the configuration called
“Sinisolation”,S is connected to a station with unit rate and unit serviceirequent.
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Figure 8.17:Aggregation of stations applied to the dual core processor example of Figure 8.11. First

panel: stations 2 and 3 are replaced by S. Bottom panel: the network in short-circuit Vs used to compute
the equivalent service rate p*(n4) of S.
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One can compute a Taylor expansion and deduce n*(n) oruse fi | t er as in the other examples,
but here one can also find a closed form

n g\ k
ﬁ*(n)2(53)nz<%> . (8.84)

Note that for large n, n*(n) ~ (53)" exp (E—i) and thus p*(n) ~ 45, i.e. it is equivalent to station
3 (but this is true only for large n). We can deduce the equivalent service rate *(n) and obtain
the probability distribution P*(n) of internal jobs at stations 2 or 3 using Theorem 8.6.4 as in

Example 8.10.
Note that internal jobs are either at station 1, or at stations 2 or 3. Thus we should have

P*(n|K) = PY(K — n|K) (8.85)

where P''(.|K) is the probability distribution for internal jobs at station 1, already obtained in
Example 8.11, and we can verify this numerically.

8.6.7 MVA VERSION 2

This is an algorithm which, like MVA version 1, avoids comimgf the normalizing constant, but
which applies to fairly general station types [84]. We giveeasion for single chain (but multi-
class) networks. For networks with several chains, the ¢exity of this method is exponential in
the number of chains, and more elaborate optimizations bega proposed; see [27, 28] as well
as [6] and the discussion therein.

The starting point is the decomposition theorem, which shgsone can replace a subnetwork
by a single station if one can compute its throughputs intstiocuit. For example, using MVA
version 1, one can compute the throughputs of a subnetwode raasingle server FIFO or IS
stations (or equivalent), therefore one can replace thefsat such stations in a network by one
single station.

MVA version 2 does the same thing for general stations ineddo®etworks. This can be reduced to
the simpler problem of how to compute the throughput of a ndtwf 2 stations, with numerically
known service rates. If we can solve this problem, we carageplthe 2 stations by a new one, the
service rate is equal to the throughput (by Theorem 8.61%),vee can iterate. This problem is
solved by the next theorem. It uses the concept of networkkant-circuit.
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THEOREM 8.6.8. (Complement Network Theorem) Consider aclosedmulti-class product form
gueuing network\. LetS!, S? be a partition of A/ in two subnetworks and le¥s:, Vs be the
corresponding subnetworks in short circuit (W:, all stations inS? are short circuited). Define:

e P!(k|K) = the stationary probability that the number of customershafinC present inS*
is k¢ for all C when the total network population vector/is

e n'(K) = [resp. n*(K), n(K)] the normalizing constant ok/s: [resp. Nsz, A'] when the
total network population vector iK;

o \(K) = [resp. N2(K), Ac(K)] the per chain throughput of chaii in NVs: [resp. Nz,
N1 when the total network population vectoris.

Then for0 < k < K:

PYKIK) = - (8.86)
(k&)
and for any chairC such that:; > 0:
PYEIE) = PYk—Tc|(K — IC)ACfIf) (8.87)
Az (k)
PIRIR) = PR|(R - To)—2B) (8.88)

The inequalitied) < k< K are componentwise. The proof is by direct inspection: ramin
Eq.(8.86) the convolution theorem; Eq.(8.87) and Eq.(8@8w from Eq.(8.86) and the through-
put theorem.

Note that EQ.(8.87) is an instance of the equivalent semateeformula Eq.(8.65), sinc%l(lg) =
ust(k) is also equal to the equivalent service rateSof Eq.(8.88) is the symmetric of Eq.(8.87)
when we exchange the roles®f andS? sinceP! (k| K) = P2(K — k|K).

S? is called the complement network 8t in the original work [84], hence the name.

THE MVA C oMPOSITION STEP In the rest of this section we consider that there is only
one chain, and drop indeX. Assume that we know the throughputs of the two subnetworks
ML(K), A*?(K); the goal of the composition step is to compte<). We compute the distribu-
tion P!(.|K) by iteration onK, starting withP'(0|0) = 1, P'(n|0) = 0, n > 1. EQ.(8.87) and
Eq.(8.88) become

AK)

fork=1.K : P (k|K) = Pl(k—1|(K—1))\*1(k) (8.89)
fork=0..K —1 : PY(k|K) = Pl(k;|(K—1)% (8.90)

None of the two equations alone is sufficient to advance aration step, but the combination
of the two is. For example, use the former for= 1... K" and the latter fok = 0. A\(K) is then
obtained by the conditioh._, P'(k|K) = 1.
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MVA V ERSION 2 The algorithm works in two phases. In phase 1, the througisprgmputed.
The starting point is a netwotk/;; first, we compute the throughput of the subnetwsfkmade
of all stations to which MVA version 1 applies, as this fagtean MVA version 1. We replacs®’
by its equivalent station; le¥; be the resulting network.

In one step we match stations 2 by 2, possibly leaving on®statone. For every pair of matched
stations we apply the MVA Composition Step to the network enaidboth stations in short circuit
(all stations except the two of the pair are short-circyiteet thus obtain the throughput of the pair
in short-circuit. Then we replace the pair by a single statiwhose service rate is the throughput
just computed. This is repeated until there is only one agggeestation left, at which time the
phase 1 terminates and we have computed the througtipiitof the original network.

In phase 2, the distributions of states at all stations efragt can be computed using the equivalent
service rate theorem (Eq.(8.65)) and normalization toinkitee probability of an empty station;
there is no need to use the complement network in this phase.

The number of steps in Phase 1 is ordelogf,(/V), whereN is the number of stations; the MVA
Composition Step is applied in total orderdftimes (and no2” as wrongly assumed in [6]). The
complexity of one MVA Composition Step is linear i, the population size.

In Algorithm 8 in Section 8.9.4 we give a concrete implemé&ata

8.7 WHAT THIS TELLS Us

8.7.1 INSENSITIVITY

Multi-class product form queuing networks ansensitiveto a number of properties:

e The distribution of service times is irrelevant for all inséive stations; the stationary dis-
tributions of numbers of customers and the throughput dépety on traffic intensities (by
means of the visit rate®’) and on the station functions, which express how rates anedh
between classes. The service distribution depends ondbks,@nd classes may be used to
introduce correlations in service times. The details ohstarrelations need not be modelled
explicitly, since only traffic intensities matter.

By Little’s law, the mean response times are also insemsifut not the distribution of
response time, see Section 8.3.3).

e The nature of the service station plays a role only througiktation function. Very different
gueuing disciplines such as FIFO or global PS, or global LR Svith class independent
service times have the same station function, hence the Sat@nary distributions of num-
bers of customers, throughputs and mean response timesralsgant as long

e The details of routings are also irrelevant, only the viates matter. For example, in Fig-
ure 8.11, it makes no difference if we assume that extert yasit station 1 only once,
without feedback.

EXAMPLE 8.14:INTERNET MODEL [13]. Internet users as seen by an internet provider are mod-
elled by Bonald and Proutiere in [13] as follows (they use a slightly different terminology as they
do not interpret a Whittle network as a product form station as we do).
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Figure 8.18:Product form queuing network used to model the Internet in [13].

Users sessions arrive as a Poisson process. A session alternates between active and think time.
When active, a session becomes a flow and acquires a class, which corresponds to the network
path followed by the session (there is one class per possible path). A flow of class ¢ has a service
requirement drawn from any distribution with finite mean S.. The network shares its resources
between paths according to some “bandwidth” allocation strategy. Let p.(77) be the rate allocated
to class ¢ flows, where 77 = (nq, ..., n¢) and n. is the number of class ¢ flows present in the network.
We assume that it derives from a balance function &, i.e.

@ (ii — T.)

fe(i) = o) (8.91)

All flows in the same class share the bandwidth allocated to this class fairly, i.e. according to
processor sharing.

When a flow completes, it either leaves the network, or mutates and becomes a session in think
time. The think time duration has any distribution with a finite mean Sj. At the end of its think time,
a session becomes a flow.

This can be modelled as a single chain open network with two stations: a Per-Class PS station for
flow transfers and an IS station for think time, as in Figure 8.18.

A session in think time may keep the class it inherited from the flow. This means that we allow the
classes taken by successive flows to be non iid, as is probably the case in reality (for example the
next flow of this session might be more likely to take the same path). In fact, we may imagine any
dependence, it does not matter as long as the above assumptions hold, since we have a product
form queuing network; only the traffic intensities on each flow path matter, as we see next.

With the assumption in Eq.(8.91), flow transfers are represented by means of a per-class proces-
sor sharing station with Whittle function ®(77) (this is also called a Whittle network); think times
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are represented by a constant rate infinite server station; both are category 1 stations, thus the
network has product form.

More precisely, let 6. be the visit rate at the Per-Class PS station, class ¢; it is equal to the number
of class ¢ flow arrivals per time unit. Similarly, 6, is the number of arrivals of sessions in think time
per time unit. Let ny be the number of flows in think time; the stationary probability distribution of
(no, 1) is, by the product form theorem:

C
P(no,it) = n®(it) [] (Sc0e)™ (6050)™

c=1
C

= @) [ [ et (8.92)
c=1

where 7 is a normalizing constant and p. = 6..S., po = 6y, are the traffic intensities.

Eq.(8.92) is a remarkably simple formula. It depends only on the traffic intensities, not on any
other property of the session think times or flow transfer times. It holds as long as bandwidth
sharing (i.e. the rates p.(77)) derives from a balance function. In [13] it is shown that this is also a
necessary condition.

This is used by the authors in [13] to advocate that bandwidth sharing be performed using a
balance function. Bandwidth sharing is the function, implemented by a network, which decides
the values of p.(7) for every ¢ and 7i. The set R of feasible rate vectors (j.(7)).=1..c is defined
by the network constraints. For example, in a wired network with fixed capacities, R is defined
by the constraints ZCEZ e < R; where [ is a network link, R, its rate, and “c € ¢ means that a
class ¢ flow uses link ¢. The authors define balanced fairness as the unique allocation of rates to
classes that (1) derives from a balance function and (2) is optimal in the sense that for any 7, the
rate vector (u.(7)).=1..c is at the boundary of the set of feasible rate vectors R. They show that
such an allocation is unigue; algorithms to compute the balance function are given in [14].

8.7.2 THE IMPORTANCE OF MODELLING CLOSED POPULATIONS

Closed chains give a means to account for feedback in theraysthich may provide a different
insight than the single queue models in Section 8.3; thituistrated in Section 8.9, where we see
that the conclusion (about the impact of capacity doubliaggdically different if we assume an
infinite population or a finite one.

Another useful example is the Engset formula, which we noscdbee. The Erlang loss formula
gives the blocking probability for a system withservers, general service time and Poisson exter-
nal arrivals. If the population of tasks using the systemmal§ there is a feedback loop between
the system and the arrival process, since a job that is axmteghnnot create an arrival. An alter-
native to the Erlang loss formula is the model in Figure 8i#h a finite population of" jobs,

a single class of customers, and two stations. Both stationS; station 1 represents the service
center withB resources, station 2 represents user think time. If statlwas B customers present,
arriving customers are rejected and instantly return twost2 where they resume service. Service
requirements are exponentially distributed. This is egjeint to the form of blocking called partial
blocking in Section 8.8.6. This form of blocking requireathouting be reversible; since there are
only two stations, the topology is a bus and the routing ier&ble, thus the network has product
form.
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Station 1
With Capacity B
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in total

«—

Station 2
(IS station)

Figure 8.19:Model used to derive the Engset formula

It follows that the probabilityP(n|K) that there are: customers in service, given that the total
population isk” > B, is given by the product form theorem and the station fumstifor IS:

L(8)" (59"

P(n|K)=— 8.93
() = = e (8.93)
wheren is a normalizing constans! is the average processing time &tdthe average think time.
Letp = %; it comes:

V2

B
_ P
= nzzon!(K—n)!

The blocking probability?° ( B| K) for is equal to the Palm probability for an arriving custorteer
find B customers in statioh. By the arrival theorem, itis equal ®8(B|K — 1). Thus forK > B
__n
POBIK) = g =) (8.94)
> om0 TR
and P°(B|K) = 0 for K < B. EQ.(8.94) is called th&ngset formula and gives the blocking
probability for a system witlB resources and a population &% Like the Erlang-loss formula the
formula is valid for any distribution of the service time (haof the think time). Whenk — oo,
the Engset formula is equivalent to the Erlang-loss formula

8.8 MATHEMATICAL DETAILS ABOUT PRODUCT-FORM QUEU-
ING NETWORKS

8.8.1 HMASE TYPE DISTRIBUTIONS

For insensitive stations, the service time distributioassumed to be phase type distribution; this is also called
a mixture of exponentials or a mixture of gamma distribution and is defined next. Note that the product form
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theorem implies that the stationary distribution of thewwk is insensitive to any property of the distribution of
service requirement other than its mean; thus its seemsiplato conjecture that the product form network continues
to apply if we relax the phase type assumption. This is inddexivn for networks made of Kelly stations and of
“Whittle network” stations in [8].

A non negative random variablg is said to have a phase type distribution if there exists dimoous time Markov
chain with finite state spad@, 1, ..., I’} such thatX is the time until arrival into state, given some initial probability
distribution.

Formally, a phase type distribution withstages is defined by the non negative sequéngg—,..,, with Zj aj =1
and the non negative matrif; j:)j=1..n,j7=0..n- ¢ is the probability that, initially, the chain is in stajeand
wj;+ > 0 is the transition rate from stageto j’, for j # j'. Let F};(s) be the Laplace-Stieltjes transform of the time
from now to the next visit to state, given that the chain is in statenow. By the Markov property, the Laplace-
Stieltjes transform of the distribution we are interestedsiE (e —*~) = > jz0 @ F(s) forall s > 0. To compute
F;(s) we use the following equations, which also follow from therktav property:

Vi e{0,1,..,5}: | s+ Z g5 Fj(S) = W0+ Z ,ujJ/Fj/(s) (8.95)
J'#J J'#3,3' #0
X ~ Erlang

X ~ PH
@\ Wi o X ~ Hyper-Exponential

Figure 8.20:Mixtures of Exponential: a Phase Type distribution is the distribution of the time until absorp-
tion into state 0 (state 0 represents the exit and is not shown). The Erlang and Hyperexponential are special
cases.

Consider for example thErlang-n and Hyper-Exponential distributions, which correspond to the Markov chains
illustrated in Figure 8.20. The Laplace-Stieltjes transfof the Erlangr distribution isF? (s), which is derived from
Eq.(8.95):

(A+9)F(s) = AFy(s)
A+ 8)Fh-1(s) = AE,(s)
A+ s)F.(s) = A

and is thus(/\%s) . This could also be obtained by noting that it is the convolubf n exponentials. (Note that
this is a special case of Gamma distribution). The PDF(is) = A"%e*”. The mean isS = %; if we set the
mean to a constant and let— oo, the Laplace Stieltjes transform converges, for every 0, to e~*5, which is the
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Laplace Stieltjes transform of the constant concentratéd & other words, the Erlang-distribution can be used to
approximate a constant service time.

Similarly, the Laplace Stieltjes transform of the HyperpBrential distribution follows immediately from Eq.(8)95

andis)_;_;n ;*jijs and the PDF ig(z) = Y aje~*'®. This can be used to fit any arbitrary PDF.

j=1n

8.8.2 MICRO AND M ACRO STATES

The state of every station is defined byn&cro-state, as follows.

Insensitive Station The micro state i$5, 7) whereB is the state of the station buffer introduced in Section2.4.
and 7 is a data structure with the same indexing mechanism, wtotdstthe service phase for the customer
at this position. In other words, for every indéin the index set of the buffef3; is the class of the customer
present at this position, ang is the service phase of the same customer (if there is norogstoresent at this
position, both ar®). A customer at positioireceives a service ratg(3) given by Eq.(8.26). This means that
the probability that this customer moves from the servicasgi = 7; to a next phasg’ in a time interval of
durationdt is pi(B)u;j,dt + o(dt) wherec = B, is this customer’s class am;yj/ is the matrix of transition
rates at this station for clagscustomers, in the phase type representation of servicéresgent. If the next
service phase ig’ = 0, this customer will leave the station. When a clasgistomer arrives at this station,
it is inserted at position in the buffer with probability given in Eq.(8.25); the iratistage is set tg with
probabilitya, the initial stage distribution probability for customerfsthis class at this station, ang is set
to j.

MSCCC Station The micro-state is an ordered sequence of clagsess, ..., cys) wherelM is the number of cus-
tomers present in the station. When a customer arrives,atiéeed at the end of the sequence. The cus-
tomers in service are the fir& eligible customers; a customer in positian is eligible if and only if there
is a token available (i.e.Zﬁ,;lo 1¢g(c, =gy < Ty With g = G(cnn)) and there is a server available (i.e.
>, min (Tg, s l{g(cm,):g}) < B). There is no state information about the service stageeshis cat-
egory of station requires that the service times be expaadbrdistributed, hence memoryless. The probability
that an eligible customer leaves the station in a time imtlest/durationdt is < r(M)dt + o(dt) wherer(M )

is the rate of this station whell customers are present afds the mean service time (both are independent
of the class). Non eligible customers may not leave theostati

The global micro stateof the network is the sequenc¢ey, eo, ..., es) wWheree, is the micro-state of station With
the assumptions above, this defines a continuous time Matkawn. A network is defined by the populationin closed
chains,K¢. Theglobal micro state space, M, is the set of alle, eo, ..., eg) that are possible given the rules of
each station and

1. the total number of customers in ch&ipresent anywhere in the networki&, if C is a closed chain, and is
any non negative integer otherwise;
2. if the visit rated? is 0 for some statiors and clasg, then there may not be any customer of claasstations.

The macro-state of stations is the vectori® = (nj,...,n¢) wheren? is the number of class-customers present

at this station. The global macro-state is the collectiéh s—1...s; the global macro state does not define a Markov

chain as too much information is lost (for MSCCC stations,l@egt the order of customers; for insensitive stations,

we lost the service phase). The micro-state descripticegjgired to prove theorems, but most formulas of interest are
expressed in terms of macro-states. Ghabal macro state space, L, is the set of al(7i®)s—;.. ¢ > 0 such that

1. > .cc..me = K¢ for every closed chaid;
2. if the visit ratef? is 0 for some statios and clasg, thenn = 0.

8.8.3 MICRO TO MACRO: AGGREGATION CONDITION

All results in the previous sections apply to the macroestigscription of the network. In the given form, they require
that the aggregation condition holds, which says that

aggregation of state from micro to macro does not introdwcefeasible micro states.



296 CHAPTER 8. QUEUING THEORY FOR THOSE WHO CANNOT WAIT

This is equivalent to saying that the skt is fully connected, i.e. any global micro state can be redd¢hem any
initial condition in a finite number of transitions of the wartying Markov chain. This is generally true except in
pathological cases where the order of customers is pres#dmw@ughout the network lifetime. Consider for example a
cyclic network with only FIFO stations and one customer pass The initial order of customers cannot be changed
and only states ioM that preserve the initial ordering are feasible. In suchtaosk, product form does hold, but
formulas for macro states are different than given in thigptér as the numbers of microstates that give one specific
macro-state is smaller.

8.8.4 LocAL BALANCE IN |SOLATION

The station function can be defined both at the micro and miaerls. Formally, thestation function at micro
level is a functionF'(e), if it exists, of the micro state of the function in isolation, such tha (@) = 1, where®
is the empty state, and the stationary probability of statethe station in isolation is;(]?)F(e), wheren(ﬁ) is a
normalizing constant that depends on the total populatbosstomerds, for every clasg;, in the station in isolation.

We say that a station satisfies the properti@tal Balance In Isolation if the following holds.For every micro-state
e and clasg:
departure rate out of statedue to a class arrival
= (8.96)
arrival rate into state due to a class departure

In this formula, the rates are with respect to the statiopaopability of the station in isolation, as defined earliér.
follows that one must also have

departure rate out of statedue to a departure or an internal transfer, of any class
= (8.97)
arrival rate into state due to an arrival or an internal transfer, of any class

where an internal transfer is a change of state withoutarnor departure (this is for insensitive stations, and is a
change of phase for one customer in service). The collecfiafi these equations is the local balance in isolation. If
one finds a station function such that local balance in igmidtolds, then this must be the stationary probability of
the station in isolation, up to a multiplicative constant.

For example, consider a FIFO station with 1 server and asshatehere is one class per chain in the network (i.e.
customers do not change class). I, ...,c)) be the stationary probability for the station in isolatidnocal
balance here writes:

F(Clv"'7CM)1{Z§Z:11{CMZC}<KC} = F(e,c,...,cp ) forall classe

Fer, o ep)p = F(Cl’""CM*l)l{E%;}l{cm:cM}<KcM}

where K, is the number of class customers in the system apd= 1. The functionF'(cy, ..., car) = SM satisfies
both of these types of equations, therefore it is equal tstagonary probability of the station in isolation, up to a
multiplicative constantF'(cy, ..., cas) = S™ is the microscopic station function. The station functfgr) given ear-
lier follows by aggregation; indeed, 16{n1, ..., n¢) be the set of micro-states of the FIFO station withcustomers
of classe, for everyc.

fa,ome) = > §mteine) < (4 -+ 1) gy 4.t

nil..ng!
ec€(ni,...,nc) 1 c

since% is the number of elements 6{n, ..., n¢). This is exactly the station function for the FIFO station

described in Eq.(8.47).

8.8.5 THE PrRobDUCT FORM THEOREM

The product form theorem in 8.5.1 is a direct consequendeeofdilowing main result.
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THEOREM8.8.1. Consider a multi-class network with Markov routing aficstations. Assume ali' stations satisfy
local balance in isolation, and lef*(e®) be the station function at micro level for statisnwheree® is the micro
state of statiors. Then

plet,e?, ..., e”%) def HFS(eS) (8.98)
is an invariant measure for the network.

The theorem implies that, if appropriate stability corati hold, the produgt(e!,e?,...,e%) must be equal to a
stationary probability, up to a normalizing constant. Thegb can be found in [78]; see also [44, 10]. It consists in
direct verification of the balance equation. More precisefe shows that, in the network:

departure rate out of statedue to a departure of any class
= (8.99)
arrival rate into state due to an arrival of any class

In this formula, the rates are with respect to the joint nekwmrobability of all stations at micro level, obtained by
re-normalizingp(). Note that the local balance property, as defined in Eq.fJ8d@®s not, in general, hold inside the
network at the micro level.

If the aggregation condition holds, then one can sum up E3gj®ver all micro states for which the network popula-
tion vector isii and obtain Eq.(8.51), which is the macro level product foesutt. Note that, at the macro-level, one
has, in the network, and for any class

departure rate out of statedue to a class departure
= (8.100)
arrival rate into state due to a class arrival

In this formula, the rates are with respect to the joint neknmrobability of all stations at macro level. Note the
inversion with respect to local balance.

The resulting independence for the open case in Theorer® thérefore also holds for micro-states: in an open
network, the micro-states at different stations are indepat.

The proof of the product form theorem 8.5.1 follows immeeliafrom Theorem 8.8.1 and the fact that all stations in
our catalog satisfy the property of local balance in isolatiThe proof that MSCCC stations satisfy the local balance
propertyisin [51, 11]. For Kelly-Whittle stations, the tdisvas known before for some specific cases. For the general
case, itis novel:

THEOREM 8.8.2. Kelly-Whittle stations satisfy local balance in isolation

The proofis in Section 8.10.

8.8.6 NETWORKS WITH BLOCKING

It is possible to extend Markov routing to state-dependeanting, In particular, it is possible to allow for some
(limited) forms of blocking, as follows. Assume that there aome constraints on the network state, for example,
there may be an upper limit to the number of customers in at@st A customer finishing service, or, for an open
chain, a customer arriving from the outside, is denied act®a station if accepting this customer would violate any
of the constraints. Consider the following two cases:

Transparent Stations with Capacity Limitations The constraints on the network state are expressdddapacity
limitations of the form
> ni<Ty, (=1.L (8.101)
(s,c)EHe

wheren? is the number of class customers present at station?, is a subset of1,...,.5} x {1,...C’} and
'y € N. In other words, some stations or groups of stations mayimuisl on the number of customers of
some classes or groups of classes.

If a customer is denied access to statipshe continues her journey through the network, using Marioting
with the fixed matrix?, until she finds a station that accepts her or until she letheesetwork.
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Partial Blocking with Arbitrary Constraints  The constraints can be of any type. Further, If a customesHes
service and is denied access to statipehe stays blocked in service. More precisely, we assunaénace
distributions are of phase type, and the customer resuradagshcompleted service stage. If the customer was
arriving from the outside, she is dropped.

Further, we need to assume that Markov routingigersible, which means that

03000 =050 (8.102)
for all 5,5, ¢, c’. Reversibility is a constraint on the topology; bus and ettworks give reversible routing,
but ring networks do not.

Assume in addition that the service requirements are exg@ily distributed (but may be class dependent at insensi-
tive stations). Then the product form theorem continueptayafor these two forms of blocking [80, 58, 44]. There
are other cases, too, see [6] and references therein.

There is a more general result: if the service distributiaresexponential and the Markov routing is reversible, then
the Markov process of global micro-states is also revezdibl]. Let X; be a continuous time Markov chain with
stationary probability)() and state spac&. The process is calleversible if p(e)u(e,e’) = p(e')u(e’, e) for any
two states, e’ € £, whereu(e, e’) is the rate of transition frorato e’. Reversible Markov chains enjoy the following
truncation property [44]. Let &’ C £ and define the process; by forcing the process to stay withéf; this is
done by taking some initial state space £’ and setting td the rate of any transition frome £ toe’ € . Then

the restriction ofp to £’ is an invariant probability; in particular, §’ is finite and fully connected, the stationary
probability of the truncated process is the restrictiop &f £’, up to a normalizing constant.

Note that setting td the rates of transitions from € £ to ¢/ € £’ is equivalent to saying that the we allow the
transition frome to ¢’ but then force an immediate, instantaneous retur tois explains why we have product form
for networks with partial blocking with arbitrary constngs.

8.9 CASE STUuDY

In this section we show how the four topics in the previougieseaan be combined to address
a queuing issue. Recently, one could read on the walls of ithemhere | live the following

advertisements for a ski resort: “capacity doubled, wgitime halved”. Does this statement
hold ? | was intrigued by this sweeping statement, and redlthat it can be found repeatedly
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in many different situations: doubling the processor spaedoubling the number of cores in a
computer, doubling the web front end in a server farm, et¢hénrest of this section we focus on
the ski resort example.

First we apply the principles in Chapter 1 and define the garadsfactors.

Goal: evaluate impact of doubling the capacity of a skiliftthe response time.

Factors:c = capacity of skilift in people per second.

Metrics: response time. A more detailed reflection lead®otesitlering the waiting time, as
this is the one that affects customer’s perception.

Load: we consider two load models : (1) heavy burst of arifaétker a train or a bus arrives
at the skilift) (2) peak hour stationary regime

8.9.1 DETERMINISTIC ANALYSIS

We can model the skilift as the queuing system illustrateligure 8.21. The first queue models
the gate; it is a single server queue. Its service time isithe between two passages through the
gate, when there is no idle period and is equdlta The second queue represents the transporta-
tion time. Itis an infinite server queue, with no waiting ting&nce our performance metric is the
waiting time, we may ignore the second queue in the rest chtiadysis.

Waiting room

—__ e~

Figure 8.21:Queuing Model of Skilift

A bitS max
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Figure 8.22:Transient Analysis: A burst of skiers arrives at time 0. Impact of doubling the capacity of the
skilift.
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Assume the arrival of skiers is one single burst (all arrivéha same time). Also assume that
all skiers spend the same time to go through the gate, whichughly true in this scenario. The
model in Section 8.1.1 applies, with(¢) = the number of skiers arriving i, ¢ and D(¢) = the
number of skiers that entered the skilift|in ¢]. Thus the delayi(¢) is the waiting time, excluding
the time spent on the skilift. We also hawé&) = ct, with ¢ = the capacity of the skilift, in skiers
per second. We havé(t) = B for t > 0. Figure 8.22 shows that doubling the capacity does
divide the worst case waiting time by two.

Is the average waiting time also divided by 2 ? To answer th&stion we take the viewpoint
of an arbitrary customer. We see that the waiting time seea bystomer arriving as numbegr
(0 <y < B)is linear iny, thus the average waiting time is equal to the worst cas®nssptime
divided by a2. Here too, doubling the capacity divides the average waitime by 2.

QUESTION 8.9.1. In reality, even if the arrival of skiers is bursty, it may o as simultaneous as
we just described. We can account for this by takitig) = kct for 0 < t <ty and A(t) = A(to)
fort > t,, with £ > 1. What is now the conclusion?

8.9.2 S39NGLE QUEUE ANALYSIS

Assume now we are observing the system in the middle of thelpaar. We can model the gate as
a single queue, with one or perhaps several servers. Iffisudifto give a more accurate statement
about the arrival process without performing actual measents. Whatever the details, doubling
the capacity halves the utilization factor A major pattern of single queue systems is the non
linearity of response time, as in Figure 8.7.

The effect on response time depends on where we stood oniye dfithe system was close to
saturation, as was probably the case, the effect is a latjestien of the average waiting time,
probably much larger than 2. With this model, doubling thpawaty decreases the waiting time
by more than two.

8.9.3 OPERATIONAL ANALYSIS

It is probably unrealistic to assume that a reduction inwgitime has no effect on the arrival rate.
A better, though simplified, model is illustrated in Figur@® It is a variant of the interactive

user model in Figure 8.3. Here we assume that the mean nuMlugrskiers in the system is

independent of.

We apply bottleneck analysis. L&tbe the throughput of the skilifty the time spent serving one
customer at the lift and the time spent going up on the lift or down on the slope &ridhe
average waiting time at the lift. We have

AW+S+2)=N

A<c

andS is assumed to be negligible comparediahus

ngax(g—Z,O)
c

1°The response time is reduced by a factor higher than
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think time

Waiting room

Figure 8.23:First Panel: A Model that accounts for dependency of arrival rate and waiting time. Second
panel: Waiting time in minutes for this model versus % where ¢ is skilift capacity (in people per minute).
The solid line is the approximation by bottleneck analysis. The crosses are obtained by analytical solution
of the queuing network model in Figure 8.24, with the following parameters: population size K = 800 skiers;
number of servers at gate B € {1,2,...7,8}; service time at gate S € {2.5,5,10, 20} seconds; time between

visits to the gate Z = 10 minutes.
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Figure 8.23 shows the approximate bound as a functioa}:] fufr the sake of comparison with
Figure 8.7. Points obtained by mean value analysis are &$iegand we see that the bound is in
fact a very good approximation.

This strongly suggests that the functigrihat maps% to the average response time is convex; the
graph of a convex function is below its chords, thus

1 1,1

f(%) < §f(g)

and doubling the capacigoes reduce the waiting time by more than 2

We also see that a key valuecis= % Note that% is the rate at which one customer would arrive
at the gate if there would be no queuing, thtss the rate of customers if the gate would not delay
them. Ifcis much larger than*, the waiting time is small, so doubling the capacity hatelgffect
anyhow. Forc much smaller tham*, the waiting time increases at an almost constant rate. Thus
we should target of the order ofc*, in other words, we should match the capacity of the gate to
the “natural” rate-*.

QUESTION 8.9.2. Assume the system is highly congested before doubling pgaeita What is
the reduction in waiting time after doubling capacity®

8.9.4 (QUEUING NETWORK ANALYSIS

Gate
(FIFO, B servers)

Slope = Think time
(IS station)

Figure 8.24:A Queuing Network model of Figure 8.23.

We can model the network in Figure 8.23 as a single classedlpsoduct form queuing network
as in Figure 8.24. There is no specific assumption on the tpaeton the slopes (“think time”);
in contrast we need to assume that the service time at thesgaxponentially distributed. Lef

20For a highly congested systefr(much smaller than*) the offset ab becomes negligible and the response time
is almost linear inl /c. Thus doubling the capacity does reduce the waiting tim&,bpughly speaking — but the
system is still congested after doubling the capacity.
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be the mean service time at the gate @&the number of servers, so that= B/S. The mean
service time at the IS station is.

The total number of customers is fixed and equaktoLet \(K) andW (K) be the throughput
and the average waiting time at the gate. By Little’s law

ME)(W(EK)+S+2)=K

thus %

W(K)=——-S—-Z 8.103
(K) =575~ 5 (8.103)

We compute\(K) by mean value analysis, which avoids computing the norimalizonstants

and the resulting overflow problems. LE{n|K) be the stationary probability that there are

customers present (in service or waiting) at the FIFO statiden the total number of customers

is K. The mean value analysis equations are (Section 8.6.5):

Pn|K) = P(n—1\f<—1)2ff;§ 0> 1 (8.104)
PO|K) — P(O|K—1)% (8.105)
Y PnK) = 1 (8.106)

wherey*(n) is the equivalent service rate of the FIFO station and K) the throughput of the
complement of this station. By Table 8.1.:

min(n, B)

S

The complement network is obtained by short circuiting theQr station; it consists of the IS
station alone. Thus

pi(n) =

M(K) = %

The mean value algorithm is given in Algorithm 8. Figure 8&8&l Figure 8.25 shows a few
numerical results. The capacity= B/S depends on both the number of FIFO serv@rand the
service time at the gatg. The points in Figure 8.23 are obtained by varying bBtand S. The
figure shows that the bottleneck analysis provides an extedipproximation. Thus this section
confirms the conclusions obtained by operational analysis.

8.9.5 (CONCLUSIONS

Doubling the capacity does reduce the waiting time by a faat@ during bursts of arrivals, and
by a factor of 2 or more during the stationary regime. Thisdependent of whether the capacity
increase is by increasing the number of servers or by regubmservice time at the gate.

The findings assume that the arrival rate is not impacted byc#tpacity increase and does not
account for long term effects. Over the long term, a reduadtiowaiting time might attract more
customers and this will in turn increase the waiting time.
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Algorithm 8 Implementation of MVA Version 2 to the network in Figure 8.24.
1: K =: population size
p(n),n = 0...K: probability that there are customers at the FIFO station
. A: throughput
p(0)=1,p(n)=0,n=1.K
cfork=1:Kdo
p*(n) =p(n—1)Z / min(n,B),n =1..k > Unnormalizedv(n|k), EQ.(8.104)
p*(0) = p(0)Z /k > Unnormalizedy(0|k), Eq.(8.105)
A=1/3"p (n)
p(n) =p*(n)/A\,n=0..k
. end for
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Figure 8.25:Throughput A(K) in customers per minute and waiting times W (K) in minutes for the skilift
example in Figure 8.24 with B servers at the gate, versus number of customers K. The results are obtained
by analytical solution of the queuing network model (using the MVA algorithm). The dotted lines are the
maximum throughput B/S and the waiting times predicted by bottleneck analysis. S = 10sec and Z =
10mn.
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There is an optimal capacity, for any target customer population sigé (maximum number of
customers that the ski resort can accommodate on the s)gpe=) byc* ~ K*/Z whereZ is the
mean time between visits to the gate. If the capacity is belowvaiting time is large; increasing
¢ beyondc* brings little benefit on waiting time.

8.10 PROOFsS

THEOREM 8.2.1

Apply Theorem 7.3.2 toX (¢) = N (t) and andl,, = the superposition of arrivals and departures. The devivaii
N(t) is 0, and the jumps are-1 at instants of arrival, and 1 at instants of departures. ThE§(ANy) = 0. Now
E°(ANy) = +1p% — 1p wherep? is the probability that an arbitrary point is an arrival jpesleparture]. It follows
thatp® = pY and since? + p = 1, it follows thatp? = pY = 0.5, which is not so surprising since there should be in
average as many departures as arrivals.

Apply again the theorem t& (¢) = 1*12:2(” wherez is some arbitrary number if0, 1). X (¢) is constant except at

arrival or departure times, thus’(t) = 0. Further, AX; = 2N ~1if ¢ is an arrival instant anch X; = —zV®) if ¢
is a departure instant. Thus

0=E (zN(t)‘l‘ tis an arrival instan> P —E (zN(t)‘ tis a departure instar)tpg

Now N (t) is right-handside continuous g6(¢) — 1 is the number of customers just befarevhent is an arrival
epoch. Since? = pf, the distributions of the number of customers just beforaraimal and just after a departure are
equal.

THEOREM 8.2.4

We apply Campbell’s formula. L€t (s, t) be the random function which returisf ¢ > s and the last customer who
arrived before or at-t is in nodek at times, else return®. By definition of intensity:

M =E <Z F(—A,, 0))
nez
whereA,, is the point process of customer arrivals. Campbell’s fdenapplied toF'(—t, 0) gives:
E()  F(=A4,,0) =AY E7/(F(t,0)) =AY E(F(0,1))
nez teN teN
where the last part is by stationarity. Thus

Ak = AR <Z F(O,t)) = \Vj

teN

(Total Response Time) LeY [resp.N:] be the expected number of customers in the service systsp.[m nodé].
We haveN = ", N;. Apply Little’ and the Forced Flows laws.

THEOREM 8.8.2

We consider a Kelly-Whittle station in isolation, i.e. camted to a unit rate per class station, with customers of
classc in total. We want to show that local balance holds (at the alievel). The micro state of the station(i8, 7),
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whereB; is the class of the customer in positiore Z of the station buffer and’; is the phase for this customer, in
the phase type representation of service times. If there @istomer in position, we letB;, = 7, = —1. We assume
that the index sef is enumerable, and that the initial number of occupied ustis finite, so that it remains finite
for ever.

Letaf andy$ ;, be the matrices of initial probabilities and transitioresain the phase type representation of service

rates for class, with j = 1....J¢ andj’ = 0...J¢. Without loss of generality we assuni€' = .J. Recall thatj’ = 0
corresponds to an end of service. For evergt the array);, j = 1....J, be a solution of

! 150
— e
L
j=1 J
_ 3’53
0 = of+> 0=
j'=1 Hjr

J
with 1§ = >y
j’=0

so that§ is the mean number of visits to stagduring one class customer’s service time. Note that the mean service
requirement for classis

J
Se=>"05/n (8.107)
j=1
We will show that the stationary probability of the statiorisolation is proportional to
def 9?:
FB,7)=vB) [ -% (8.108)
i€, BiA—1 HTi

where U is the Whittle function. Clearly, this will imply thaf" is the station function. Note that the product is
always finite. We now show that the equations of local bal&w€8.96) and Eq.(8.97) hold. Consider first Eq.(8.96).
The departure rate due to a clasarrival is simply F'(B, 7)1, 8)<k.}, by definition of the station in isolation,

ef

wheren.(B) = > icr 1iB,=c} is the number of class customers. The arrival rate due to a clasteparture i)
if n.(B) < K. (one cannot reach a state where all classistomers are in the station by a departure) and else, by
definition of the service rate:

U (remove(add(B, i, c),i)) .

— > F(add(B,i,c),add(J, j, ))v(i,add(B,i, c)) G(add(B. 7, ) 15,0

i€T,j=1...0

C

e
= FB.9) Y yli.add(B.i )

i€z, j=1..0 "1

= F(B,J) <Zv(i,add(8,i,c))> Z ?—iuio =F(B,J)

ie€T ieTj=1..0Hi

thus Eq.(8.96) holds. We now show EQ.(8.97). The left-hade is

C .
. Y(remove(B,17) _,
FB,.9) Y3 308 M s
i€B c=1 j=1

and the right-hand side BHS, + RHS; where the former term corresponds to an arrival, the lattemt internal
transfer:

c J
RHS, = Z Z Z F(remove(B, i), remove(J, 1))y (i, B) aj1p,=c} 1{7,=j}
i€T =1 j=1
c
= FBJI)Y.Y,

J
1€Z c=1 j=

U(remove(B,i)) 1] . .
Z WH_Z’Y(Z’ B)Oéjl{lﬁ‘i:c}l{.%:j}
— ]
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def

We use the notatio8?* = add(remove(B, i), B;). By hypothesis" = B andB'"* is the only buffer statés’
such thatemove(B’,i’) = remove(B, i) andB;, = c. Also note thatdd(remove(B, i), 4, B;) = B. Thus

c J
RHS, = >N F(B" add(remove(T i), i, 5'))v(i', B )

i,i' €L c=1j,57'=1

W (remove(B71i'))
U (B7) Hj g

x (4, add(remove(Bl ) A C))]-{Bi:c}]-{Ji:j}

c o J :
i N it iy Y(remove(B, i)
= E E E F(B" " add(remove(7,14),i', "))y, B )—\I/(B“Z) o

i €T e=1j,j/'=1
x7(i,add(remove(B, i), 1, ¢))1{g,—c} 1{ 7=}
c

d 05 remove
= F(B,J) Z Z Z MJ (i', add(remove(B, ), B))wu‘;,d

it/ €T c=1 7,5'=1 J (B)
(1, B)Ls, —c}lm—j}
05 11; W (remove(B,i)) . ,
= FB.J) ZZ Z b, vE) Hiteeala=n(8)

i€Z c=1j4,57'=1 iH

X Z v(i’, add(remove(B, i), i, c))

=05
c J .
0% 11; W (remove(B, 7))
= F(B.J) - —= 15,51 {Bi=cy L{zi=3 7 (6, B)
ZEI;j,j’Zzl oj.uj’ U (B) 3'5J J
< f; ¥ (remove(B,17)) _ J 05 .
= FBJI)Y D > o lg=7(B) Y -
: — 0 v (B) T M’
i€ c=1j5=1 7 gr=1""
i U(remove(B, 7))
= FB,7)Y Y > e sy gy (i, B) (65 — o)
T U(B)
i€Z c=1j=1 J
Thus, combining the two:
“ K U(remove(B, i)
RHS, + RHS, = FUSJ)ZZZﬂjT)’l{si:c}l{m:m@ﬁ)
i€T c=1 j=1

which is equal to the right-hand side as required.

8.11 ReVIEW

8.11.1 ReVIEW QUESTIONS
QUESTION 8.11.1. Why are stations of category 1 called “insensitive?®
QUESTION 8.11.2. Consider a multi-class queuing network, with FIFO queuess$bn arrivals

and exponential service times; under which condition doeatisfy the hypotheses of the product
form theorem #2

21Their station function depends on the distribution of segtime only through the mean.
22The service time distributions must be independent of tasscl
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QUESTION 8.11.3. Explain Eq.(8.17) and Eq.(8.21) by the product form theorém

QUESTION 8.11.4. Consider the network in Figure 8.24 and assume there is on& aass of
customers. Assume that the service requirement at therbaitation is exponentiglv). Say
of which category each station is. Write the station fundidor both functions and verify the
product-form theorem when the number of serverB is- 1. Compute the throughput and verify
the throughput theoren??

QUESTION 8.11.5.In Section 8.4 we mention the existence of a network in [16¢s unstable
with utilization factor less tham. Can it be a product-form multi-class queuing network ? Wihy o
why not ?%°

8.11.2 SYMMARY OF NOTATION

SINGLE SERVER QUEUE

Notation Definition
A/S/sIK Kendall notation: arrival process/service pratesimber of servers/
capacity of queue including customers in service
A arrival rate
B number of servers
S,og,Lg mean, standard deviation and Laplace Stieltjes transfégeargice time
p=% server utilization
N,N,oyn number of customers in system, its mean and standard d@viati
Ny, Nu,on, number of customers waiting, its mean and standard dewiatio
R, R, op time spent in system (residence time), its mean and stamgaidtion

Vi mean number of visits per customer to ndade
W, W,ow  waiting time, its mean and standard deviation
Z av. think time in interactive user model

QUEUING NETWORKS

23The MIGI/1/PS queue is an open queuing network with one @éssistomers and one station, with visit rate
equal to). The station function for a constant rate PS statiofi(is) = S™, thus the stationary probability of the
M/GI/1/PS queue igp™. By normalizationy) = 1/(1 — p), which is Eq.(8.17). Similarly for Eq.(8.21), using the
station function of the FIFO station witB servers.

%The ‘Gate” station is a FIFO station, therefore a station afe@ory 2. Its station function ig' (n) = Hin where

1/p is its mean service time. The second station is a stationtefjoay 1 and its station function j&(n) = ﬁ
The stationary probability is(n) = % when there arél customers. The balance equations are

p(n)(p+ (K —n)v) = (K —n+1Lvp(n —1)1g,>1y + pp(n + 1) 1p,<x—13

The verification is by direct computation (the terms matclphly). For the throughput, see Example 7.16.
291t cannot be a product-form multi-class queuing networkaose they are stable when utilization is less than 1. It
violates the assumptions because of FIFO stations witls-dlependent service rates.
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Notation Definition
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State of buffer in insensitive station, containing the ¢distustomer classes
customer class

customer chain; does not change for a given customer

combinatorial function used by MSCCC station, Eq.(8.40)
Z-transform ofd, computed by Eq.(8.42)

station function, Eq.(8.31)

generating function of station function, Eq.(8.32)

token group of clasgat an MSCCC station

throughput of class observed at station

throughput of chair, Section 8.6.2

network population vectork-: number of chairf customers in network
external arrival rate of class at statien

Balance function at some Kelly-Whittle stations

Whittle function at Kelly-Whittle station

routing probability, Section 8.4.1

mean service requirement at statiofor classc customers

isze of token pool at MSCCC station

visit rate to statiors, classc (Eq.(8.24))
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APPENDIX A

TABLES

The following tables can be used to determine confidenceviaitefor quantiles (including me-
dian), according to Theorem 2.2.1. For a sample @l data pointsz4, ..., z,,, the tables give a
confidence interval at the confidence leyet 0.95 or 0.99 for the ¢g-quantile withg = 0.5 (me-
dian),q = 0.75 (quartile) and; = 0.95. The confidence interval ig(;), z ()], wherez;, is thejth
data point sorted in increasing order.

The confidence intervals for = 0.05 andq¢ = 0.25 are not given in the tables. They can be
deduced by the following rule. Let;, z )] be the confidence interval for thequantile given
by the table. A confidence interval for the- g-quantile is[x;, ()] with

j=n+1-k
F=n+1-—j

For example, withh = 50, a confidence interval for the third quartile € 0.75) at confidence
level 0.99 is [x(29), T(45)], thus a confidence interval for the first quartite=¢ 0.25) at confidence
level0.99 is [1'(6)7 1’(22)].

For small values ofi no confidence interval is possible. For largean approximate value is given,
based on a normal approximation of the binomial distributio

Note. The tables give, the actual confidence level obtained, as it is not possibddtain a confidence
interval at exactly the required confidence levels. For edapforn = 10 andy = 0.95 the confidence
interval given by the table i@X@), X(g)]; the table says that it is in fact a confidence interval atlleve
0.979.

The values ofj andk are chosen such thatand k& are as symmetric as possible arodb@il—. For
example, form = 31 the table gives the interv@X(lo),X(gg)] Note that this is not the only interval
that can be obtained from the theorem. Indeed, we have:

ik P (X <mos < X))

9 21 0.959
10 22 0.971
11 23 0.959

Thus we haveeveralpossible confidence intervals. The table simply picked onevhich the indices
are closest to being symmetrical around the estimated mddéathe indiceg andk are equally spaced

311
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around"T“, which is used for estimating the median. In some casesplike32, we do not find such
an interval exactly; we have for instance:

j kK P (X(j) <mgps < X(k))
10 22 0.965
11 23 0.965

Here, the table arbitrarily picked the former.
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n_ | J | k | » | [» | J | k | » |
n < 5: no confidence interval possible. n < 7: no confidence interval possible.
6 1 6 0.969 8 1 8 0.992
7 1 7 0.984 9 1 9 0.996
8 1 7 0.961 10 1 10 0.998
9 2 8 0.961 11 1 11 0.999
10 2 9 0.979 12 2 11 0.994
11 2 10 0.988 13 2 12 0.997
12 3 10 0.961 14 2 12 0.993
13 3 11 0.978 15 3 13 0.993
14 3 11 0.965 16 3 14 0.996
15 4 12 0.965 17 3 15 0.998
16 4 12 0.951 18 4 15 0.992
17 5 13 0.951 19 4 16 0.996
18 5 14 0.969 20 4 16 0.993
19 5 15 0.981 21 5 17 0.993
20 6 15 0.959 22 5 18 0.996
21 6 16 0.973 23 5 19 0.997
22 6 16 0.965 24 6 19 0.993
23 7 17 0.965 25 6 20 0.996
24 7 17 0.957 26 7 20 0.991
25 8 18 0.957 27 7 21 0.994
26 8 19 0.971 28 7 21 0.992
27 8 20 0.981 29 8 22 0.992
28 9 20 0.964 30 8 23 0.995
29 9 21 0.976 31 8 24 0.997
30 10 21 0.957 32 9 24 0.993
31 10 22 0.971 33 9 25 0.995
32 10 22 0.965 34 10 25 0.991
33 11 23 0.965 35 10 26 0.994
34 11 23 0.959 36 10 26 0.992
35 12 24 0.959 37 11 27 0.992
36 12 24 0.953 38 11 27 0.991
37 13 25 0.953 39 12 28 0.991
38 13 26 0.966 40 12 29 0.994
39 13 27 0.976 41 12 30 0.996
40 14 27 0.962 42 13 30 0.992
41 14 28 0.972 43 13 31 0.995
42 15 28 0.956 44 14 31 0.990
43 15 29 0.968 45 14 32 0.993
44 16 29 0.951 46 15 33 0.992
45 16 30 0.964 47 15 33 0.992
46 16 30 0.960 48 15 33 0.991
47 17 31 0.960 49 16 34 0.991
48 17 31 0.956 50 16 35 0.993
49 18 32 0.956 51 16 36 0.995
50 18 32 0.951 52 17 36 0.992
51 19 33 0.951 53 17 37 0.995
52 19 34 0.964 54 18 37 0.991
53 19 35 0.973 55 18 38 0.994
54 20 35 0.960 56 18 38 0.992
55 20 36 0.970 57 19 39 0.992
56 21 36 0.956 58 20 40 0.991
57 21 37 0.967 59 20 40 0.991
58 22 37 0.952 60 20 40 0.990
59 22 38 0.964 61 21 41 0.990
60 23 39 0.960 62 21 42 0.993
61 23 39 0.960 63 21 43 0.995
62 24 40 0.957 64 22 43 0.992
63 24 40 0.957 65 22 44 0.994
64 24 40 0.954 66 23 44 0.991
65 25 41 0.954 67 23 45 0.993
66 25 41 0.950 68 23 45 0.992
67 26 42 0.950 69 24 46 0.992
68 26 43 0.962 70 24 46 0.991
69 26 44 0.971 71 25 47 0.991
70 27 44 0.959 72 25 47 0.990
n>71 | =~ [0.50n — | = 0.950 n>73 | = [0.50n — | = 0.990
0.980y/n] [0.50n+14 1.288/n| [0.50n+1+
0.980/1] 1.288/n]

Table A.1:Quantile ¢ = 50%, Confidence Levels v = 95% (left) and 0.99% (right)
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Ln | J | k [ » | [»n | J | k | » |
n < 10: no confidence interval possible. n < 16: no confidence interval possible.
11 5 11 0.950 17 7 17 0.992
12 6 12 0.954 18 8 18 0.993
13 7 13 0.952 19 9 19 0.993
14 7 14 0.972 20 10 20 0.993
15 8 15 0.969 21 11 21 0.991
16 9 16 0.963 22 11 22 0.995
17 9 17 0.980 23 12 23 0.994
18 9 17 0.955 24 13 24 0.992
19 10 18 0.960 25 13 25 0.996
20 12 20 0.956 26 13 25 0.993
21 12 20 0.960 27 15 27 0.992
22 13 21 0.956 28 15 27 0.993
23 13 22 0.974 29 16 28 0.992
24 14 23 0.970 30 16 29 0.995
25 14 24 0.982 31 17 30 0.994
26 15 24 0.959 32 18 31 0.993
27 16 25 0.958 33 18 32 0.996
28 17 26 0.954 34 19 32 0.991
29 17 27 0.971 35 20 33 0.990
30 17 27 0.954 36 21 35 0.991
31 18 28 0.958 37 21 35 0.993
32 20 30 0.956 38 21 35 0.990
33 20 30 0.958 39 23 37 0.990
34 21 31 0.955 40 23 37 0.991
35 22 32 0.950 41 23 39 0.997
36 22 33 0.968 42 24 39 0.994
37 22 34 0.979 43 25 40 0.993
38 23 34 0.961 44 26 41 0.992
39 24 35 0.960 45 26 42 0.995
40 25 36 0.958 46 27 42 0.990
41 25 37 0.972 47 28 44 0.993
42 25 37 0.961 48 29 45 0.991
43 26 38 0.963 49 29 45 0.993
44 28 40 0.961 50 29 45 0.990
45 28 40 0.963 51 31 47 0.990
46 28 40 0.951 52 31 47 0.991
47 29 41 0.953 53 31 49 0.996
48 31 43 0.952 54 32 49 0.993
49 31 43 0.954 55 33 50 0.993
50 32 44 0.952 56 34 51 0.992
51 32 45 0.966 57 34 52 0.995
52 33 46 0.964 58 35 52 0.991
53 33 47 0.975 59 36 53 0.990
54 34 47 0.959 60 37 55 0.992
55 35 48 0.959 61 37 55 0.993
56 36 49 0.957 62 37 55 0.991
57 36 50 0.969 63 39 57 0.991
58 37 50 0.951 64 39 57 0.991
59 38 51 0.951 65 40 58 0.991
60 39 53 0.961 66 41 59 0.990
61 39 53 0.963 67 41 60 0.993
62 39 53 0.954 68 42 61 0.993
63 40 54 0.956 69 42 62 0.995
64 42 56 0.955 70 43 62 0.992
65 42 56 0.956 71 44 63 0.991
66 43 57 0.955 72 45 64 0.991
67 44 58 0.952 73 45 65 0.994
68 44 59 0.966 74 45 65 0.992
69 44 60 0.975 75 47 67 0.992
70 45 60 0.962 76 48 68 0.991
71 46 61 0.961 77 48 68 0.992
72 47 62 0.960 78 48 68 0.991
73 47 63 0.971 79 50 70 0.991
74 48 63 0.956 80 50 70 0.991
75 49 64 0.956 81 51 71 0.990
n>76 | =~ [0.75n — | & 0.950 n>82 | = [0.7on — | = 0.990
0.849/n] [0.75n+1+ 1.115/n| [0.75n+1+
0.849/n] 1.115/n]

Table A.2:Quantile ¢ = 75%, Confidence Levels v = 95% (left) and 0.99% (right)
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n_] J | k | » | [ n ] J | k | » |
n < 58: no confidence interval possible. n < 89: no confidence interval possible.
59 50 59 0.951 90 76 90 0.990
60 52 60 0.951 91 79 91 0.990
61 53 61 0.953 92 80 92 0.990
62 54 62 0.955 93 81 93 0.991
63 55 63 0.957 94 82 94 0.991
64 56 64 0.958 95 83 95 0.991
65 57 65 0.959 96 84 96 0.992
66 58 66 0.961 97 85 97 0.992
67 59 67 0.962 98 86 98 0.992
68 60 68 0.963 99 87 99 0.992
69 61 69 0.964 100 88 100 0.993
70 62 70 0.964 101 89 101 0.993
71 63 71 0.965 102 90 102 0.993
72 64 72 0.965 103 91 103 0.993
73 65 73 0.966 104 92 104 0.993
74 66 74 0.966 105 93 105 0.993
75 67 75 0.966 106 94 106 0.993
76 68 76 0.966 107 95 107 0.993
77 69 77 0.966 108 96 108 0.993
78 70 78 0.966 109 97 109 0.993
79 71 79 0.966 110 98 110 0.993
80 72 80 0.965 111 99 111 0.993
81 73 81 0.964 112 100 112 0.993
82 74 82 0.964 113 101 113 0.993
83 75 83 0.963 114 102 114 0.992
84 76 84 0.962 115 103 115 0.992
85 77 85 0.961 116 104 116 0.992
86 78 86 0.960 117 105 117 0.992
87 79 87 0.959 118 106 118 0.991
88 80 88 0.957 119 107 119 0.991
89 81 89 0.956 120 108 120 0.991
90 82 90 0.954 121 109 121 0.990
91 83 91 0.952 122 109 122 0.995
92 84 92 0.950 123 110 123 0.995
93 84 93 0.974 124 111 124 0.995
94 85 94 0.973 125 112 125 0.994
95 86 95 0.972 126 113 126 0.994
96 87 96 0.971 127 114 127 0.994
97 88 97 0.970 128 115 128 0.994
98 89 98 0.969 129 116 129 0.993
99 90 99 0.967 130 117 130 0.993
100 91 100 0.966 131 118 131 0.993
101 91 100 0.952 132 119 132 0.992
102 92 101 0.953 133 120 133 0.992
103 93 102 0.953 134 121 134 0.992
104 94 103 0.954 135 122 135 0.991
105 95 104 0.954 136 123 136 0.991
106 96 105 0.954 137 124 137 0.990
107 97 106 0.954 138 124 138 0.995
108 98 107 0.954 139 125 139 0.995
109 99 108 0.954 140 126 140 0.995
110 100 109 0.954 141 127 141 0.994
111 101 110 0.954 142 127 141 0.992
112 102 111 0.953 143 128 142 0.992
113 103 112 0.953 144 129 143 0.992
114 104 113 0.952 145 130 144 0.992
115 105 114 0.951 146 131 145 0.992
116 106 115 0.950 147 133 147 0.992
117 107 117 0.965 148 134 148 0.992
118 108 118 0.963 149 135 149 0.992
119 109 119 0.961 150 136 150 0.991
120 110 120 0.959 151 137 151 0.991
121 110 120 0.967 152 138 152 0.990
122 111 121 0.966 153 138 152 0.992
123 112 122 0.966 154 139 153 0.992
n>124 | = [0.95n — | = 0.950 n>155 | ~ [0.95n — | =~ 0.990
0.427+/n] [0.95n+1+ 0.561y/n] [0.95n+14
0.427+/n] 0.561y/n]

Table A.3:Quantile ¢ = 95%, Confidence Levels v = 95% (left) and 0.99% (right)
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APPENDIX B

PARAMETRIC ESTIMATION, LARGE SAMPLE
THEORY

B.1 PARAMETRIC ESTIMATION THEORY

In this appendix we give a large sample theory which is useddme asymptotic confidence inter-
val computations in Chapter 2 and for the general framewblikelihood ratio tests of Chapter 4.

B.1.1 THE PARAMETRIC ESTIMATION FRAMEWORK .

Consider a data set;, « = 1...,n, which we view as the realization of a stochastic system (in
other words, the output of a simulator). The framework ofapagtric estimation theory consists
in assuming that the parameters of the stochastic systemwearalefined, but unknown to the
observer, who tries to estimate it as well as she can, usenddta set.

We assume here that the model has a density of probabilityptdd with f (x4, ..., z,|0), where
0 is the parameter. It is also called thieelihood of the observed data. Aestimator of 4 is any
functionT'() of the observed data. A good estimator is one such that, irageel’(z1, ..., x,,) is
“close” to the true valué.

EXAMPLE 2.1:1.1.D. NORMAL DATA. Assume we can believe that our data is iid and normal with
mean p and variance 2. The likelihood is

1 1 z; — p)?
(Vara) P (‘EZ( ;2”) E

and 6 = (u, o:). An estimator of 6 is § = (fin, 01, given by Theorem 2.2.3. Another, slightly different
estimator is 6, = (fiy, s,) given by Theorem 2.2.2.

An estimator provides a random result: for every realizatibthe data set, a different estimation
is produced. The “goodness” of an estimator is captured &ydhowing definitions. HereX is

317
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—

the random data sef;(X) is the estimator ani, means the expectation when the unknown but
fixed parameter value &

e Unbiased estimator: E, (7(X)) = 6. For example, the estimatég of variance of a

normal i.i.d. sample given by Theorem 2.2.3 is unbiased.

e Consistent family of estimators: Py(|7(X) — 6|) > ¢) — 0 when the sample size goes
to co. For example, the estimati,,, 7,,) of Theorem 2.2.3 is consistent. This follows from
the weak law of large numbers.

B.1.2 MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

A commonly used method for deriving estimators is thatlaikimum Likelihood. The maximum
likelihood estimator is the value éfthat maximizes the likelihood(x1, ..., z,,|0). This definition
makes sense if the maximum exists and is unique, which ig tfte in practice. A formal set of
conditions is the regularity condition in Definition B.2.1.

In Section B.2, we give a result that shows that the MLE for.ith.isample with finite variance is
asymptotically unbiased, i.e. the bias tend8 &s the sample size increases. It is also consistent.

EXAMPLE 2.2:MLE FOR II.D. NORMAL DATA. Consider a sample (z1,...,z,) obtained from a
normal i.i.d. random vector (X1, ..., X,,). The likelihood is given by Eq.(B.1). We want to maximize
it, where z1,...,x, are given and u,v = o2 are the variables. For a given v, the maximum is
reached when u = [, = %Z;‘zl x;. Let u have this value and find the value of v that maximizes
the resulting expression, or to simplify, the log of it. We thus have to maximize

n 1
——Ilnv——8,, B.2
2nv 2@5, +C (B.2)

where S, ;. det S (x— fin)? and C is a constant with respect to v. This is a simple maximization

problem in one variable v, which can be solved by computing the derivative. We find that there is a
maximum for v = % The maximum likelihood estimator of (u,v) is thus precisely the estimator
in Theorem 2.2.2.

We say that an estimation methmariant by re-parametrization if a different parametrization
gives essentially the same estimator. More precisely assuenhave a method which produces
some estimatoT()Z) for 6. Assume we re-parametrize the problem by considering beapéa-
rameter isp(6), whereg is some invertible mapping. For example, a normal i.i.d. glasan be
parametrized by = (u,v) or by ¢(0) = (u, o), with v = o2, The method is called invariant by

re-parametrization if the estimator of0) is preciselys(7'(X)).

The maximum likelihood metho invariant by re-parametrization. This is because the ptgpe
of being a maximum is invariant by re-parametrization. lmsimportant property in our context,
since the model is usually not given a priori, but has to bemted by the performance analyst.

A method that provides an unbiased estimator cannot beamtday re-parametrization, in general.
For example(/i,,, 52) of Theorem 2.2.3 is an unbiased estimatafiofo?), but(ji,, ,,) is abiased
estimator of i, o) (because usuallg(S)? # E(S?) except ifS is non-random). Thus, the property
of being unbiased is incompatible with invariance by reapaetrization, and may thus be seen as
an inadequate requirement for an estimator.
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Furthermore, maximum likelihood is alsavariant by reversible data transformation, i.e. the
MLE of 0 is the same, whether we look at the data or at a one to one dramsindependent of
§. More precisely, assumg = (X;);_1._, has a joint PDFf¢(Z|), and letY = ¢(X), with p a
one-to-one, differentiable mapping independert.of

Take X as data and estimate we have to maximizef ¢ (Z|6) with respect tod, wherezr =
(x;)i=1..n IS the available data. If, instead, we obsegye- ¢ (zx;) for all i, we have to maximize

1
fY(g) = ff*(f)

')
where|¢'(Z)| is the absolute value of the determinant of the differerdfap (i.e. the Jacobian
matrix).
In particular, the MLE is invariant bye-scalingof the data. For example, ¥; is a log-normal
sample (i.e. ift; = e* andX; ~ iid N, =), then the MLE of the parametersé can be obtained
by estimating the mean and standard deviatiom (f;).

B.1.3 EFFICIENCY AND FISHER INFORMATION

—

The efficiency of an estimatofl’(X) of the parametef is defined as the expected square error

- 2
Eq( ‘T(X) - 6‘ ) (here we assume th@atakes values in some spa@avhere the norm is defined).

The efficiency that can be reached by an estimator is capbyrte concept of Fisher information,
which we now define. Assume first to simplify thae R. Theobserved information is defined

by
921(0)

062

J(0) =—
wherel(0) is thelog-likelihood, defined by
[(0) =Inlik(9) =1n f(xq, ..., x,|0)
TheFisher information, or expected information is defined by
)
062

For an i.i.d. modelXy, ..., X,,, I(#) = >, In fi(z;|0) and thusl (0) = nl;(0), wherel,(0) is the
Fisher information for a one point sampig. The Cramer-Rao theorem says that the efficiency of
anyunbiasedestimator is lower bounded % Further, under the conditions in Definition B.2.1,
the MLE for an i.i.d. sample is asymptotically maximally e#nt, i.e. E <HT(X’) - GH) /1(0)
tends tol as the sample size goes to infinity.

In general, the parametéris multi-dimensional, i.e., varies in an open sub®etf R*. Then./
and/ are symmetric matrices defined by

16) = By (J(0)) = By (—

O =~ 5550

and

[1(0))i; = —Eo (g;léeei)
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The Cramer-Rao lower bound justifies the name of “infornrétid he variance of the MLE is of
the order of the Fisher information: the higher the inforimatthe more the sample tells us about
the unknown parametér The Fisher information is not the same as entropy, usedannration
theory. There are some (complicated) relations — see [3@ptEh16].

In the next section we give a more accurate result, which eamsed to give approximate confi-
dence intervals for large sample sizes.

B.2 ASYMPTOTIC CONFIDENCE INTERVALS

Here we need to assume some regularity conditions. Assuensaimple comes from an i.i.d.
sequence of length and further, that the following regularity conditions aretm

DEFINITION B.2.1. Regularity Conditions for Maximum Likelihood AsymptofR3)].

1. The seb of values of) is compact (closed and bounded) and the true vajus not on the
boundary.

(identifiability) for different values df, the densitieg (Z|0) are different.

. (regularity of derivatives) There exist a neighborhd®af , and a constanf such that
for 6 € B and foralli, j, k,n: 1Es(|0%(6)/06;00,00;) < K

For 6 € B the Fisher information has full rank

. For 6 € B the interchanges of integration and derivationjr%i‘@)dx = -2 [ f(&0)dx

0,
2f(zl0) ;.. & [ Of(F|0) .
and [ 90,00; dr = 55 20, dx are valid

w N

SIS

The following theorem is proven in [32].

THEOREM B.2.1. Under the conditions in Definition B.2.1, the MLE exists, varges almost
1,4 0 o 0 0

surely to the true value. Furthei(f)z (0 — ) converges in distribution towards a standard normal

distribution, asn goes to infinity. It follows that, asymptotically:

1. the distribution of) — § can be approximated hy (O, I(é)‘l) or N (O, J(é)*)

2. the distribution o (l(é) — l(@)) can be approximated by? (wherek is the dimension of
0).

The quantity2 <l(é) — l(@)) is called thdikelihood ratio statistic.

In the examples seen in this book, the regularity conditemesalways satisfied, as long as : the
true valuéed lies within the interior of its domain, the derivativesi¢f) are smooth (for example,
if the densityf (Z]0) has derivatives at all orders) and the matri¢é$) and/(6) have full rank. If
the regularity conditions hold, then we have an equivalefihdion of Fisher information:

100, -5 () )~ (G20

this follows from differentiating with respect tbthe identity [ f(z0)dx = 1.

Item 2 is more approximate than item 1, but does not requicehopute the second derivative of
the likelihood.
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Theorem B.2.1 also holds for non-i.i.d. cases, as long a&igteer information goes to infinity
with the sample size.

EXAMPLE 2.3:FISHER INFORMATION OF NORMAL I.I.D. MODEL. Assume (X;);=1. ., isi.i.d. normal
with mean p and variance ¢2. The observed information matrix is computed from the likelihood

function; we obtain:
J = < 5 % 3 i—’;(ﬂn - :u’) )
ﬁ(ﬂn - N) ;_g + ot (S:c:c + n(/ln - ,u)2)

and the expected information matrix (Fisher’s information) is

n)
o2

The following corollary is used in practice. It follows imaiately from the theorem.

~
Il

VR

oYz
(Y]

COROLLARY B.2.1 (Asymptotic Confidence IntervalsjVhemn is large, approximate confidence
intervals can be obtained as follows:

1. For theith coordinate of), the interval is:6; 417, / [I(é)—l} Corf+n,/ [J(é)—l} ~, where

No,i(n) = 2 (for example, withy = 0.95, n = 1.96).
2. If @ isin R: the interval can be defined implicitly §8 : () — § < 1(9) < I(9)}, where
X3 (&) = ~. For example, withy = 0.95, £ = 3.84.

EXAMPLE 2.4:LAzY NORMAL I.1.D.. Assume our data comes from an i.i.d. normal model X;,
i = 1,..n. We compare the exact confidence interval for the mean (from Theorem 2.2.3) to the
approximate ones given by the corollary.

The MLE of (i, o) is (i, sn). The exact confidence interval is
o
A :l: /_n
with 62 = S, ,/(n — 1) and t,_1(n) = 37
Now we compute the approximate confidence interval obtained from the Fisher information. We

have ,
Z 0

I(p,0) ' = n
(1, 0) (O %>

thus the distribution of (u — fi,, 0 — s,,) iS approximately normal with 0 mean and covariance matrix

o2
( 8 gg ) It follows that p — [, is approximately N (0, %) and an approximate confidence
n
interval is
0+ Sn

with s, = s, ./n and No1(n) = 2.
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n 30 60 120
Exact | 0.7964 — 1.3443 | 0.8476 — 1.2197 | 0.8875 — 1.1454
Fisher| 0.7847 — 1.3162 | 0.8411 — 1.2077 | 0.8840 — 1.1401

Table B.1: Confidence Interval for o for an i.i.d., normal sample of n data points by exact method and
asymptotic result with Fisher information (Corollary B.2.1). The values are the confidence bounds for the
ratio -~ where o is the true value and 4,, the estimated standard deviation as in Theorem 2.2.3.

Thus the use of Fisher information gives the same asymptotic interval for the mean as Theo-
rem 2.2.2. This is quite general: the use of Fisher information is the generalization of the large
sample asymptotic of Theorem 2.2.2.

We can also compare the approximate confidence interval for . The exact interval is given by
Theorem 2.2.3: with probability v we have

€2

n—1

&1

n—1

Q>
(N3

<=5 <

Q

with x2_ (&) = 1‘77 and x2 (&) = ”TV Thus an exact confidence interval for o is

. n—1 n—1
on [ & & J (B.3)

With Fisher information, we have that o — s,, is approximately N _ . Thus with probability ~

"2n

g
0= sn| S n—=

Van

with N(]’l(?]) = HT’Y .
Divide by o and obtain, after some algebra, that with probability ~:

1 0'< 1
Sp 11— —L

V2n

<

_n_
1+m

Taking into account that s,, = \/”T‘la—n, we obtain the approximate confidence interval for o

—1 1 —1 1
2 [\/” T ] (B.4)
oAt nol=70

For n = 30,60,120 and v = 0.95, the confidence intervals are as shown in Table B.1, where we
compare to exact values; the difference is negligible already for n = 30.

QUESTION B.2.1. Which of the following are random variable; 0, ((6), 1(6), J(0), 1(0), J(0),
1(6) 2 1

1In the classical, non Bayesian framework:((6), 1(0), J(0), J(6), 1(A) are random variables, and(0) are
non-random but unknown.
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B.3 CONFIDENCE INTERVALIN PRESENCE OF NUISANCE PA-
RAMETERS

In many cases, the parameter has the férm(u, ), and we are interested only in(for example,
for a normal model: the mean) while the remaining elementhich still needs to be estimated,
is considered a nuisance (for example: the variance). lh sases, we can use the following
theorem to find confidence intervals.

THEOREMB.3.1 ([32]). Under the conditions in Definition B.2.1, assume that M x N, where
M, N are open subsets &, R?. Thus the parameter &= (u,v) withp € M andv € N (pis
the “dimension”, or number of degrees of freedomypf

For any ., let 7, be the solution to

l(:uv ﬁ#) = maxl(,u, V)

and define therofile log likelihood pl by
pl() = maxl(p,v) = Up. )

Let (i,7) be the MLE. If (u,v) is the true value of the parameter, the distribution of

2 (pl(f1) — pl(p)) tends toy;.
An approximate confidence region foat levely is

i€ M < pll0) > pi() — 5)

wherex?(¢) = 7.

The theorem essentially says that we can find an approxinoatiédence interval for the param-
eter of interes: by computing the profile log-likelihood for all values pfaround the estimated
value. The estimated value is the one that maximizes thelgtofi-likelihood. The profile log
likelihood is obtained by fixing the parameter of interedb some arbitrary value and compute
the MLE for the other parameters. A confidence interval isiolatd implicitly as the set of values
of 1, for which the profile log likelihood is close to the maximunm practice, all of this is done
numerically.

EXAMPLE 2.5:LAzY NORMAL I.1.D. REVISITED. Consider the log of the data in Figure 2.12, which
appears to be normal. The model is Y; ~ i.i.d.N, ,» where Y; is the log of the data. Assume
we would like to compute a confidence interval for p but are too lazy to apply the exact student
statistic in Theorem 2.2.3.

For any 1, we estimate the nuisance parameter o, by maximizing the log-likelihood:

l(,0) = <nlna2 F Y- m?)

It comes

> —p)?= %SYY + (Y = p)?

i

SEES
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and thus
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def N n N
pl() = 1, 6) = =5 (6 + 1)

On Figure B.1 we plot pl(x). We find & = 1.510 as the point that maximizes pl(n). A 95%-
confidence interval is obtained as the set {pl(1:) > pl(/1)—33.84}. We obtain the interval [1.106, 1.915].
Compare to the exact confidence interval obtained with Theorem 2.2.3, which is equal to [1.103, 1.918]:
the difference is negligible.

QUuESTION B.3.1. Find an analytical expression of the confidence intervakot#d with the profile log
likelihood for this example and compare with the exact ivaér?

-121

-122+ -

-123 B

-124 e

-125 3

profile log likelihood

-126 - B

-127 B

-128 L
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Figure B.1: Profile log-likelihood for parameter 1 of the log of the data in Figure 2.12. The confidence
interval for . is obtained by application of Theorem B.3.1.

EXAMPLE 2.6:RE-SCALING. Consider the data in Figure 2.12, which does not appear to be
normal in natural scale, and for which we would like to do a Box-Cox transformation. We would
like a confidence interval for the exponent of the transformation.

The transformed data is Y; = bs(X;), and the model now assumes that Y; is i.i.d. ~ N2 We
take the unknown parameter to be 6 = (u, 0, s). The distribution of X;, under 6 is:

Fxi(@lf) = V() f; (bs() |, 0) = &° " h(bs(x) |, 0%)

2The profile log likelihood method gives a confidence intedefined by

Lets def _a—p
Y

(i —p)?
Syy
n

33

- —1=

<e 1
n

be the student statistic. The asymptotic confidence intearabe rewritten as

n(n —1)

2<(n—1en —1)~
<(n—1)(e ) -

An exact confidence interval is

t? < ¢

where¢ = t,_1(1 — a/2). For largen, €2 ~ nand”-! ~ 1 so the two intervals are equivalent.
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where h(z|u, 0%) is the density of the normal distribution with mean ;. and variance 2.
The log-likelihood is

Wu,o,s) :C—nlna—i—z ((s—l)lnwi— .

where C' is some constant (independent of the parameter). For a fixed s it is maximized by the
MLE for a Gaussian sample
R 1
Hs = E Z bs(xz)
7

62 = L5 (by(w) — o)

%
We can use a numerical estimation to find the value of s that maximizes I(s, 65, s); see Figure B.2
for a plot. The estimated value is § = 0.0041, which gives i = 1.5236 and 6 = 2.0563.
We now give a confidence interval for s, using the asymptotic result in Theorem B.3.1. A 95%
confidence interval is readily obtained from Figure B.2, which gives the interval [—0.0782,0.0841].

QUESTION B.3.2. Does the confidence interval justify the log transformafich

Alternatively, by Theorem B.2.1, we can approximate the distribution of § — 6 by a centered normal
distribution with covariance matrix /(). After some algebra, we compute the Fisher information
matrix. We compute the second derivative of the log-likelihood, and estimate the Fisher informa-
tion by the observed information (i.e. the value of the second derivative at § = é). We find:

23.7 0 771
J = 0 473 —146.9
77.1 —146.9 1291.1
and

J~ V=1 0.0173 0.0377 0.0053

0.0605 0.0173 0.0056
0.0056 0.0053 0.0017

The last term of the matrix is an estimate of the variance of § — s. The 0.95 confidence interval
obtained from a normal approximation is § + 1.96/0.0017 = [—0.0770, 0.0852].

3Yes, sincd) is in the interval.
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Figure B.2:Profile log-likelihood for Example 2.6, as a function of the Box-Cox exponent s. The maximum
likelihood estimator of s is the value that maximizes the profile log likelihood: a confidence interval for s is
the set of s for which the profile log likelihood is below the horizontal dashed line.
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C.1 NOTATION AND A FEW RESULTS OF LINEAR ALGEBRA

C.1.1 NOTATION

Unless otherwise specified, we view a vectoiRih as a column vector, and denote identifiers of
vectors with an arrow, as in

X1

X=1 :

Xn
The identity matrix is denoted withi.
Matrix transposition is denoted with so, for exampleX” = (X, ..., X,) andX = (Xi,..., X,)7.
Theinner product of «, v € R™ is

i = Uﬁzg U;V;

Thenorm of 4 is, otherwise specified, the euclidian norm, i.e.

lal| = Vata

An orthogonal matrix U is one that satisfies any one of the following equivalent proes:

its columns have unit norm and are orthogonal
its rows have unit norm and are orthogonal
UuT =1d

UTU = 1d

U has an inverse and—! = U™

arONPE

C.1.2 LINEAR ALGEBRA

If M is alinear subspace &, theorthogonal projection on M is the linear mappind],;, from
R™ to itself such thatl,, () is the element of\/ that minimizes the distance

Iy (%) = argmin || — 7 (C.1)
yeM

I1,,(%) is also the unique elemegite M such thatj — ¥ is orthogonal taV/. 11,, is symmetric
(I1,; = 11%,) and idempotentl(3, = I1,,).

IT,, can always be put in diagonal form as follows:
Iy, = U'DU

withD = | ‘ o (C.2)
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where the number aofs on the diagonal is the dimensionif andU is an orthogonal matrix.

Let H be ann x p matrix , withp < n, andM the linear space spanned by the columns of the
matrix H, i.e.
M ={y e R": y = HZfor somez € R’}

If 4 has full rank (i.e. has rank) then #” i has an inverse and

My = HH"H)'H" (C.3)

C.2 COVARIANCE MATRIXOF A RANDOM VECTOR IN R”

C.2.1 DEFINITIONS

Let X be a random vectoryvith values Ri". If each of the component¥, ..., X, has a well
defined expectation, théf X ) is defined as

E(X1)
E(X)=|
E(X,)

For any non-random matricés and K" (with appropriate dimensions such that the matrix products
are valid): - .
E(HXK)=HE(X)K (C.49)

Further, ifE(X2) < oo for eachi = 1, ..., n, thecovariance matrix of X is defined by
Q=B ((X-p&-p") (C5)
with i = E(X). This is equivalent to
Qi = cov(X;, X;) € E (X, — E(X))(X; — E(X))) (C-6)

foralli,j € {1,...,n}.
Further, for anyii, v € R™:

E (@ (X - @)@ (X - 7)) = @05 (C.7)

Also
Qi,i = VaI'(XZ') (C8)

If X andY are random vectors iR” andR? with a well covariance matrices, tleeoss covari-
ance matrix of X andY is then x p matrix defined by

r=E ((X* (Y — ﬁ)T) (C.9)

—

with /i = E(X) andE(Y) = 7.
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C.2.2 PROPERTIES OF COVARIANCE MATRIX

The covariance matrix is symmetri@ (= ) andpositive semi-definite. The latter means that
uTQu > 0 for all u € R™, which follows immediately from Eq.(C.7).

If X' = X + v wherev € R" is a non-random vector, then the covariance matrices’aind X
are identical.

If X' = AX with X’ arandom vector iiR™ andA a non random/’ x n matrix, then the covariance
matrix 2’ of X' is

O = AQAT (C.10)
Any covariance matrix can be put in standard diagonal forfokswvs:
MO

Q=u" U (C.11)

whereU is an orthogonal matrix(? = U~1), ris the rank of2 and)\, > ... > \, > 0.

It follows from this representation that the equatif2 = 0 has a non zero solutior & 0) if
and only ifQ2 has full rank.

C.2.3 CHOLESKI 'S FACTORIZATION

Eq.(C.11) can be replaced by a computationally much lessrestpe reduction, calle@holeski’s
Factorization. This is a polynomial time algorithm for finding a lower trgudar matrixZ such
that(? = LL”. Choleski's factorization applies to positive semi-deéinnatrices and is readily
available in many software packages.

C.2.4 DEGREES OF FREEDOM

Let V' = span(2) be the linear sub-space &* spanned by the columns (or rows, sirfeds
symmetric) of(2. Recall thatX is not necessarily gaussian.

PrROPOSITIONC.2.1. X is constrained to the affine sub-space parallelitahat containsii =
E(X),i.e. X — ji € V with probability 1.

It follows that the number oflegrees of freedom of X (defined in this case as the smallest
dimension of an affine space th&tcan be imbedded in) is equal to the dimensiofvghamely,

the rank of(2. In particular, ifQ2 does not have full rank; has zero mass (its Lebesgue measure is
0) and the integral of any function driis 0. Thus, it is impossible thaf has a probability density
function. Conversely:

COROLLARY C.2.1.If X has a probability density function (pdf) then its covariamoatrixs2 is
invertible.



C.3. GAUSSIAN RANDOM VECTOR 331

ExAMPLE 3.1: In R?, let the covariance matrix of X be

a 0 a
Q= 0 b b (C.12)
a b a+b

where a, b are positive constants. The rank is » = 2. The linear space generated by the columns
of Q is the plane defined by =1 + x2 — 23 = 0. Thus the random vector X = (X, Xo, Xg)T is in the
plane defined by X + Xo — X3 = 111 + pig — pi3 Where fi = (1, p2, p13)".

C.3 GAUSSIAN RANDOM VECTOR

C.3.1 DEFINITION AND MAIN PROPERTIES

DEFINITION C.3.1. A random vectortX with values inR” is a gaussian vector if any of the
following is true:

1. For any non random € R", »7 X is a normal random variable.
2. X is a non random linear combination pfiild normal random variables, for somec N
3. The expectatio@ and covariance matriX2 of X are well defined and itsharacteristic

function is
N ST Y ST = 1=T0Os
03(@) E E(e¥ ) = ¥ A2 (C.13)
forall b € R”
EXAMPLE: The vector (e, ...,e,)" with ¢; ~ Ny»2, and o # 0 is a gaussian vector, called white

gaussian noise. It has ji = 0 and Q = ¢%Id.

Vae
X = Ve,
Vaer + \/562
is gaussian with i = 0 and Q as in Eq.(C.12).

The vector

The constant (non-random) vector X = /1 is gaussian with covariance matrix 2 = 0.

It follows |mmed|ately that any (non-random) linear conddion of gaussmn vectors is gaussian.
In particular, itX is gaussian and is a non random matrix, theaX is gaussian.

Gaussian vectors are entirely defined by their first and sboater properties. In particular:

THEOREM C.3.1 (Independence equals Non-Correlatidrgt X [resp. Y] be a gaussian random
vector inR” [resp. RP]. X andY are independent if and only if their cross-covariance matsi
0, i.e.

cov(X;,Y;) =0foralli=1,....n, j=1,...,p
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Note that this is special to gaussian vectors. For non gawmssindom vectors, independence
implies non correlation, but the converse may not be true.
THEOREM C.3.2 (Density).If Q2 is invertible, X has a density, given by

Fol@) = 1 o HE-pTa T F )

~/(2n)"det Q
Conversely, we know from Corollary C.2.1 thatlfis not invertible (as in the previous example),
X cannot have a density. A frequent situation whers invertible is the following.

PROPOSITIONC.3.1. Let X = LewhereX = (Xi,...,X,)", e = (e1,...,€,)" is white gaussian
noise andL is a non-randonp x n matrix. The vectorX is gaussian with covariance matrix
Q= LL". The rank of is equal to the rank of..

We use this properties in the following case,which arisethéanalysis of ARMA and ARIMA
processes.
COROLLARY C.3.1.Lete;, i = 1,...,n be white gaussian noise. Let< nandX,,_,,.1,..., X,
be defined by _
XZ‘IZCZ‘JEJ' fori:m—i-l,...,n (C14)
j=1

with ¢; ; # 0. The covariance matrix of = (Xn—m+1,---,X,) isinvertible.

C.3.2 DAGONAL FORM

Let whereU is the orthogonal transformation in Eq.(C.11) and defife= UX. The covariance
matrix of X' is

A0
O = oA 8 (C.15)
0
thus X7, ,,..., X, have0 variance and are thus non-random, axifi X’ are independent (as

cov(Xj, X}) = 0fori # j).

SinceX = UTX’, it follows that any gaussian random vector is a linear coration of exactly

r independent normal random variables, where the rank of its covariance matrix. In practice,
one obtains such a representation by means of Choleskirization. Lete be gaussian white
noise sequence with unit variance andYet= Le. ThenY is a gaussian vector with covariance
matrix () and0 expectation (and + /1 IS a gaussian vector with expectati@yfor any non random
vectori). This is used to simulate a random vector with any desiredriance matrix.

EXAMPLE: One Choleski fatorization of Q in Eq.(C.12) is Q = LL” with

va 0 0
L(O \/Eo)
va vb 0
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Let e = (€1, €2, €3) be gaussian white noise with unit variance, i.e. such that the covariance matrix
of eisequalto Id. LetY = Lé+ [i, i.e.

Yi = wm++Vae
Yo = pg+ Vbe
Y3 = p3++ae + Vbes

then Y has covariance matrix 2 and expectation . This gives a means to simulate a gaussian
vector with expectation ji and covariance matrix €.

Note that we find, as seen in Example C.12, that Y; + Y5 — Y3 is a (non random) constant.

C.4 FOUNDATIONS OF ANOVA

C.4.1 HoMOSCEDASTIC GAUSSIAN VECTOR

DEFINITION C.4.1. A gaussian vector is callddomoscedastic with variances? if its covariance
matrix isc2Id for somes > (0. The expectatioft is not necessarily.

Let X = (X1, Xo, ..., X,)T. This definition is equivalent to saying that, = y; + ¢, with z;
non-random and; ~ iid Ny 2.
A homoscedastic gaussian vector always has a density ($&ncevariance matrix is invertible),
given by

1

() — — Ly -2
fz(@) it (C.16)

Homoscedasticity is preserved by orthogonal transfolonati

THEOREMC.4.1. LetU be an orthogonal matrix (i.e/~! = UT). If X is homoscedastic gaussian
andY = UX, thenY is also homoscedastic gaussian with same variance.

The following theorem underlies the ANOVA theory:

THEOREM C.4.2. Let X be homoscedastic gaussianit, ji = E(X) and M some linear sub-
space ofR", of dimensiork. LetIl,, be the orthogonal projection oi.

1. II,;X andY = X — II,, X are independent
2. || Mpy X = Tagfilf* ~ X
3. |IY — i+ Ty fil)* ~ X3y,

wherey? is the Chi-square distribution with degrees of freeedom.
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C.4.2 MAXIMUM LIKELIHOOD ESTIMATION FOR HOMOSCEDASTIC GAUS-
SIAN VECTORS

THEOREM C.4.3 (ANOVA). Let X be homoscedastic gaussianlit with variances? and ex-
pectationji. Assume thafi is restricted to a linear subspacde of R”; let £ = dim M. We are
interested in estimating the true valuesiodndo?.

1. The MLE ofi 7, 0?) is i = Ty, X, 6% = 1| X — i,

2. B(f) = ji = E(X) ) )

3. X —jiand;i are independent gaussian random vectors gid-i||? = || X —f||*+ || @i —j||*.
41X = P ~ x2_y0” and |l — il|* ~ xio®

5. (Fisher distribution) =L ~ Fi,,

n—k

A special case is the well known estimation for iid normaldam variables, used in Theo-
rem 2.2.3:

COROLLARY C.4.1.Let(X;)i—1.., ~ N(u,c?).

1. The MLE of i, o) isji = X © L5 X, 6% = 255, with Sxx & 377 (X, — X)2,
2. Sxx and X are independent any,(X; — u)* = Sxx + n(X — p)*

3. Sxx ~ X202 andX ~ N(u, 2).

4. (Student distribution).ﬁ(s%;) ~ tn_q

n—1

C.5 CONDITIONAL GAUSSIAN DISTRIBUTION

C.5.1 XHUR COMPLEMENT

A B
C D
matrices (butB andC' need not be square) andis invertible. TheSchur complement of A in
M is defined as

Let M be a square matrix, decomposed in blockdas- whereA and D are square

S=D-CA'B

It has the following properties.

1. det(M) = det(A) det(S);
2. If M or S is invertible then both are and —! has the form( :

unspecified blocks of appropriate dimensions;
3. If M is symmetrical [resp. positive definite, positive semi-oiédi] so isS.

Stl ),where* stands for
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C.5.2 DISTRIBUTION OF X; GIVEN X,

Let X be a random vector iR™*"2 and letX = < ? ) with X; in R™, i = 1,2. We are
2

interested in the conditional distribution &f, given thatX, = 7, (this is typically for prediction

pyrposes). By general results of probability theory, tlisditional distribution is well defined; if

X is gaussian, it turns out that this conditional distriboti® also gaussian, as explained next.
Let 7, = E(X>), ji; = E(X,) and decompose the covariance matrix¥ofnto blocks as follows.

Q1 1 Q1 2
O = ) )
( Q2,1 Q2,2 )
with €2; ; (cross-covariance matrix) defined by
Qi = B((X; — i) (X; = i)") i,j = 1,2
Note that(2, ; = sz and.X, and.X; are independent if and only{, ; = 0.

THEOREM C.5.1 ([32)). Let X be a gaussian random vector i 2. The conditional distribu-
tion of X, given thatX, = 7, is gaussian. If2; ; is invertible, its expectation B2+Q271Ql‘,}(fl —
1) and its covariance matrix is the Schur complement of the riavee matrix(2; ; of X, in
the covariance matrix) of (X'l, X'g). In particular, the conditional covariance of, given that
X, = &, does not depend of.

The property that the conditional covariance matrix is petedent ofe; holds true only for gaus-
sian vectors, in general. By the properties of covarianceices, if( is invertible, ther(2, ; also
(this follows from the last sentence in Section C.2.2). lis ttase, by the properties of the Schur
complement, the conditional covariance matrix also hdsdnk.

C.5.3 RPRTIAL CORRELATION

Theorem C.5.1 provides a formula for the conditional caee. Though it is true only for gaus-
sian vectors, it is used as the basis for the definitigpenfial covariance andpartial correlation,
used in time series analysis. Informally they quantify tegidual correlation betweeXy; and.X,,
when we know the values of5, ..., X,,_;.

DEFINITION C.5.1 (Partial Covariance and Correlation, Gaussian case)? = (X1, Xo, oo, X1, X0)T
be a gaussian vector such that its covariance matrix is itivier. Let

I = ( Y11 Yin )
Yin Tnn
be the covariance matrix of the conditional distribution(&f;, X,,) given(Xs = xo,..., X,,_1 =

Z,—1). By Theorem C.5.1 is independent ofs, ..., z, ;. Thepartial covariance of X; and
X, is 7, and thepartial correlation of X; and X, is

Tin = Vl,n/\/ Y1,1Yn,n
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If X1,..., X, isaMarkov chain, and > 1, thenX, is independent ok, givenXs, ..., X,,_1. In
such a case, the partial correlationof and X, is 0 (but the covariance ak; and.X,, is not0).
Partial correlation can be used to test if a Markov chain risdedequate. The following theorem
gives a simple way to compute partial correlation.

THEOREM C.5.2 ([32]). Let X = (X1, Xo, ..., X1, X,,)T be a gaussian vector such that its
covariance matriX is invertible. The partial correlation ok’; and X, is given by

—Tin

VT11Tnn

"in =

wherer; ; is the(7, j)th term of Q.

The classical definition of partial correlation consistextending Theorem C.5.2:

DEFINITION C.5.2 (Partial Correlation)LetX' = (X1, Xy, ..., X_1, X,,)T be a random vector
such that its covariance matri® is well defined and is invertible. Thgartial correlation of X;

and.X,, is defined as
—Tin

v/ T1,1Tn,n

in =

wherer, ; is the(7, j)th term of Q.

C.6 PROOFs

PROPOSITION C.2.1 Letwv € R" be in the kernel of), i.e. Qv = 0 and letZ = vT(X — u). We have
E(Z?) =E (v (X — p)(X — p)v) =" Qu=0

thusZ = 0w.p. 1,i.e.X — p is orthogonal to the kernel @1.
Sincef is symmetric, the set of vectors that are orthogonal to itaddd@s V', thusX — € V.

PROPOSITION C.3.1 X is gaussian with covariance matrix.” by Eq.(C.10). We now show that the rank
of LLT is equal to the rank of.”, by showing thatL. L™ and L™ have same null space. Indeed[ifz = 0 then

LLTz = 0. Conversely, ifLLTz = 0 thenz” LLTz = HLT;vH2 = 0 thusL”z = 0. Finally, the rank of a matrix is
equal to that of its transpose.

THEOREM C.4.1 The covariance matrix df X is U (021d)U” = o2Id.

THEOREM C.4.2 LetX’ =7 — pandY’ = X' — Iy, X'. By linearity of ITj;, ITy, X' andIT,/ X [resp. Y’
andY’] differ by a constant (non-random) vector, thus the crassdancd” of X andY is that of X’ andY”. Thus

I = EIyX'V7T)=E (HMX’(X’ - HMX")T) —E (HMX"X'T - HA,IX’X’THTM)

— IyE (X’)?’T) ~IyE )?’)?’T) 1,
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Now E ()?’)?’T) = ¢02Id thus

T = o2y — 0TIl =0
sincelly, = I1%, andIl%, = I1,,. By Theorem C.3.1HMX' andY are independent. This proves item 1.
Let Z = Iy, X — II . Putll,, in diagonal form as in Eq.(C.2) and &t = U7 (# — 1) andZ = U” Z, so that

Z=DX
thus
Zl- = Xiforizl...m
7, = Ofori=m+1...n
Note that

= e - can

sinceU is orthogonal. NowX is homoscedastic gaussian with 0 expectation and variah¢€heorem C.4.1), thus
X; ~ iid Ny ,2, and finally

. 2 moo
o -~ 35
=1
This proves item 2, and similarly, item 3.

THEOREM C.4.3 The log likelihood of an observaticih= (1, ...,z,)7 is

n

. N 1
lz(fi,0) = -5 In(27) — Nln(o) — 357 Z(xr — pr)?
i=1

_ N In(27) — Nln(o) — LHf— il (C.18)
2 202
For a givens, by Eq.(C.1), the log-likelihood is maximized far = i = II,,(Z), which is independent of. Let

i = fuin EQ.(C.18) and maximize with respectdo this gives the first item in the theorem. The rest followsiro
Theorem C.4.2.
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APPENDIX D

DIGITAL FILTERS

Here we review all we need to know for Chapter 5 about caugdiadfilters. It is a very small
subset of signal processing, without any Fourier transf@ee for example [83, 75] for a
complete and traditional course.
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D.1 CALCULUS OF DIGITAL FILTERS

D.1.1 BACKSHIFT OPERATOR

We consider data sequences of finite, but arbitrary lengthcaii S the set of all such sequences
(i,e. S = U,~, R™). We denote with lengilX') the number of elements in the sequente

Thebackshift operator is the mapping from S to itself defined by:

length BX) = length X)
(BX): = 0
(BX);, = X1 t=2,..lengthX)

We usually view a sequenceé € S as a column vector, so that we can write:

X, 0
| 2= & (D.1)
Xn Xn—l

when lengthi.X') = n.
If we know that lengtlX') < n, we can express the backshift operator as a matrix mukifidin:

BX = B, X (D.2)

whereB,, is then x n matrix:

—_
(@)
=)

: . 0 0
O -~ 0 10
Obviously, ifn = length X') then applyingB n times toX gives a sequence 6§; in matrix form:

(B,)" =0 (D.3)

D.1.2 HLTERS

DEeFINITION D.1.1. Afilter (also called “causal filter”, or “realizable filter”) is any napping, say
F, from S to itself that has the following properties.

1. A sequence of lengthis mapped to a sequence of same length.
2. There exists an infinite sequence of numbersm = 0, 1,2, ... (called the filter'simpulse
response) such that foranyX € S

(FX)t =hoX; + M X1+ ... F i1 X t=1,..., |engtf(X) (D4)
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ExamPLE: The backshift operator B is the filter with hg = 0,h1 =1, hy = hg =--- = 0.
The identical mapping, Id, is the filter with hg = 1,h1 = hy = ... =0.
The de-seasonalizing filter of order s, R;, is the filter with hg = ... = hy_1 =1, h,, = 0form > s.

The differencing filter at lag s, Ag, is the filter with hg = 1,hs = —1 and h,,, = 0 for m # 0 and
m # s.

Eq.(D.4) can also be expressed as

F= i By, B™ (D.5)
m=0

whereBY = Id. Note that the summation is only apparently infinite, sirmesf sequenc&’ in S
of lengthn we haveF X = 3" h,, B™X.

m=

In matrix form, if we know that lengthX') < n we can write Eq.(D.4) as

ho 0O -~ 0 0
ha ho Do
FX = hy hy . X (D.6)
: : . hy O
b1 hyp—g -+ hi ho

A filter is calledFinite Impulse Response (FIR) if h,, = 0 for n large enough. Otherwise, it is
calledInfinite Impulse Response.

D.1.3 IMPULSE RESPONSE AND DIRAC SEQUENCE

Define theDirac sequence of lengthn

1
6= ° (D.7)
0
The impulse response of a filter satisfies
ho
| 2 ps, (D.8)
hn—l

This is used to compute the impulse response if we know soguoeitdm to compute” X for any
X.
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D.1.4 COMPOSITION OF FILTERS, COMMUTATIVITY

Let F'andF” be filters. The composition df andF”, denoted with¥' F”, is defined as the mapping
from S to S obtained by applyind” first, thenF’, i.e. such that for any sequenge

(FF')(X) = F(F'(X)) (D.9)
It can easily be seen thatl” is a filter. Furthermorethe composition of filters commute i.e.
FF =F'F (D.10)
The firstn terms of the impulse response Bf” can be obtained by

90
I | =(FF)s, = F(F's,) = (F'F)s, = F'(F6,) (D.11)
In—1
EXAMPLE: Let us compute the impulse response of F'F” when F' = Id — B (differencing at lag 1)
and F' = Id — B® (differencing at lag 5). Let n be large:

F,(Sn — (1707070707_170707070707”')T
F(F's,) = (1,-1,0,0,0,—1,1,0,0,0,0,---)T

thus the impulse response g of F'F’ is given by

go=g96 =1
g1=95=-1 (D.12)
else g, =0
Alternatively, we can compute in the reverse order and obtain the same result:
Fé, = (1,-1,0,0,0,0,0,0,0,0,0,---)"
F'(F§,) = (1,-1,0,0,0,~1,1,0,0,0,0,--)"

D.1.5 INVERSE OF FILTER

Since the matrix in Eq.(D.6) is triangular, it is invertibfeand only if its diagonal terms are non
zero, i.e. ifhg # 0, whereh, is the first term of its impulse response. If this holds, it edso
be seen that the reverse mapping' is a filter, i.e it satisfies the conditions in Definition (DL).
Thusa filter Fis invertible if and only if hy # 0.

For example, the inverse filter of the filter with impulse r@sgeh,,, = 1 for m > 0 (integration
filter) is the filter with impulse responsg = 1, hy = —1, h,, = 0 for m > 2 (differencing filter).

This can also be written as .
(Z B”) —Id— B (D.13)
n=0
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D.1.6 AR(co) REPRESENTATION OF INVERTIBLE FILTER

Let F" be an invertible filter and = F X. Let gy, g1, . . . be the impulse response Bf !. We have
X = F~'Y thus fort > 1

Xi=gYi +91Yia+ ...+ g1 (D.14)
Note thatgy = 1/ho, thus
Yi=cXi+caYi a+.. .ty (D.15)
with
1
Co= g = hq
{ cm:—%:—gmho form=1,2,... (D.16)

The sequencey, ¢, s, . .. used in Eqg.(D.15) is called th&R(c0) ! representation of”. It can
be used to compute the outpytas a function of the past output and the current injgut This
applies to any invertible filter.

If F~!is FIR, then there is somgsuch thatc,, = 0 for m > ¢. The filter I is calledauto-
regressive of orderq (AR(q)).

D.1.7 CaALcuULUS OF FILTERS

When the filterF” is invertible, the compositiod’(£'~1) is also notedg,. There is no ambiguity
since composition is commutative, namely

F _ _
ik F(F™Y = F"HF (D.17)
We have thus defined the product and division of filters. Itr@ightforward to see that the addition
and subtraction of filters are also filters. For example, therff” + F” has impulse response
hm + R, and the filter— F' has impulse responseh,,.

It is customary to denote the identity filter with With this convention, we can write the differ-
encing filters as

A,=1-D° (D.18)
and the de-seasonalizing filter as
R,=1+B+...+ B! (D.19)
We can also rewrite Eq.(D.13) as
1
— =1-2B
Zn:O Br
or
1 o0
— = B" D.2
P (020

AR stands for “Auto-Regressive”
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The usual manipulations of fractions work as expected, amdoe combined with the usual rules
for addition, subtraction,multiplication and divisiors(bong as the division is valid, i.e. the filter
at the denominator is invertible). Thus,Afand " are invertible, the inverse cﬁ is %

F/
" F

| —

ExAamMPLE: We can recover Eq.(D.12) as follows:

FF'=(1-B)(1-B%=1-B—B°+ B

EXAMPLE:
_ 5 _ 2 3 4
A5 _1-B° (I-BJU+B+B+B+BY | ppe s b oo
Al 1-B 1-B

If F"andG are FIR, therF'G, F'+ G andF' — G are also FIR, but’/G is (generally) not.

D.1.8 2z TRANSFORM

It is customary in signal processing to manipulate tramsforather than the filters themselves. By
definition, theTransfer Function of the filter with impulse respongeis the power series

H(2) = hoz+hiz b+ hyz 2+ . (D.22)

i.e. it is thez transform of the impulse response. This is considered as@afcseries, i.e. there
is no worry about its convergence for any valuezofNote the use of ! (customary in signal
processing) rather than(customary in maths).

It follows from the rules on the calculus of filters that usitngnsfer functions is the same as
replacingB by »~! everywhere.

ExXAMPLE: The transfer function of the filter

g Qt @B+ -+ QBT

= D.23
P0—|—P1B—|—"'—|—Ppo ( )

with Py # 0 is precisely
_ Qo+ @iz 4+ Qg1

H =
Ny

(D.24)

You may find it more convenient to usetransforms and thus transfer functions if you do not
feel comfortable manipulating the backshift operaBofand vice-versa: if you do not like transfer
functions, use the backshift operator instead).
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D.2 STABILITY

A filter ' with impulse responsk, is calledstable? iff
> |kl < 400 (D.25)
n=0

For a sequenc& € S, let| X = max, ; lengthx) | Xy|. If F'is stable and” = F'X then
Yo <M Xl (D.26)

whereM = >~ |h,|. In other words, if the input to the filter has a bounded magtgt so does
the output. In contrast, if" is not stable, the output of the filter may become infinitelgéaas
the length of the input increases. A stable filter has an isgtgsponsg,, that decays quickly as
n — oQ.

For example, the filter in Eq.(D.21) is stable (as is any Flierjland the filter in Eq.(D.20) is not
stable.

In practice, if a filter is not stable, we may experience nuoca¢mproblems when computing its
output (Figure D.1).

D.3 FILTERSWITH RATIONAL TRANSFER FUNCTION

D.3.1 DEFINITION

Filters with Rational Transfer Function are filters of thenfidn Eq.(D.23), or, equivalently, whose
transfer function has the form in Eq.(D.24), wiky # 0. Many filters used in practice are of this
type. Note that
Qo+ @QB+---+QB" Qy+ QB+ +Q,BI
Po+PB+---+P,B> 1+ PB+---+ P/B

with @, = %= and P}, = £, so we can always assume tifat= 1.

A filter with rational transfer function can always be exged as d.inear constant-coefficient
difference equation. Indeed, considér as in Eq.(D.23) withP, # 0 and letY = FX. Recall
that this is equivalent to

Y=(Py+P B+ -+ PB) " (Q+QB+-+Q,B)X
ie.
(Phb+PB+---+PB")Y =(Qo+WB+---+Q,B")X
Thusfort = 1...length X):
RY,+PYy 1+ + BY = QoXe + Q1 X g+ + Qg Xy (D.27)

with the usual conventiol;, = X; = 0 fort < 0. SinceF, # 0, this equation can be used to
iteratively compute’; = Qo X1/ P, Y2 = (Qo X2 + Q1X1)/ P, etc.

2or Bounded Input, Bounded Output (BIBO) -stable
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Theimpulse responseof F'is usually computed by applyirfg | t er to a Dirac sequence. It may
also be computed by Taylor series expansion, using cldsalea for Taylor series of functions of
one real variable.

ExAMPLE: T.he impulse response of the filter G = 1=2 is obtained as follows. We use the rule
- =1+z+2?+...and obtain:
1-2B

= 1+B*>+B*+B%+...—2B—-2B*—2B° — ...
1—-2B+ B?>—-2B3+ B*—2B°. ..

thus the impulse response of G is (1,—2,1,-2,1,—-2...).

Note that, in general, a filter with rational transfer funathas an infinite impulse response.
Theinverseof the filter F" exists ifQQy # 0 and is

4 Ph+PB+---+ BB (D.28)
QO+QlB+"'+Qqu '

i.e. is obtained by exchanging numerator and denominator.

D.3.2 POLES AND ZEROES

By definition, thePoles of a filter with rational transfer functions are the valueg obther tharo,
for which the transfer function is not defined. If the tramdfenction is in a form that cannot be
simplifiec® the poles are the zeroes of the denominator. SimilarlyZ#rees of the filter are the
values ofz # 0 such that{ (z) = 0.

A filter with rational transfer function is stable iff it ha®rpole or itspoles are all inside the
unit disk, i.e. have modulus less than 1. This follows from the debnitf stability and standard
results on the theory of Taylor series of rational fractionsne variable.

The location of zeroes is useful to assess stability of therse filter. Indeed, if the filter is

invertible (i.e.Qy # 0), then the inverse filter is stable iff all zeroes of the araifilter are within
the unit disk.

EXAMPLE 4.1:NUMERICAL STABILITY OF INVERSEFILTER. Consider the filter

g 014028+ 0.3
N 1-0.2B

(D.29)

We apply the filter to an input sequence X (thin line on Figure D.1) and obtain the output sequence
Y (thick line). F'is a filter with rational transfer function, and is equivalent to the linear constant-
coefficient difference equation:

Y, =0.1X; +0.2X; 1 + 0.3X; 2 +0.2Y; 4

(=~

3i.e. of the form i

1 . .
’q’ 1§ wherep, ¢ are polynomials with no common root
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Figure D.1:Numerical illustration of the filter I = % Top: a random input sequence X (thin
line), the corresponding output Y = FX (thick line), obtained by the matlab command Y=filter ([ 0. 1
0.2 0.3],[1 -0.2], X) and the reconstructed input F~'Y obtained by filter([1 -0.2],[0.1
0.2 0. 3],Y) (smalldisks). Bottom left: poles (x) and zeroes (o) of F', obtained by zpl ane([ 0.1 0. 2
0.3],[1 -0.2]). The filter F is stable (poles within unit disk) but F~! is not (at least one zero out-
side the unit disk). Bottom middle and right: impulse response of ' (h=filter([0.1 0.2 0.3],[1
-0. 2], D), where Dis a dirac sequence) and F~* (h=filter([1 -0.2],[0.1 0.2 0.3],D)).

Reconstruction of X as F~1Y fails for ¢ > 60; this is a symptom of F~! being unstable.
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P=[ 0.5 0.3 0.2] O=[ 1]

_17 ' ' \ ' |
_27 —
-3 . . . .
o 20 40 60 80 100
aF 0.5 2
o.ast g
1.5+ g
2+ 1 o.al J
0.35} 4 ir b
= |
(= =4 O.3r B 0.5 4
=
£ Or > {o.25+ E
= - L
= o.2F - J}
a1l J
o.15} 1 _o.sl |
_>| 1 o.af R
_al i
0.05} 4
sl J
—1 [e) 1 BrS) 10 26 156 10 20

Real Part

Figure D.2:Numerical illustration of the filter G = G' = 0.5 + 0.3B + 0.2B2. Top: a random input sequence
X (thin line), the corresponding output Z = G X (thick line) and the reconstructed input G—1Z (small disks).
Bottom left: poles (x) and zeroes (0) of G. Depending on the conventions, the origin may or may not be
considered as a pole. With our conversion, there is no pole but the software used shows a pole of multiplicity
2 at 0. The filter G and its inverse are stable (poles and zeroes are within the unit disk). Bottom middle and
right: impulse response of G and G~*. Reconstruction works perfectly.
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The poles are the zeroes of 1 — 0.22~!, which are the same as the zeroes of = — 0.2 (i.e z = 0.2).

The poles lie inside the unit disk, so the filter is stable. Its impulse response quickly decays to 0.
The filter is invertible but the inverse is not stable as the zeroes are not all inside the unit disk. The
impulse response of the inverse filter does not decay. We also compute F~!(Y) which should, in
theory, be equal to X (small disks); however, the inverse filter in not stable and can be difficult to
apply in practice; we see indeed that rounding errors become significant for ¢ > 60.

If we consider instead G = 0.5 + 0.3B + 0.2B2 then both the filter and its inverse are stable, and
there are no numerical errors in the reconstruction (Figure D.2).

D.4 PREDICTIONS

We use filter to model time series and perform predictionsayvfarmulas in Chapter 5 are based
on the following result.

D.4.1 CONDITIONAL DISTRIBUTION LEMMA

LEMMA D.4.1. Let (X, X5), (Y1, Y2) be two random vectors, both with values in the spgRtex
R™2, and such that
Yi = Xy
Yo = Xy + FoXo
whereF7, Fy, Fyy are non random linear operators anfd is invertible.
Let X/ be a random sample drawn from the conditional distributiéXe given thatX; = z; and

y1 = ki
Yg = F21$1+F22X£

The law ofYj is the conditional distribution of> given thatY; = y;.

D.4.2 PREDICTIONS

Let X;, Y; be two real valued random sequences (not necessarily afihedl fort > 1. Assume
thatY = F.X whereF' is an invertible filter with impulse responég, /1, hs ... and AREo) rep-
resentation, ¢y, 5 . . .. The following theorem says that making a prediction Xors equivalent
to making a prediction fo¥ . It is a direct consequence of Lemma D.4.1.

THEOREMD.4.1 (Conditional Distribution of Futurespssume thaty,, . . ., y;)* = F(x1,..., 27
and let/ > 1.

Assume that X/, ,,..., X/,,) is a random sample drawn from the conditional distributidn o
(Xit1,- -, Xire) given thatX; = z4,..., X, = . Let

(Y1 Yt Yiqs - -, t'M)T =F(x1,. .2, Xgs - £+€)T
then(Y/,,,...,Y/,,) is distributed according to the conditional distributiofi @1, ..., Y;)
giventhaty; =y, ....Y; = y.
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We can derive explicit formulae for point predictions.

COROLLARY D.4.1 (Point Prediction)Define the/-point-ahead predictions by

~

Xt(£) = E(Xt+£|X1:x17---aXt:xt>
Yt(g) = E(E+z|3ﬁ=y1,---,1€=yt)

then

A

(yh <o Yt }A/;<1)7 s 7}/;5(6))7‘ = F(xlv <oy Tty Xt(1)7 s 7Xt<€>)T (DSO)
and in particular

A

Vi(l) = ho Xy (0) + Xy (0 — 1)+ ... 4+ he 1 Xy (1) + hpywe + .+ hy_y2y (D.31)

and

A

Y, (0) = coXt(ﬁ) + clfﬁ(ﬁ -+...+ cz_lf/}(l) + ey + .+ (D.32)

In the frequent case wherk, is assumed to be iid, we can deduce more explicit resultshior t
point prediction and mean square prediction errors:

COROLLARY D.4.2. Assume in addition thaX; is iid with meanu = E(X;) and variances? =
varX;. Then

1. (Point Predictions)
(1, -y Y1), Y (O = Fay, . app) (D.33)
and in particular
Vi) = (ho+hy + ... 4 ho)p+ horxy + ...+ hy_yay (D.34)

and
Yi(0) =cop+arYy(0—1)+ ...+ Vi) +eoye + ... +c1tn (D.35)

2. (Mean Square Prediction Error) Define

MSE(() = var(Yi Yi=u,....Y =u)
= E((Viae = V0P =y, i = 1)

then
MSE(() = o (hg + -+ h;_,) (D.36)

COROLLARY D.4.3 (Innovation Formula)For ¢t > 2:
Y =Y (1) = ho(X, — p) (D.37)

This is called innovation formula as it can be used to relgtéthe “innovation”) to the prediction
error.
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D.5 LOG LIKELIHOOD OF |INNOVATION

Let X;, Y; be two real valued random sequences (not necessarily afihedl fort > 1. Assume
thatY = F'X whereF is an invertible filter with impulse responsg, i1, hs . . .. Also assume that
for anyn, the random vectofX, ..., X,,) has a PDFf; (71, ..., 7,).

THEOREM D.5.1. Assume that the impulse responsé&-at such thati, = 1. Then for alln the
random vecto(Y1, ..., Y,,) has a PDF equal to

f?n<y17 7yn) = fX‘n<l’1, ,J}n)
with (y17 "'7yn)T = F(xl, ey ,_'lj'n)T

Theorem D.5.1 can be used for estimation in the context of ARWbdels, whereX, is the non
observed innovation, assumed to be iid. The theorem say#hn#og-likelihood of the model is
the same as if we had observed the innovation; estimatiohadstfor iid sequences can then be
applied, as in Example 2.4.

D.6 MATLAB COMMANDS

filter Y =filter ([QuQ1---Q,), [P ---P,], X) with P, # 0 applies the filter

Qo+ 1B+ -+ QB

D.38
Po+PB+---+P,Br (D-38)

to the input sequencE and produces an output sequentcef same length aX'.

poles and zeroescan be obtained withpl ane

de-seasonalizingThe de-seasonalizing filter with pericds R, = Zf;ll B'; X = R,Y can be
obtained using

R = ones(1,5s)
X = filter(R 1,Y)
differencing filter X = A,Y can be obtained by
X =filter([1,0,...,0,-1],[1],Y)
where- 1 is at positions + 1. The inverse filter is obtained by exchanging the first two
arguments:
Y = filter([1],[1,0,...,0,-1],X)
and the terméy, h1, ..., h, Of the impulse response &' are obtained by the command:
h =filter([1],[1,0,...,0,-1],[1,0,...,0])

where the last vector hdseroes.
The command'=di f f ( X, s) also applies the differencing filtex, to X but it removes the
first s entries instead of setting thema@asfi | t er does
impulse responsei npz ([P - - - By, [Qo@1 - - - @], n) gives the first, terms of the impulse re-
sponse of the filter in Eq.(D.38). Itis equivalentto using t er ([P P - - - B,], [QoQ1 - - - Qg
del t an) with del t an equal to the sequeng¢e. 0 ... 0] (withn — 1 zeroes).
parameter estimation of an ARMA model can be done with direct application of Theni®5.1
andl sgnonl i n for the solution of the non linear optimization problem. Bonple ARMA
models, it can be done in one step wathmax.
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convolution c=conv(a, b) computes the sequence of length lerigjht- length(b) — 1 such that
cr = . a;by_;, where the sum is forsuch that,; andb,,_; are defined. The commarvd =
filter(P1, QL filter(P2, @, X)) is equivalentto

P = conv(Pl, P2)
Q = conv(QL, )
X =filter(P,Q X
simulation of an ARMA process as defined in Definition 5.5.1 can be donk wit
e = sigm * randn(n,1)
x = mu + filter(A C e)

D.7 PROOFS

LEMMA D.4.1 The characteristic function df; is
by(ws) = E (e—j(<wZ,F21m>+<W2,F22X§>)) — o—i<wa,Paei>p (efj<wz.,F22Xé>)
— e i<waPami>g (e—j<W2,F22X2>|X1 _ Il)
eI NI () = f(a1) (D.39)
where< -, - > is the inner product. Now lef(y;) := f(F; *y1). We want to show that
g(y1) =E (/<222 |y = ) (D.40)
By definition of a conditional probability, this is equivaleto showing that for any; € R™*:
E (e 7=t M17g(Vy)) = E (e /s 1z emisw 2> (D.41)

Now by the definition ofj()

E (e—j<w1,yl>g(yl)) - E (efj<w1,Y1>efj<w2,F21F1*1Y1>h(F1—lyv1))
= E
E

e*j<w1,F1X1>€*j<WQ,F21X1>h(X1))

(e*j<w1=F1X1>e*j<w27F21X1>e*j<°~’2-,F22X2>)

where the last equality is by the definition/of) as a conditional expectation in Eqg.(D.39). This shows Ed.{[pas
desired.

Note that the proof is simpler iX;, X5 has a density, but this may not always hold, even for gaugsizzresses.

THEOREM D.5.1 Therandomvector, = (Y1, ...,Y,) is derived from the random vectar, = (X, ..., X,)7
byY, = H, X, whereH,, is the matrix in Eq.(D.6), witthg = 1. By the formula of change of variable, we have

[z, (@1, .., zn) = |det(H,)| [, ()

anddet(H,,) = 1.
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